English
新闻公告
More
化学进展 2020, Vol. 32 Issue (6): 752-760 DOI: 10.7536/PC191121 前一篇   后一篇

• 综述与评论 •

百部生物碱的全合成

吴晓晓1,3, 马开庆2,**()   

  1. 1. 山西大学中医药现代研究中心 太原 030006
    2. 山西大学分子科学研究所 太原 030006
    3. 山西大学化学化工学院 太原 030006
  • 收稿日期:2019-11-27 修回日期:2020-02-07 出版日期:2020-06-05 发布日期:2020-04-13
  • 通讯作者: 马开庆
  • 作者简介:
    ** Corresponding author e-mail:
  • 基金资助:
    山西省自然科学基金项目(201901D111012); 山西省重点研发计划(201803D421059)

Total Synthesis of Stemona Alkaloids

Xiaoxiao Wu1,3, Kaiqing Ma2,**()   

  1. 1. Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
    2. Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
    3. College of Chemistry and Chemical Engineering, Shanxi University,Taiyuan 030006, China
  • Received:2019-11-27 Revised:2020-02-07 Online:2020-06-05 Published:2020-04-13
  • Contact: Kaiqing Ma
  • Supported by:
    the Natural Science Foundation of Shanxi Province(201901D111012); Key R&D Program of Shanxi Province(201803D421059)

百部生物碱是从直立百部(Stemona sessilifolia)和其近缘植物的根部分离得到一类生物碱。在分子结构上,这类生物碱通常具有[1, 2-b]吡咯并[1, 2-a]氮杂卓的母核结构,并且由于在母核的多个位置有不同的取代基,从而表现出结构及生物活性的多样性,因而百部生物碱的全合成研究引起国内外化学家的关注。但是由于百部生物碱结构中具有复杂的多环结构及多个手性中心,此类天然产物的全合成研究具有较大的挑战。近年来,化学家们相继开发并应用高对映选择性的反应及串联反应等高效的策略,完成了多个百部生物碱的全合成研究,为百部生物碱进行深入生物活性研究及开发利用奠定了坚实的基础。本文基于本课题组的相关研究内容,综述了各种类型百部生物碱近年来的全合成研究进展。

Stemona alkaloids are a class of alkaloids isolated from the roots of Stemona sessilifolia and its related plants. In terms of molecular structure, stemona alkaloids generally have [1, 2-b]pyrrolo[1, 2-a]azepine as the core structure. The substitutions at different positions on the core scaffold afford various complex structures which exhibit many important biological activities. Therefore, the research on the total synthesis of the stemona alkaloids has attracted the attention of chemists worldwide. However, due to the polycyclic structure and multiple chiral centers in the structure of stemona alkaloids, the total synthesis of stemona alkaloids is extremely challenging. In recent years, chemists have developed the reactions with high enantioselectivity and tandem reactions to complete the total synthesis of the stemona alkaloids, which has laid a solid foundation for further research and development of the stemona alkaloids. Based on the relevant research of our research group, this paper reviews the recent effort on the total synthesis of various types of stemona alkaloids.

Contents

1 Introduction
2 The synthesis of hemiterpenoidpyrrolidine-class stemona alkaloids
3 The synthesis of monoterpenoid pyrrolidine-class stemona alkaloids

3.1 Protostemonine-type stemona alkaloids

3.2 Stemonamine-type stemona alkaloids

3.3 Stemofoline-type stemona alkaloids

3.4 Stenine-type stemona alkaloids

3.5 Tuberostemoamide-type stemona alkaloids

4 Conclusion and outlook
()
图式1 Stemoamide 7 的合成路线(Chida等)[18]
Scheme 1 Synthesis of stemoamide 7(Chida group)[18]
图式2 Stemonine 12的合成路线(Chida课题组)[18]
Scheme 2 Synthesis of stemonine 12(Chida group)[18]
图式3 (+)-Parvineostemonine(19) 及其对映异构体(20)的合成路线(Gaich课题组)[21]
Scheme 3 Synthesis of(+)-parvineostemonine(19) and its enantiomer(20)(Gaich group)[21]
图式4 Stemaphylline 25的合成路线(Leonori和Aggarwal课题组)[23]
Scheme 4 Synthesis of stemaphylline 25(Leonori and Aggarwal group)[23]
图式5 Saxorumamide和isosaxorumamide的合成路线(Chida课题组)[18]
Scheme 5 Synthesis of saxorumamide and isosaxorumamide(Chida group)[18]
图式6 Stemonamine(35)的合成路线(Shindo课题组)[24]
Scheme 6 Synthesis of stemonamine(35)(Shindo group)[24]
图式7 Stemofoline关键骨架43的合成路线(Fukuyama课题组)[30]
Scheme 7 Synthesis of the core structure 43 of stemofolin(Fukuyama group)[30]
图式8 (+)-methoxystemofoline和(+)-isomethoxystemofoline的合成路线(黄培强课题组)[31]
Scheme 8 Scheme 8 Synthesis of (+)-methoxystemofoline and (+)-isomethoxystemofoline(Huang group)[31]
图式9 Neostenine(56)的合成路线(Chida课题组)[33]
Scheme 9 Synthesis of Neostenine(56)(Chida group)[33]
图式10 Stenine关键骨架61的合成路线(Booker-Milburn课题组)[34]
Scheme 10 Synthesis of the core structure 61 of Stenine(Booker-Milburn group)[34]
图式11 Sessilifoliamide A(68)和tuberostemoamide(69) 的合成路线(王震课题组)[35]
Scheme 11 Synthesis of sessilifoliamide A(68) and tuberostemoamide(69)(Wang group)[35]
图式12 Bisdehydroneostemoninine(76)和bisdehydrostemoninine(77)的合成路线(代明骥课题组)[13]
Scheme 12 Synthesis of bisdehydroneostemoninine(76) and bisdehydrostemoninine(77)(Dai group)[13]
[1]
Wang F P , Chen Q H. Nat. Prod. Commun., 2014,9: 1809. ef814d2c-0db5-45e0-a2b9-a6cafa5593afWOS:000346892700038
[2]
Pilli R A , Rosso G B, de Oliveira M d C F. Nat. Prod. Rep., 2010,27: 1908. https://www.ncbi.nlm.nih.gov/pubmed/21042634

URL     pmid: 21042634
[3]
Huang S Z, Kong F D, Ma Q Y, Guo Z K, Zhou L M, Wang Q, Dai H F, Zhao Y X . [J]. Nat. Prod., 2016,79: 2599.
[4]
Dong J L, Yang Z D, Zhou S Y, Yu H T, Yao X J, Xue H Y , Shu Z M. Phytochemistry Lett., 2017,19: 259.
[5]
Lin L G, Zhong Q X, Cheng T Y, Tang C P, Ke C Q, Lin G, Ye Y . [J]. Nat. Prod., 2006,69: 1051.
[6]
Chanmahasathien W, Ohnuma S, Ambudkar SV, Limtrakul P . Planta Med., 2011,77: 1990. https://www.ncbi.nlm.nih.gov/pubmed/21786221

doi: 10.1055/s-0031-1280054     URL     pmid: 21786221
[7]
Chanmahasathien W, Ampasavate C, Greger H, Limtrakul P . Phytomedicine, 2011,18: 199.
[8]
Hu Z X, Tang H Y, Guo J, Aisa H A, Zhang Y, Hao X J . Tetrahedron, 2019,75: 1711. https://linkinghub.elsevier.com/retrieve/pii/S0040402018314546

doi: 10.1016/j.tet.2018.11.064     URL    
[9]
Li Y Y, Wang Y Y, Taniguchi T, Kawakami T, Baba T, Ishibashi H , Mukaida N. Int J Cancer., 2010,127: 474. https://www.ncbi.nlm.nih.gov/pubmed/19921695

URL     pmid: 19921695
[10]
Frankowski K J, Setola V, Evans J M, Neuenswander B, Roth B L , Aube J. Proc. Natl. Acad. Sci. U S A., 2011,108: 6727. https://www.ncbi.nlm.nih.gov/pubmed/21368188

doi: 10.1073/pnas.1016558108     URL     pmid: 21368188
[11]
Liu X Y , Wang F P. Nat. Prod. Commun., 2015,10: 1093. https://www.ncbi.nlm.nih.gov/pubmed/26197559

URL     pmid: 26197559
[12]
Brito G A , Pirovani R V. Org. Prep. Proced. Int., 2018,50: 245. https://www.tandfonline.com/doi/full/10.1080/00304948.2018.1462032

doi: 10.1080/00304948.2018.1462032     URL    
[13]
Ma K Q, Yin X L , Dai M J. Angew. Chem. Int. Ed., 2018,57: 15209. https://onlinelibrary.wiley.com/toc/15213773/57/46

doi: 10.1002/anie.v57.46     URL    
[14]
Ma K Q, Martin B S, Yin X L , Dai M J. Nat. Prod. Rep., 2019,36: 174. https://www.ncbi.nlm.nih.gov/pubmed/29923586

URL     pmid: 29923586
[15]
马开庆 ( Ma K Q), 任虎斌(Ren H B), 吴晓晓(Wu X X), 钞键斌(Chao J B), 秦雪梅(Qin X M). 有机化学(Chin. J. Org. Chem.), 2019,39: 2094.
[16]
Ma K Q, Ren H B, Chao J B , Qin X M. J. Asian Nat. Prod. Res., 2019: DOI: 10.1080/10286020.2019.1608956. https://www.ncbi.nlm.nih.gov/pubmed/32441112

URL     pmid: 32441112
[17]
Williams D R, Shamim K, Reddy J P, Amato G S , Shaw S M. Org. Lett., 2003,5: 3361. https://www.ncbi.nlm.nih.gov/pubmed/12943427

URL     pmid: 12943427
[18]
Yoritate M, Takahashi Y, Tajima H, Ogihara C, Yokoyama T, Soda Y, Oishi T, Sato T, Chida N . J. Am. Chem. Soc., 2017,139: 18386. https://www.ncbi.nlm.nih.gov/pubmed/29179540

URL     pmid: 29179540
[19]
Ke C Q, He Z S, Yang Y P , Ye Y. Chin. Chem. Lett., 2003,14: 173.
[20]
Chen Z H, Tian J M, Chen Z M , Tu Y Q. Chem. Asian. J., 2012,7: 2199. https://www.ncbi.nlm.nih.gov/pubmed/22778054

doi: 10.1002/asia.201200493     URL     pmid: 22778054
[21]
Ckg G, Krüger S , Gaich T. Chem. Eur. J. 2018,24: 3994. https://www.ncbi.nlm.nih.gov/pubmed/29384223

doi: 10.1002/chem.201800365     URL     pmid: 29384223
[22]
Mungkornasawakul P, Chaiyong S, Sastraruji T, Jatisatienr A, Jatisatienr C, Pyne SG, Ung AT, Korth J, Lie W . [J]. Nat. Prod., 2009,72: 848.
[23]
Varela A , Garve L K B, Leonori D D, Aggarwal V K. Angew. Chem. Int. Ed., 2017,56: 2127.
[24]
Fujita S, Nishikawa K, Iwata T, Tomiyama T, Ikenaga H, Matsumoto K , Shindo M. Chem. Eur. J., 2018,24: 1539. https://www.ncbi.nlm.nih.gov/pubmed/29276813

doi: 10.1002/chem.201706057     URL     pmid: 29276813
[25]
Irie H, Masaki N, Ohno K, Osaki K, Taga T, Uyeo S . Journal of the Chemical Society D Chem. Commun., 1970,17: 1066.
[26]
Brüggemann M , McDonald AI, Overman LE, Rosen MD, Schwink L, Scott JP. J. Am. Chem. Soc., 2003,125: 15284. https://www.ncbi.nlm.nih.gov/pubmed/14664560

doi: 10.1021/ja0388820     URL     pmid: 14664560
[27]
Anderson B K, Livinghouse T . J. Org. Chem., 2015,80: 9847. https://www.ncbi.nlm.nih.gov/pubmed/26360508

doi: 10.1021/acs.joc.5b01625     URL     pmid: 26360508
[28]
Burns T, Helliwell M, Thomas E. Tetrahedron Lett. 2013,54: 2120.
[29]
Fang C, Shanahan CS, Paull DH , Martin SF. Angew. Chem. Int. Ed., 2012,124: 10748.
[30]
Ideue E, Shimokawa J, Fukuyama T. Org. Lett., 2015,17: 4964. https://www.ncbi.nlm.nih.gov/pubmed/26376282

URL     pmid: 26376282
[31]
Huang P Q, Huang S Y, Gao L H, Mao Z Y, Chang Z , Wang A E. Chem. Commun., 2015,51: 4576.
[32]
Chung H S, Hon P M, Lin G , But P P H, Dong H. Planta Med., 2003,69: 914. https://www.ncbi.nlm.nih.gov/pubmed/14648394

doi: 10.1055/s-2003-45100     URL     pmid: 14648394
[33]
Nakayama Y, Maeda Y, Kotatsu M, Sekiya R, Ichiki M, Sato T , Chida N. Chem. Eur. J., 2016,22: 3300. https://www.ncbi.nlm.nih.gov/pubmed/26756545

URL     pmid: 26756545
[34]
Connelly R L, Knowles J P , Booker-Milburn K I. Org Lett., 2019,21: 18. https://www.ncbi.nlm.nih.gov/pubmed/30560676

doi: 10.1021/acs.orglett.8b03371     URL     pmid: 30560676
[35]
Hou Y, Shi T, Yang Y, Fan X, Chen J, Cao F, Wang Z . Org. Lett., 2019,21: 29.
[1] 宁鹏, 程云辉, 许宙, 丁利, 陈茂龙. 金属-有机框架材料在活性肽富集中的应用[J]. 化学进展, 2020, 32(4): 497-504.
[2] 罗世鹏, 黄培强. 苹果酸——天然产物对映选择性全合成和合成方法学中多用途的手性合成砌块[J]. 化学进展, 2020, 32(11): 1846-1868.
[3] 智康康, 杨鑫. 天然产物凝胶及其凝胶质[J]. 化学进展, 2019, 31(9): 1314-1328.
[4] 张聪, 岳巧丽, 陶丽霞, 胡莹莹, 李晨钟, 唐波. 基于核酸探针的光学传感方法和细胞成像研究[J]. 化学进展, 2019, 31(6): 858-871.
[5] 英启炜, 廖建国, 吴民行, 翟智皓, 刘欣茹. 球形生物活性玻璃作为运输载体的研究[J]. 化学进展, 2019, 31(5): 773-782.
[6] 闫新, 李意羡, 贾月梅, 俞初一. 糖苷化的亚氨基糖:分离、合成与生物活性[J]. 化学进展, 2019, 31(11): 1472-1508.
[7] 李武, 汪俊洁, 马大为. 对映-贝壳杉烷型二萜的合成[J]. 化学进展, 2019, 31(11): 1460-1471.
[8] 贾斌, 马养民*, 陈镝, 陈璞, 胡岩. 天然产物吲哚二酮哌嗪生物碱的结构及生物活性[J]. 化学进展, 2018, 30(8): 1067-1081.
[9] 刘小宇, 肖涛, 秦勇. 灯台生物碱Strictamine的全合成[J]. 化学进展, 2018, 30(5): 578-585.
[10] 黄婷婷, 周子画, 刘琦, 王晓政, 郭文丽, 林双君*. 放线菌来源生物碱的生物合成机制[J]. 化学进展, 2018, 30(5): 692-702.
[11] 刘吕花, 郑延延*, 张丽芳, 熊成东. 硬组织植入生物活性聚醚醚酮复合材料[J]. 化学进展, 2017, 29(4): 450-458.
[12] 袁硕, 孙德群. β-模拟肽的构象限制在药物设计中的应用[J]. 化学进展, 2016, 28(7): 1084-1098.
[13] 胡代花, 陈旺, 王永吉. 活性维生素D3类似物的合成及构效关系研究[J]. 化学进展, 2016, 28(6): 839-859.
[14] 侯辉, 孙德群. 模拟肽的构象限制在药物设计中的应用[J]. 化学进展, 2015, 27(9): 1260-1274.
[15] 杨冬梅, 周宇涵, 常晴, 赵一龙, 曲景平. 三氟甲基烷基酮的生物活性及合成方法[J]. 化学进展, 2014, 26(06): 976-986.
阅读次数
全文


摘要

百部生物碱的全合成