English
新闻公告
More
化学进展 2016, Vol. 28 Issue (2/3): 260-268 DOI: 10.7536/PC150923 前一篇   后一篇

• 综述与评论 •

基于三萜骨架的超分子凝胶体系

卢金荣1*, 巨勇2   

  1. 1. 华北理工大学化学工程学院 唐山 063009;
    2. 清华大学化学系 北京 100084
  • 收稿日期:2015-09-01 修回日期:2015-11-01 出版日期:2016-03-15 发布日期:2016-01-07
  • 通讯作者: 卢金荣 E-mail:lujinrong@tsinghua.org.cn
  • 基金资助:
    河北省教育厅青年基金项目(No.QN2015237)资助

Supramolecular Gels Based on Natural Product-Triterpenoids

Lu Jinrong1*, Ju Yong2   

  1. 1. College of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, China;
    2. Department of Chemistry, Tsinghua University, Beijing 100084, China
  • Received:2015-09-01 Revised:2015-11-01 Online:2016-03-15 Published:2016-01-07
  • Supported by:
    The work was supported by the Foundation of Hebei Education Department (No. QN2015237).
基于有机小分子多级自组装形成的超分子凝胶,由于其潜在的应用前景越来越受到人们的关注。合理设计凝胶因子并实现在适当的溶剂中自组装形成纤维状结构,对于分子识别和自组装来说都有一定挑战。三萜化合物具有独特的手性骨架结构,是一类重要的生物活性天然产物, 在消炎、降血脂、保肝护肾、抗菌、抗肿瘤、抗真菌等方面有着重要的药用价值。 近年来,基于独特的手性刚性骨架和具有多个可修饰位点的特点,此类化合物的聚集性质和在超分子组装方面的应用已经引起关注。本文总结了未经修饰的五环三萜化合物的聚集组装性质和基于此类骨架的功能分子在超分子凝胶方面的研究,并介绍了此类超分子凝胶潜在的应用。结果表明,发展基于此类天然产物骨架的超分子组装体,不仅为超分子凝胶的研究引入新的构筑基元,并且能够达到阐述生物活性分子之间相互作用力以及充分利用自然界资源创造新材料的目的。
Supramolecular gels based on hierarchically self-assembly of small organic molecules through non-covalent interactions attract more and more attention because of the potential applications. Expected design of gelators that could directly self-assembly into fiber network instead of serendipity is challenging for both molecular recognition and supramolecular self-assembly. Pentacyclic triterpenoids with unique chiral skeleton structures are very important active biomolecules as natural products. They have much medicinal value because of their biological activities such as liver-protecting,anti-hyperlipidemia, anti-tumor, anti-virus and anti-inflammatory. Due to the characteristics of rigid chiral skeleton and multiple reaction sites, the aggregation and self-assembly properties of pentacyclic triterpenoids have attracted more and more attention. In this review, the aggregation property of pentacyclic triterpenoids without any modification in different solvents and supramolecular gels formed by functional molecules based on derivatives of triterpenoids are described in detail. In addition, the potential applications of the gels based on pentacyclic triterpenoids are also represented. Imitating and modifying these natural products used as building blocks in self-assembling architectures can not only minimize the tedious synthetic work of gelators and introduce ready units for supramolecular gels, but also help to elaborate the interactions between biomolecules and make use of natural products to create new materials.

Contents
1 Introduction
2 Supramolecular gels based on pentacyclic triterpenoids without modification
2.1 Supramolecular gels based on lupane-triterpenoid
2.2 Supramolecular gels based on oleanane-triterpenoid
3 Supramolecular gels based on pentacyclic triterpenoid derivatives
3.1 Gelators of pentacyclic triterpenoid derivatives start from carboxyl
3.2 Gelators of pentacyclic triterpenoid derivatives start from hydroxyl
4 Conclusion and outlook

中图分类号: 

()
[1] 张本印(Zhang B Y),王环(Wang H),沈建伟(Shen J W),杨晓艳(Yang X Y),罗晓东(Luo X D),张晓峰(Zhang X F). 化学进展(Progress in Chemistry), 2010, 22:877.
[2] Dzubak P, Hajduch M, Vydra D, Hustova A, Kvasnica M, Biedermann D, Lenka M, Milan U, Jan S. Nat. Prod. Rep., 2006, 23:394.
[3] Petronelli A, Pannitteri G, Testa U. Anti-Cancer Drugs, 2009, 20:880.
[4] Chen J, Liu J, Zhang L Y, Wu G Z, Hua W Y, Wu X M, Sun H B. Bioorg. Med. Chem. Lett., 2006, 16:2915.
[5] Honda T, Rounds B V, Bore L, Favaloro F G, Suh N, Wang Y P, Sporn M B, Gribble G W. J. Med. Chem., 2000, 43:4233.
[6] Steed J W. Chem. Commun., 2011, 47:1379.
[7] Buerkle L E, Rowan S J. Chem. Soc. Rev., 2012, 41:6089.
[8] Miljanic S, Frkanec L, Meic Z, Zinic M. Langmuir, 2005, 21:2754.
[9] Wang C, Zhang D, Zhu D. J. Am. Chem. Soc., 2005, 127:16372.
[10] Chen L, Morris K, Laybourn A, Elias D, Hicks M R, Rodger A, Serpell L, Adams D J. Langmuir, 2009, 26:5232.
[11] Suzuki M, Hanabusa K. Chem. Soc. Rev., 2009, 38:967.
[12] Jadhav S R, Vemula P K, Kumar R, Raghavan S R, John G. Angew. Chem. Int. Ed., 2010, 49:7695.
[13] Svobodova H, Noponen V, Kolehmainen E, Sievanen E. RSC Advances, 2012, 2:4985.
[14] 卢金荣(Lu J R), 巨勇(Ju Y). 有机化学(Chinese Journal of Organic Chemistry), 2013, 33:469.
[15] Hu J, Lu J R, Ju Y. Chem. Asian. J., 2011, 6:2636.
[16] 胡君(Hu J),巨勇(Ju Y). 化学进展(Progress in Chemistry), 2011, 23:181.
[17] John G, Vijai Shankar B, Jadhav S R, Vemula P K. Langmuir, 2010, 26:17843.
[18] Bag B G, Pramanik S R, Maity G C. Supramol. Chem., 2005, 297.
[19] Bag B G, Garai C, Majumdar R, Laguerre M. Struct. Chem., 2012, 23:393.
[20] Fulda S. Int. J. Mol. Sci., 2008, 9:1096.
[21] Genet C, Strehle A, Schmidt C, Boudjelal G, Lobstein A, Schoonjans K, Souchet M, Auwerx J, Saladin R, Wagner A. J. Med. Chem., 2010, 53:178.
[22] Dash S S. Nanoscale, 2011, 3:4564.
[23] Bag B G, Majumdar R. RSC Advances, 2012, 2:8623.
[24] Bag B G, Paul K. Asian J. Org. Chem., 2012, 1:150.
[25] Peterca M, Percec V, Leowanawat P, Bertin A. J. Am. Chem. Soc., 2011, 133:20507.
[26] Bag B G, Majumdar R. RSC Adv., 2014, 4:53327.
[27] Li Y H, Huang G Y, Zhang X H, Li B Q, Chen Y M, Lu T L, Lu T J, Xu F. Adv. Funct. Mater., 2013, 23:660.
[28] Xue Z X, Wang S T, Lin L, Chen L, Liu M J, Feng L, Jiang L. Adv. Mater., 2011, 23:4270.
[29] Lee K Y, Mooney D J. Chem. Rev., 2001, 101:1869.
[30] Wu J D, Lu J R, Hu J, Gao Y X, Ma Q, Ju Y. RSC Adv., 2013, 3:24906.
[31] Bag B G, Dinda S K, Dey P P, Mallia A. V, Weiss R G. Langmuir, 2009, 25:8663.
[32] Hu J, Wu J D, Wang Q, Ju Y. Beilstein J. Org. Chem., 2013, 9:2877.
[33] Bag B G, Maity G C, Dinda S K. Org. Lett., 2006, 8:5457.
[34] Maity G C. J. Phy. Sci., 2013, 17:169.
[35] Bag B G, Majumdar R, Dinda S K, Dey P P, Maity G C, Ajay Mallia V, Weiss R G. Langmuir, 2013, 29:1766.
[36] Hu J, Zhang M, Ju Y. Soft Matter, 2009, 5:4971.
[37] Lu J R, Hu J, Song Y, Ju Y. Org. Lett., 2011, 13:3372.
[38] Lu J R, Hu J, Liu C L, Gao H X, Ju Y. Soft Matter, 2012, 8:9576.
[39] Li X, Kuang Y, Xu B. Soft Matter, 2012, 8:2801.
[40] Lu J R, Gao Y X, Wu J D, Ju Y. RSC Adv., 2013, 3:23548.
[41] Ajayaghosh A, Praveen V K, Vijayakumar C. Chem. Soc. Rev., 2008, 37:109.
[42] Dhinakaran M K, Das T M. Org. Biomol. Chem., 2012, 10:2077.
[43] Lu J R, Wu J D, Ju Y. New. J. Chem., 2014, 38:6050.
[44] 金培元(Jin P Y), 卢金荣(Lu J R), 巨勇(Ju Y).有机化学(Chinese Journal of Organic Chemistry), 2012, 32:1673.
[45] Hu J, Yu L B, Zhang M, Ju Y. Chin. J. Chem., 2011, 29:1139.
[46] Saha A, Adamcik J, Bolisetty S, Handschin S, Mezzenga R. Angew. Chem. Int. Ed., 2015, 54:5408.
[47] Shen Z C, Wang T Y, Liu M H, Angew. Chem. Int. Ed., 2014, 53:13424.
[48] Gao Y X, Hao J, Wu J D, Zhang X, Hu J, Ju Y. Nanoscale, 2015, 7:13568.
[1] 逯桃桃, 刘娟, 李辉, 魏太保, 张有明, 林奇. 刺激响应型超分子凝胶[J]. 化学进展, 2016, 28(10): 1541-1549.
[2] 靳清贤, 李晶, 李孝刚, 张莉, 方少明, 刘鸣华. 超分子凝胶的手性功能应用:手性分子识别与不对称催化[J]. 化学进展, 2014, 26(06): 919-930.
[3] 王赛, 吴斌, 段军飞, 方江邻*, 谌东中. 基于脲基氢键组装的功能超分子凝胶[J]. 化学进展, 2014, 26(01): 125-139.
[4] 武金丹, 巨勇. 基于天然产物骨架的分子离子识别体系[J]. 化学进展, 2013, 25(11): 1888-1897.
[5] 陈德皓, 徐常登, 刘子立, 陈玲, 甄春花, 孙世刚. 功能分子在贵金属纳米晶催化剂形状控制合成中的作用机理[J]. 化学进展, 2013, 25(10): 1667-1680.
[6] 张荷兰, 彭军霞, 刘凯强, 房喻. 胆酸超分子凝胶化学[J]. 化学进展, 2011, 23(8): 1591-1597.
[7] 胡君, 巨勇. 三萜骨架功能分子[J]. 化学进展, 2011, 23(01): 181-191.
[8] 郭建 吴凯强 谢莉莉 徐凤波 袁耀锋. 含茂铁基三联吡啶钌功能分子的光电性质*[J]. 化学进展, 2010, 22(05): 773-783.
[9] 郭建 庄顺 吴凯强 袁耀锋. 神奇的构筑块二茂铁炔基在光电功能分子中的应用*[J]. 化学进展, 2009, 21(12): 2589-2594.
[10] 许梦清 邢丽丹 李伟善. 锂离子电池界面膜形成功能分子的研究现状*[J]. 化学进展, 2009, 21(10): 2017-2027.
阅读次数
全文


摘要

基于三萜骨架的超分子凝胶体系