English
新闻公告
More
化学进展 2015, Vol. 27 Issue (6): 666-674 DOI: 10.7536/PC150103 前一篇   后一篇

• 超分子化学专辑 •

铁咔咯配合物在有机合成中的催化应用

邹怀波1, 汪华华1, 梅光泉2, 刘海洋*1, 张启光*3   

  1. 1. 华南理工大学化学系 广州 510640;
    2. 宜春学院 江西省高校应用化学与化学生物学重点实验室 宜春 336000;
    3. Department of Chemistry, Michigan State University, E. Lansing, MI 48824, USA
  • 收稿日期:2015-01-01 修回日期:2015-04-01 出版日期:2015-06-15 发布日期:2015-04-08
  • 通讯作者: 刘海洋, 张启光 E-mail:chhyliu@scut.edu.cn;changc@msu.edu
  • 基金资助:
    国家自然科学基金项目(No.21171057,21371059,21261024)资助

Catalytic Application of Iron Corrole Complexes in Organic Synthesis

Zou Huaibo1, Wang Huahua1, Mei Guangquan2, Liu Haiyang*1, Chang Chi-Kwong*3   

  1. 1. Department of Chemistry, South China University of Technology, Guangzhou 510640, China;
    2. Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, Yichun University, Yichun 336000, China;
    3. Department of Chemistry, Michigan State University, E. Lansing, MI 48824, USA
  • Received:2015-01-01 Revised:2015-04-01 Online:2015-06-15 Published:2015-04-08
  • Contact: 10.7536/PC150103 E-mail:chhyliu@scut.edu.cn;changc@msu.edu
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21171057, 21371059, 21261024).
铁咔咯配合物的制备及其催化活性研究是当今卟啉化学的前沿课题之一。本文综述了近年来铁咔咯配合物在有机合成中的催化应用,重点归纳评述了它们在氧化反应,烯烃的环丙烷化、氮杂环丙烷化,N—H键、S—H键和C—H键的插入反应, [4+2]环加成反应及共聚反应中的催化活性,分析了目前铁咔咯配合物在催化研究方面存在的问题并展望了其发展的方向。
Study on the preparation and catalytic activities of iron corrole has become one of the hot topics of porphyrin chemistry. In this paper, the recent progress about catalytic application of iron corrole in organic synthesis has been reviewed, with an emphasis on the oxidation, cyclopropanation and aziridination of olefin, insertion reactions involving N—H, S—H and C—H bonds, [4+2] cycloaddition as well as copolymerization of epoxides with carbon dioxide. The problems of iron corroles in catalysis and several directions have also been addressed.

Contents
1 Introduction
2 Application of iron-corrole complexes in organic synthesis
2.1 Catalytic oxidation
2.2 Catalytic cyclopropanation
2.3 Catalytic aziridination
2.4 Catalytic insertion reactions involving N—H, S—H and C—H bonds
2.5 Catalytic cycloaddition
2.6 Catalytic copolymerization
3 Conclusion

中图分类号: 

()
[1] Cuesta L, Sessler J L. Chem. Soc. Rev., 2009, 38: 2716.
[2] (a) Nakamura Y, Aratani N, Osuka A. Chem. Soc. Rev., 2007, 36: 831; (b) Pareek Y, Ravikanth M, Chandrashekar T K. Acc. Chem. Res., 2012, 45: 1801; (c) Zha Q Z, Ding C X, Rui X, Xie Y S. Cryst. Growth Des., 2013, 13: 4583; (d) Wei P C, Zhang K, Li X, Meng D Y, Ögren H, Ou Z P, Ng S, Furuta H, Xie Y S. Angew. Chem. Int. Ed., 2014, 53: 14069; (e) Zha Q Z, Rui X, Wei T T, Xie Y S. Cryst. Eng. Comm., 2014, 16: 7371.
[3] Ethirajan M, Chen Y H, Joshi P, Pandey R K. Chem. Soc. Rev., 2011, 40: 340.
[4] (a) Li L L, Diau E W G. Chem. Soc. Rev., 2013, 42: 291; (b) Wang Y Q, Chen B, Wu W J, Li X, Zhu W H, Tian H, Xie Y S. Angew. Chem. Int. Ed., 2014, 53: 10779; (c) Sun X, Wang Y Q, Li X, Ögren H, Zhu W H, Tian H, Xie Y S. Chem. Commun., 2014, 50: 15609.
[5] (a) Shin J Y, Kim K S, Yoon M C, Lim J M, Yoon Z S, Osuka A, Kim D. Chem. Soc. Rev., 2010, 39: 2751; (b) De la Torre G, Bottari G, Sekita M, Hausmann A, Guldi D M, Torres T. Chem. Soc. Rev., 2013, 42: 8049.
[6] (a) Lu H J, Zhang X P. Chem. Soc. Rev., 2011, 40: 1899; (b) Chan K H, Guan X G, Lo V K Y, Che C M. Angew. Chem. Int. Ed., 2014, 53: 2982; (c) Fackler P, Huber S M, Bach T. J. Am. Chem. Soc., 2012, 134: 12869.
[7] Tanaka T, Osuka A. Chem. Soc. Rev., 2015, 44: 943.
[8] Johnson A W, Kay I T. J. Chem. Soc., 1965, 1620.
[9] (a) Gross Z, Galili N, Saltsman I. Angew. Chem. Int. Ed., 1999, 38: 1427; (b) Gryko D T, Koszarna B. Org. Biomol. Chem., 2003, 1: 350.
[10] (a) Gross Z, Gray H B. Adv. Synth. Catal., 2004, 346: 165; (b) Zdilla M J, Abu-Omar M M. J. Am. Chem. Soc., 2006, 128: 16971; (c) Mahammed A, Gross Z. Angew. Chem. Int. Ed., 2006, 45: 6544; (d) He C L, Ren F L, Zhang X B, Han Z X. Talanta, 2006, 70: 364; (e) Zhang X B, Han Z X, Fang Z H, Shen G L, Yu R Q. Anal. Chim. Acta, 2006, 562: 210; (f) Li C Y, Zhang X B, Han Z X, Ökermark B, Sun L C, Shen G L, Yu R Q. Analyst, 2006, 131: 388; (g) Aviv I, Gross Z. Chem. Commun., 2007, 1987; (h) Paolesse R. Synlett, 2008, 15: 2215; (i) Flamigni L, Gryko D T. Chem. Soc. Rev., 2009, 38: 1635; (j) Aviv-Harel I, Gross Z. Chem. Eur. J., 2009, 15: 8382; (k) Abu-Omar M M. Dalton Trans., 2011, 40: 3435; (l) Liu H Y, Mahmood M H, Qiu S X (Samuel), Chang C K. Coordin. Chem. Rev., 2013, 257: 1306.
[11] (a) Gross Z, Gray H B. Comment. Inorg. Chem., 2006, 27: 61; (b) Rabinovich E, Goldberg I, Gross Z. Chem. Eur. J., 2011, 17: 12294; (c) Nigel-Etinger I, Goldberg I, Gross Z. Inorg. Chem., 2012, 51: 1983.
[12] Palmer J H, Brock-Nannestad T, Mahammed A, Durrell A C, VanderVelde D, Virgil S, Gross Z, Gray H B. Angew. Chem. Int. Ed., 2011, 50: 9433.
[13] Agadjanian H, Ma J, Rentsendorj A, Valluripalli V, Hwang J Y, Mahammed A, Farkas D L, Gray H B, Gross Z, Medina-Kauwe L K. Proc. Natl. Acad. Sci. USA, 2009, 106: 6105.
[14] (a) Fu B Q, Huang J, Ren L G, Weng X C, Zhou Y Y, Du Y H, Wu X J, Zhou X, Yang G F. Chem. Commun., 2007, 3264; (b) Fu B Q, Zhang D, Weng X C, Zhang M, Ma H, Ma Y Z, Zhou X. Chem. Eur. J., 2008, 14: 9431; (c) Ma H, Zhang M, Zhang D, Huang R, Zhao Y, Yang H, Liu Y J, Weng X C, Zhou Y Y, Deng M G, Zhou X. Chem. Asian J., 2010, 5: 114.
[15] (a) Zhang Y, Wang Q, Wen J Y, Wang X L, Mahmood M H R, Ji L N, Liu H Y. Chin. J. Chem., 2013, 31: 1321; (b) Zhang Y, Chen H, Wen J Y, Wang X L, Wang H, Ji L N, Liu H Y. Chem. J. Chin. Univ., 2013, 34: 2462; (c) Zhang Y, Wen J Y, Wang X L, Mahmood M H R, Liu Z Y, Wang H, Ji L N, Liu H Y. Appl. Organometal. Chem., 2014, 28: 559.
[16] Basumatary B, Kaloo M A, Singh V K, Mishra R, Murugavel M, Sankar J. RSC Adv., 2014, 4: 28417.
[17] Chen G Q, Xu Z J, Zhou C Y, Che C M. Chem. Commun., 2011, 47: 10963.
[18] Liu H Y, Lai T S, Yeung L L, Chang C K. Org. Lett., 2003, 5: 617.
[19] Zhan H Y, Liu H Y, Chen H J, Jiang H F. Tetrahedron Lett., 2009, 50: 2196.
[20] Lian P, Liu H Y, Liu L Y, Shi L, Jiang H F, Chang C K. Chin. Chem. Lett., 2009, 20: 21.
[21] Shi L, Liu H Y, Shen H, Hu J, Zhang G L, Wang H, Ji L N, Chang C K, Jiang H F. J. Porph. Phthal., 2009, 13: 1221.
[22] Zhan H Y, Liu H Y, Lu J, Wang A Z, You L L, Wang H, Ji L N, Jiang H F. J. Porph. Phthal., 2010, 14: 150.
[23] Shi L, Liu H Y, Peng K M, Wang X L, You L L, Lu J, Zhang L, Wang H, Ji L N, Jiang H F. Tetrahedron Lett., 2010, 51: 3493.
[24] Lu J, Liu H Y, Shi L, Wang X L, Ying X, Zhang L, Ji L N, Zang L Q, Chang C K. Chin. Chem. Lett., 2011, 22: 101.
[25] Mahmood M H R, Liu Z Y, Liu H Y, Zou H B, Chang C K. Chin. Chem. Lett., 2014, 25: 1349.
[26] Liu H Y, Chen L, Yam F, Zhan H Y, Ying X, Wang X L, Jiang H F, Chang C K. Chin. Chem. Lett., 2008, 19: 1000.
[27] Liu H Y, Yam F, Xie Y T, Li X Y, Chang C K. J. Am. Chem. Soc., 2009, 131: 12890.
[28] Liu H Y, Zhou H, Liu L Y, Ying X, Jiang H F, Chang C K. Chem. Lett., 2007, 36: 274.
[29] Ng N C, Mahmood M H R, Liu H Y, Yam F, Yeung L L, Chang C K. Chin. Chem. Lett., 2014, 25: 571.
[30] Yu L, Wang Q, Dai L, Li W Y, Chen R, Mahmood M H R, Liu H Y, Chang C K. Chin. Chem. Lett., 2013, 24: 447.
[31] Wang Q, Zhang Y, Yu L, Yang H, Mahmood M H R, Liu H Y. J. Porph. Phthal., 2014, 18: 316.
[32] Gross Z, Simkhovich L. Chem. Commun., 1999, 599.
[33] Biswas A N, Das P, Agarwala A, Bandyopadhyay D, Bandyopadhyay P. J. Mol. Catal. A: Chem., 2010, 326: 94.
[34] Biswas A N, Pariyar A, Bose S, Das P, Bandyopadhyay P. Catal. Commun., 2010, 11: 1008.
[35] Pariyar A, Bose S, Biswas A N, Das P, Bandyopadhyay P. Catal. Commun., 2013, 32: 23.
[36] Bose S, Pariyar A, Biswas A N, Bandyopadhyay P. J. Mol. Catal. A: Chem., 2013, 378: 179.
[37] (a) Anding B J, Ellern A, Woo L K. Organometallics, 2012, 31: 3628; (b) Xu X, Lu H J, Ruppel J V, Cui X, de Mesa S L, Wojtas L, Zhang X P. J. Am. Chem. Soc., 2011, 133: 15292; (c) Ruppel J V, Gauthier T J, Snyder N L, Perman J A, Zhang X P. Org. Lett., 2009, 11: 2273; (d) Zhu S F, Ruppel J V, Lu H J, Wojtas L, Zhang X P. J. Am. Chem. Soc., 2008, 130: 5042; (e) Zhu S F, Perman J A, Zhang X P. Angew. Chem. Int. Ed., 2008, 47: 8460; (f) Chen Y, Zhang X P. J. Org. Chem., 2007, 72: 5931.
[38] (a) Chen Y, Fields K B, Zhang X P. J. Am. Chem. Soc., 2004, 126: 14718; (b) Chen Y, Ruppel J V, Zhang X P. J. Am. Chem. Soc., 2007, 129: 12074; (c) Chattopadhyay P, Matsuo T, Tsuji T, Ohbayashi J, Hayashi T. Organometallics, 2011, 30: 1869.
[39] (a) Morandi B, Carreira E M. Science, 2012, 335: 1471; (b) Morandi B, Carreira E M. Angew. Chem. Int. Ed., 2010, 49: 938; (c) Morandi B, Dolva A, Carreira E M. Org. Lett., 2012, 14: 2162; (d) Morandi B, Cheang J. Carreira E M. Org. Lett., 2011, 13: 3080.
[40] Simkhovich L, Mahammed A, Goldberg I, Gross Z. Chem. Eur. J., 2001, 7: 1041.
[41] (a) Vyas R, Gao G Y, Harden J D, Zhang X P. Org. Lett., 2004, 6: 1907; (b) Gao G Y, Jones J E, Vyas R, Harden J D, Zhang X P. J. Org. Chem., 2006, 71: 6655; (c) Ruppel J V, Jones J E, Huff C A, Kamble R M, Chen Y, Zhang X P. Org. Lett., 2008, 10: 1995; (d) Jones J E, Ruppel J V, Gao G Y, Moore T M, Zhang X P. J. Org. Chem., 2008, 73: 7260.
[42] Liu P, Wong E L M, Yuen A W H, Che C M. Org. Lett., 2008, 10: 3275.
[43] Simkhovich L, Gross Z. Tetrahedron Lett., 2001, 42: 8089.
[44] Liang L, Lv H B, Yu Y, Wang P, Zhang J L. Dalton Trans., 2012, 41: 1457.
[45] (a) Baumann L K, Mbuvi H M, Du G D, Woo L K. Organometallics, 2007, 26: 3995; (b) Lu H J, Jiang H L, Wojtas L, Zhang X P. Angew. Chem. Int. Ed., 2010, 49: 10192; (c) Lyaskovsky V, Suarez A I O, Lu H J, Jiang H L, Zhang X P, de Bruin B. J. Am. Chem. Soc., 2011, 133: 12264; (d) Lu H J, Jiang H L, Hu Y, Wojtas L, Zhang X P. Chem. Sci., 2011, 2: 2361; (e) Lu H J, Hu Y, Jiang H L, Wojtas L, Zhang X P. Org. Lett., 2012, 14: 5158.
[46] Aviv I, Gross Z. Synlett., 2006, 6: 951.
[47] Aviv I, Gross Z. Chem. Eur. J., 2008, 14: 3995.
[48] Kuwano T, Kurahashi T, Matsubara S. Chem. Lett., 2013, 42: 1241.
[49] Nakano K, Kobayahi T, Ohkawara T, Imoto H, Nozaki K. J. Am. Chem. Soc., 2013, 135: 8456.
[50] (a) Mirafzal G A, Cheng G L, Woo L K. J. Am. Chem. Soc., 2002, 124: 176; (b) Cheng G L, Mirafzal G A, Woo L K. Organometallics, 2003, 22: 1468; (c) Chen Y, Huang L Y, Ranade M A, Zhang X P. J. Org. Chem., 2003, 68: 3714; (d) Chen Y, Huang L Y, Zhang X P. Org. Lett., 2003, 5: 2493.
[51] Tachinami T, Nishimura T, Ushimaru R, Noyori R, Naka H. J. Am. Chem. Soc., 2013, 135: 50.
[52] Wakabayashi R, Kurahashi T, Matsubara S. Org. Lett., 2012, 14: 4794.
[53] Wang J W, Meng F H, Zhang L F. Organometallics, 2009, 28: 2334.
[54] Venkatasubbaiah K, Zhu X J, Kays E, Hardcastle K I, Jones C W. ACS Catal., 2011,1: 489.
[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[3] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[4] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[5] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[6] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[7] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[8] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[9] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[10] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[11] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[12] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[13] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[14] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[15] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.