English
新闻公告
More
化学进展 2013, Vol. 25 Issue (10): 1691-1702 DOI: 10.7536/PC121146 前一篇   后一篇

• 综述与评论 •

铈铁复合氧化物的结构特征及其催化应用

李孔斋, 王华, 魏永刚, 祝星   

  1. 昆明理工大学 冶金节能减排教育部工程研究中心 昆明650093
  • 收稿日期:2012-11-01 修回日期:2013-03-01 出版日期:2013-11-12 发布日期:2013-07-18
  • 通讯作者: 王华 E-mail:wanghuaheat@hotmail.com
  • 基金资助:

    国家自然科学基金项目(No.51004060,51104074,51174105)和金川预研基金(金川201115)资助

Structural Features of Ce-Fe Mixed Oxide and Its Applications in Catalysis

Li Kongzhai, Wang Hua, Wei Yonggang, Zhu Xing   

  1. Engineering Research Center of Metallurgical Energy Conservation and Emission Reduction, Ministry of Education, Kunming University of Science and Technology, Kunming 650093, China
  • Received:2012-11-01 Revised:2013-03-01 Online:2013-11-12 Published:2013-07-18

氧化铈(CeO2)是一种重要的催化材料,在环境催化和催化氧化等诸多领域表现出了出色的催化性能。将其他金属离子引入氧化铈晶格通过电荷平衡原理诱导产生丰富的氧空位,是提高氧化铈催化性能的有效方法。当Fe3+进入CeO2晶格时,由于其离子半径较小,可同时形成取代和间隙两类固溶体,取代与间隙位Fe3+的摩尔比决定着氧空位的浓度,这使铈铁复合氧化物上的氧空位浓度极具调变性。另外,由于氧化铁本身亦对某些反应具有催化活性,游离的氧化铁与氧化铈颗粒间形成的特殊界面也表现出了优异的催化特性。铈铁间多重的协同作用使这类复合氧化物具有较高的研究和使用价值。本文介绍了铁离子在氧化铈中的固溶度和氧空位调变性等铈铁复合氧化物的结构特点,探讨了该材料的结构对其制备条件的敏感性,概述了其在催化领域的应用,并讨论了铈铁交互作用在催化过程中的作用。结合本课题组的一些研究成果,指出了铈铁材料尚未解决的一些关键问题和可能的研究方向。

CeO2 is one of the most interesting oxides in the fields of catalysis (e.g., environmental catalysis and catalytic oxidation) because of the rapid formation and elimination of oxygen vacancies. The performance of CeO2 can be strongly improved under doping. Synthesis of ceria-based solid solutions with controllable concentrations of oxygen vacancies is of great fundamental significance. Since the properties of the ceria-based solid solutions are affected by the dopant size and valence (lower valence ions in ceria could lower the activation energy for oxygen migration, and smaller ions enhance the oxygen storage capacity), introducing cations with smaller size and lower valence as compared to Ce4+ (e.g., Fe3+) into the ceria lattice owns considerable scientific and technological value. It has been observed a series of interesting phenomena in the structure and catalytic applications of CeO2-Fe2O3 solid solution. Moreover, the interface between CeO2 and Fe2O3 particles (e.g., Ce-O-Fe bridges) also reveals special features in catalysis. In this review, the structural features of Ce-Fe mixed oxides, including the solubility of Fe ions in ceria lattice, formation of oxygen vacancies and CeO2-Fe2O3 interaction are discussed, which are related to their activity in catalytical applications (e.g., purification of exhaust gases from vehicles, catalytic oxidation, hydrogen and syngas generation, and Fischer-Tropsch synthesis). Some key issues and possible directions on the Ce-Fe mixed oxides used in catalysis are discussed.

Contents
1 Introduction
2 Structural features of ceria-based solid solution
2.1 Formation of ceria-based solid solution and oxygen vacancies
2.2 Relationship among prepare methods, solubility of Fe in ceria lattice and oxygen vacancies concentration
3 Applications of Ce-Fe mixed oxides in catalysis
3.1 Purification of exhaust gases from vehicles
3.2 Catalytic oxidation
3.3 Hydrogen/syngas generation
3.4 Organic synthesis
3.5 Solid oxide fuel cells
3.6 Fischer-Tropsch synthesis
3.7 Catalytic wet peroxide oxidation
4 Conclusion and outlook

中图分类号: 

()
[1] Campbell C T, Peden C H F. Science, 2005, 309 (5735): 713—714
[2] Esch F, Fabris S, Zhou L, Montini T, Africh C, Fornasiero P, Comelli G, Rosei R. Science, 2005, 309 (5735): 752—755
[3] Trovarelli A. Catalysis by Ceria and Related Materials. London: Imperial College Press, 2002
[4] Trovarelli A. Comments Inorg. Chem., 1999, 20 (4/6): 263—284
[5] Vidmar P, Fornasiero P, Kapar J, Gubitosa G, Graziani M. J. Catal., 1997, 171 (1): 160—168
[6] Hori C E, Permana H, Ng K Y S, Brenner A, More K, Rahmoeller K M, Belton D. Appl. Catal. B, 1998, 16 (2): 105—117
[7] Si R, Zhang Y W, Li S J, Lin B X, Yan C H. J. Phys. Chem. B, 2004, 108 (33): 12481—12488
[8] Dutta G, Waghmare U, Baidya T, Hegde M, Priolkar K, Sarode P. Catal. Lett., 2006, 108 (3): 165—172
[9] Li G S, Smith R L, Inomata H. J. Am. Chem. Soc., 2001, 123 (44): 11091—11092
[10] Pérez-Alonso F J, Granados M L, Ojeda M, Terreros P, Rojas S, Herranz T, Fierro J L G, Gracia M, Gancedo J R. Chem. Mater., 2005, 17 (9): 2329—2339
[11] Cornell R M. The Iron Oxides: Structure, Properties, Reactions, Occurrence, and Uses. 2nd ed. Weinheim:WILEY-VCH, 2003. 518—522
[12] Hossain M M, de Lasa H I. Chem. Eng. Sci., 2008, 63 (18): 4433—4451
[13] Adanez J, Abad A, Garcia-Labiano F, Gayan P, de Diego L F. Prog. Energy Combust. Sci., 2012, 38 (2): 215—282
[14] Takenaka S, Son V T D, Yamada C, Otsuka K. Chem. Lett., 2003, 32 (11): 1022—1023
[15] Otsuka K, Yamada C, Kaburagi T, Takenaka S. Int. J. Hydrogen Energy, 2003, 28 (3): 335—342
[16] Gondal M A, Hameed A, Yamani Z H, Suwaiyan A. Appl. Catal., A, 2004, 268 (1/2): 159—167
[17] Johansson M, Mattisson T, Lyngfelt A. Ind. Eng. Chem. Res., 2004, 43 (22): 6978—6987
[18] Takenaka S, Kaburagi T, Yamada C, Nomura K, Otsuka K. J. Catal., 2004, 228 (1): 66—74
[19] Takenaka S, Hanaizumi N, Son V T D, Otsuka K. J. Catal., 2004, 228 (2): 405—416
[20] Ryu J C, Lee D H, Kang K S, Park C S, Kim J W, Kim Y H. J. Ind. Eng. Chem., 2008, 14 (2): 252—260
[21] Chen S Y, Shi Q L, Xue Z P, Sun X Y, Xiang W G. Int. J. Hydrogen Energy, 2011, 36 (15): 8915—8926
[22] Wang H, Liu X J, Wen F. Int. J. Hydrogen Energy, 2012, 37 (1): 977—983
[23] Pérez-Alonso F J, Granados M L, Ojeda M, Herranz T, Rojas S, Terreros P, Fierro J L G, Gracia M, Gancedo J R. J. Phys. Chem. B, 2006, 110 (47): 23870—23880
[24] Pérez-Alonso F J, Melian-Cabrera I, Granados M L, Kapteijn F, Fierro J L G. J. Catal., 2006, 239 (2): 340—346
[25] Pérez-Alonso F J, Herranz T, Rojas S, Ojeda M, Lopez Granados M, Terreros P, Fierro J L G, Gracia M, Gancedo J R. Green Chem., 2007, 9 (6): 663—670
[26] Liu Y, Sun D Z. J. Hazard. Mater., 2007, 143 (1/2): 448—454
[27] Pérez-Alonso F J, Ojeda M, Herranz T, Rojas S, Gonzalez-Carballo J M, Terreros P, Fierro J L G. Catal. Commun., 2008, 9 (9): 1945—1948
[28] Singh P, Hegde M S. J. Solid State Chem. , 2008, 181 (12): 3248—3256
[29] Minervini L, Zacate M O, Grimes R W. Solid State Ionics, 1999, 116 (3/4): 339—349
[30] Yan D X, Wang H, Li K Z, Wei Y G. Zhu X, Cheng X M. Acta Physico-Chimica Sinica, 2010, 26 (2): 331—337
[31] Laguna O H, Centeno M A, Arzamendi G, Ganda L M, Romero-Sarria F, Odriozola J A. Catal. Today, 2010, 157 (1/4): 155—159
[32] Laguna O H, Romero S F, Centeno M A, Odriozola J A. J. Catal., 2010, 276 (2): 360—370
[33] Laguna O H, Centeno M A, Boutonnet M, Odriozola J A. Appl. Catal. B, 2011, 106 (3/4): 621—629
[34] Liang C H, Ma Z Q, Lin H Y, Ding L, Qiu J S, Frandsen W, Su D S. J. Mater. Chem., 2009, 19 (10): 1417—1424
[35] Lin H Y, Ma Z Q, Ding L, Qiu J S, Liang C H. Chin. J. Catal., 2008, 29 (5): 418—420
[36] Kaneko H, Ishihara H, Taku S, Naganuma Y, Hasegawa N, Tamaura Y. J. Mater. Sci., 2008, 43 (9): 3153—3161
[37] Neri G, Bonavita A, Rizzo G, Galvagno S, Capone S, Siciliano. P. Sensor. Actuat. B-Chem., 2005, 111/112: 78—83
[38] Neri G, Bonavita A, Rizzo G, Galvagno S, Capone S, Siciliano P. Sensor. Actuat. B-Chem., 2006, 114(2): 687—695
[39] Bao H Z, Chen X, Fang J, Jiang Z Q, Huang W X. Catal. Lett., 2008, 125 (1/2): 160—167
[40] Li K Z, Wang H, Wei Y G, Liu M C. J. Rare Earths, 2008, 26 (2): 245—249
[41] Reddy A S, Chen C Y, Chen C C, Chien S H, Lin C J, Lin K H, Chen C L, Chang S C. J. Mol. Catal. A: Chem., 2010, 318 (1/2): 60—67
[42] Zhang Z L, Han D, Wei S J, Zhang Y X. J. Catal., 2010, 276 (1): 16—23
[43] Li K Z, Wang H, Wei Y G, Yan D X. Appl. Catal. B, 2010, 97 (3/4): 361—372
[44] Reddy G K, Boolchand P, Smirniotis P G. J. Catal., 2011, 282 (2): 258—269
[45] Zhang T S, Hing P, Huang H T, Kilner J. J. Eur. Ceram. Soc., 2001, 21 (12): 2221—2228
[46] 王海利(Wang H L). 中南大学硕士论文(Master Dissertation of Central South University), 2010
[47] 宴冬霞(Yan D X). 昆明理工大学硕士学位论文(Master Dissertation of Kunming University of Science and Technology), 2010
[48] Aneggi E, de Leitenburg C, Dolcetti G, Trovarelli A. Catal. Today, 2006, 114 (1): 40—47
[49] Qiao D S, Lu G Z, Liu X H, Guo Y, Wang Y Q, Guo Y L. J. Mater. Sci., 2011, 46 (10): 3500—3506
[50] Kamimura Y, Sato S, Takahashi R, Sodesawa T, Akashi T. Appl. Catal. A, 2003, 252 (2): 399—410
[51] Wang X, Gorte R J. Appl. Catal. A, 2003, 247 (1): 157—162
[52] Liu C W, Luo L T, Lu X. Kinet. Catal., 2008, 49 (5): 676—681
[53] Mantlikova A, Vejpravova J P, Bittova B, Burianova S, Niznansky D, Ardu A, Cannas C. J. Solid State Chem., 2012, 191: 136—141
[54] Kaneko H, Miura T, Ishihara H, Taku S. Yokoyama T, Nakajima H, Tamaura Y. Energy, 2007, 32 (5): 656—663
[55] Massa P, Dafinov A, Cabello F M, Fenoglio R. Catal. Commun., 2008, 9 (7): 1533—1538
[56] Lü H, Tu H Y, Zhao B Y, Wu Y J, Hu K A. Solid State Ionics, 2007, 177 (39/40): 3467—3472
[57] Li K Z, Wang H, Wei Y G, Yan D X. J. Hydrogen Energy, 2011, 36 (5): 3471—3482
[58] 赵震(Zhao Z), 张桂臻(Liu G Q), 刘坚(Liu J), 梁鹏(Liang P), 许洁(Xu J), 段爱军(Duan A J), 姜桂元(Jang G Y), 徐春明(Xu C M). 催化学报(Chinese Journal of Catalysis), 2008, 29 (3): 303—312
[59] Carja G, Delahay G, Signorile C, Coq B. Chem. Commun., 2004, (12): 1404—1405
[60] Muroyama H, Hano S, Matsui T, Eguchi K. Catal. Today, 2010, 153 (3/4): 133—135
[61] 乔东升(Qiao D S). 华东理工大学博士学位论文(Doctoral Dissertation of East China University of Science and Technology), 2010
[62] Penkova A, Chakarova K, Laguna O H, Hadjiivanov K, Saria F R, Centeno M A, Odriozola J A. Catal. Commun., 2009, 10 (8): 1196—1202
[63] Bonelli R, Albonetti S, Morandi V, Ortolani L, Riccobene P M, Scirè S, Zacchini S. Appl. Catal. A, 2011, 395 (1/2): 10—18
[64] Luo J Y, Meng M, Yao J S, Li X G, Zha Y Q, Wang X, Zhang T Y. Appl. Catal. B, 2009, 87 (1/2): 92—103
[65] Shen Y X, Lu G Z, Guo Y, Wang Y Q, Guo Y L, Wang Li, Zhen X. Catal. Commun., 2012, 18: 26—31
[66] 祝星(Zhu X), 王华(Wang H), 魏永刚(Wei Y G), 李孔斋(Li K Z), 宴冬霞(Yan D X). 化学进展(Progress in Chemistry), 2010, 22 (5): 1010—1020
[67] 李孔斋(Li K Z), 王华(Wang H), 魏永刚(Wei Y G), 敖先权(Ao X Q), 刘明春(Liu M C). 化学进展(Progress in Chemistry), 2009, 20 (9): 1306—1314
[68] 李孔斋(Li K Z), 王华(Wang H), 魏永刚(Wei Y G), 刘明春(Liu M C). 燃料化学学报 (Journal of Fuel Chemistry and Technology), 2008, 36 (1): 83—88
[69] Li K Z, Wang H, Wei Y G, Liu M C. J. Rare Earths, 2008, 26 (5): 705—710
[70] Li K Z, Wang H, Wei Y G, Yan D X. Chem. Eng. J., 2010, 156 (3): 512—518
[71] Wei Y G, Wang H, Li K Z. J. Rare Earths, 2010, 28 (4): 560—565
[72] Li K Z, Wang H, Wei Y G, Yan D X. J. Phys. Chem. C, 2009, 113 (34): 15288—15297
[73] Li K Z, Wang H, Wei Y G, Yan D X. Chem. Eng. J., 2011, 173 (2): 574—582
[74] Cheng X M, Wang H, Wei Y G, Li K Z, Zhu X, Yan D X. J. Rare Earths, 2010, 28: 316—321
[75] 程显明(Cheng X M). 昆明理工大学硕士学位论文(Master Dissertation of Kunming University of Science and Technology), 2011
[76] Zhu X, Wang H, Wei Y G, Li K Z, Cheng X M. J. Rare Earths, 2010, 28 (6): 907—913
[77] Zhu X, Wang H, Wei Y G, Li K Z, Cheng X M. Mendeleev Commun., 2011, 21 (4): 221—223
[78] Zhu X, Wang H, Wei Y G, Li K Z, Cheng X M. J. Nat. Gas Chem., 2011, 20 (3): 281—286
[79] 祝星(Zhu X). 昆明理工大学博士学位论文(Doctoral Dissertation of Kunming University of Science and Technology), 2011
[80] Galvita V, Sundmacher K. J. Mater. Sci., 2007, 42 (22): 9300—9307
[81] Li K Z, Haneda M, Ozawa M. Chem. Lett., 2012, 41 (9): 837—838
[82] Li K Z, Haneda M, Gu Z H, Wang H, Ozawa M. Mater. Lett., 2013, 93: 129—132
[83] Pojanavaraphan C, Luengnaruemitchai A, Gulari E. Int. J. Hydrogen Energy, 2012, 37 (19): 14072—14084
[84] Kamimura Y, Sato S, Takahashi R, Sodesawa T, Fukui M. Chem. Lett., 2000, 29 (3): 232—233
[85] Nedyalkova R, Niznansky D, Roger A C. Catal. Commun., 2009, 10 (14): 1875—1880
[86] Lü H, Yang D J, Pan X M, Zheng J S, Zhang C M, Zhou W, Ma J X, Hu K A. Mater. Res. Bull., 2009, 44 (6): 1244—1248
[87] Carriazo J, Guelou E, Barrault J, Tatibouet J M, Molina R, Moreno S. Water Res., 2005, 39 (16): 3891—3899
[88] Liu Y, Sun D Z. Appl. Catal. B, 2007, 72 (3/4): 205—211
[89] Liu Y, Sun D Z, Cheng L, Li Y P. J. Environ. Sci. Chin., 2006, 18 (6): 1189—1192
[90] Jia M, Su G, Zheng M, Zhang B, Lin S J. Sci. China Ser. B, 2011, 53 (6): 1266—1272
[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[3] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[4] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[5] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[6] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[7] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[8] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[9] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[10] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[11] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[12] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[13] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[14] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[15] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.