English
新闻公告
More
化学进展 DOI: 10.7536/PC120615 前一篇   后一篇

• 综述与评论 •

纳米限域的储氢材料

邹勇进1, 向翠丽1, 邱树君1, 褚海亮1, 孙立贤*1,2, 徐芬3   

  1. 1. 广西信息材料重点实验室 桂林电子科技大学 桂林 541004;
    2. 中国科学院大连化学物理研究所 大连 11602;
    3. 辽宁师范大学 化学化工学院 大连 116029
  • 收稿日期:2012-06-01 修回日期:2012-09-01 出版日期:2013-01-24 发布日期:2012-12-27
  • 通讯作者: 孙立贤 E-mail:lxsun@dicp.ac.cn
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No.2010CB631303)、国家自然科学基金项目( No.20833009,51071146,51071081,21173111, 51101145,512010142,51201041)、IUPAC项目(No.2008-006-3-100)、广西科技厅创新团队项目(No.2012GXNSFGA06002)和广西信息材料重点实验室基金(No.PF12001X)资助

Nanoconfined Materials for Hydrogen Storage

Zou Yongjin1, Xiang Cuili1, Qiu Shujun1, Chu Hailiang1, Sun Lixian*1,2, Xu Fen3   

  1. 1. Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, China;
    2. Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 11602;
    3. Faculty of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
  • Received:2012-06-01 Revised:2012-09-01 Online:2013-01-24 Published:2012-12-27

氢能作为洁净、理想的二次能源,已受到世界各国的广泛关注。然而,氢的储存技术仍然是制约氢能商业化应用的关键技术。利用储氢材料进行储氢被认为是一种安全、高效的固态储氢方式。因此,开发新型高容量的储氢材料与储氢技术成为氢能领域研究的热点之一。纳米限域是将材料填充到纳米孔道里,利用材料和纳米孔道的相互作用促进反应的进行,为化学反应提供一个独特的微环境。近年来,纳米限域逐渐发展成为改善储氢材料热力学和动力学的新方法。本文综述了纳米限域的储氢材料的研究进展,从纳米限域的储氢材料制备、储氢性能、反应机理和存在的问题等方面进行讨论,并指出了纳米限域储氢材料的发展趋势。

As a clean and ideal energy source, hydrogen energy has received extensive attention in recent years. However, the technology for hydrogen storage is still the key technology restricting the application of hydrogen commercialization. Hydrogen storage materials are considered to be safe, efficient way for solid-state hydrogen storage. Therefore, the development of new high-capacity hydrogen storage materials and hydrogen storage technology is one of the hot topics nowadays. Nanoconfinement is to fill the materials in the nanopores. By using the interaction between the filled materials and nanopore, the reaction is promoted. In recent years, nanoconfinement has become an effective way to enhance the kinetics and thermodynamics of the hydrogen storage materials. In this paper, the development of nanoconfined hydrogen storage materials has been reviewed. The preparation, hydrogen storage properties, reaction mechanism and existing problems for nanoconfined hydrogen storage materials are discussed. In addition, the future prospect of nanoconfined hydrogen storage materials is addressed. Contents
1 Introduction
2 Preparation of nanoconfined hydrogen storage materials
3 Performance of nanoconfined hydrogen storage materials
3.1 Carbon-based scaffold confined hydrogen storage materials
3.2 MOFs scaffold confined hydrogen storage materials
3.3 Metal oxide scaffold confined hydrogen storage materials
3.4 Polymer scaffold confined hydrogen storage materials
4 Existing problems
5 Conclusion and perspective

中图分类号: 

()

[1] Varin R A, Zbroniec L, Polanski M, Bystrzycki J. Energies, 2011, 4: 1-25
[2] Fang F, Li Y T, Song Y, Sun D L, Zhang Q A, Ouyang L Z, Zhu M. J. Phys. Chem. C, 2011, 115: 13528-13533
[3] 刘淑生(Liu S S), 孙立贤(Sun L X), 徐芬(Xu F). 化学进展(Progress in Chemistry), 2008, 20: 280-287
[4] Liu S S, Sun L X, Zhang Y, Xu F, Zhang J, Chu H L, Fan M Q, Zhang T, Song X Y, Grolier J P. Int. J. Hydrogen Energy, 2009, 34: 8079-8085
[5] Li Y, Zhou G, Fang F, Yu X, Zhang Q, Ouyang L, Zhu M, Sun D. Acta Materialia, 2011, 59: 1829-1838
[6] Gutowska A, Li Y, Shin Y, Wang C M, Li X S, Linehan J C, Smith R S, Kay B D, Schmid B, Shaw W, Gutowski M, Autrey T. Angew. Chem. Int. Ed., 2005, 44: 3578-3582
[7] Zhao J Z, Shi J F, Zhang X W, Cheng F Y, Liang J, Tao Z L, Chen J. Adv. Mater., 2010, 22: 394-397
[8] Nielsen T K, Manickam K, Hirscher M, Besenbacher F, Jensen T R. ACS Nano, 2009, 3: 3521-3528
[9] Li S F, Sun W W, Tang Z W, Guo Y H, Yu X B. Int. J. Hydrogen Energy, 2012, 37: 3328-3337
[10] Vajo J J, Salguero T T, Gross A F, Skeith S L, Olson G L. J. Alloys Compd., 2007, 446/447: 409-414
[11] Fichtner M. Nanotechnol., 2009, 20: art. no. 204009
[12] Blalde C P, Hereijgers B P C, Bitter J H, Jong K P. J. Am. Chem. Soc., 2008, 130: 6761-6765
[13] Lohstroh W, Roth A, Hahn H, Fichtner M. Chem. Phys. Chem., 2010, 11: 789-792
[14] Stephens R D, Gross A F, van Atta S L, Vajo J J. Nanotechnol., 2009, 20: art. no. 204018
[15] Verkuijlen M H W, Gao J, Adelhelm P, Bentum P J M, Jongh P E. J. Phys. Chem. C, 2010, 114: 4683-4692
[16] Gao J, Adelhelm P, Verkuijlen M H W, Rongeat C, Herrich M, Bentum P J M. J. Phys. Chem. C, 2010, 114: 4675-4682
[17] Adelhelm P, Gao J, Verkuijlen M H W, Rongeat C, Herrich M, Bentum P J M. Chem. Mater., 2010, 22: 2233-2238
[18] Jongh P E, Wagemans R W P, Eggenhuisen T M, Danuvillier B S, Radstake P B, Meeldijk J D. Chem. Mater., 2007, 19: 6052-6057
[19] Gross A F, Ahn C C, van Atta S L, Liu P, Vajo J J. Nanotechnol., 2009, 20: art. no. 204005
[20] Zhang S, Gross A F, van Atta S L, Lopez M, Liu P, Ahn C C. Nanotechnol., 2009, 20: art. no. 204027
[21] Vajo J J. Current Opinion in Solid State and Materials Science, 2011, 15: 52-61
[22] Fang Z Z, Wang P, Rufford T E, Kang X D, Lu G Q, Cheng H M. Acta Materialia, 2008, 56: 6257-6263
[23] Liu X F, Peaslee D, Jost C Z, Baumann T F, Majzoub E H. Chem. Mater., 2011, 23: 1331-1336
[24] Liu X F, Peaslee D, Jost C Z, Majzoub E H. J. Phys. Chem. C, 2010, 114: 14036-14041
[25] Ampoumogli A, Steriotis T, Trikalitis P, Giasafaki D, Bardaji E G, Fichtner M, Charalambopoulou G. J. Alloys Compd., 2011, 509: S705-S708
[26] Gross A F, Vajo J J, Atta S L V, Olson G L. J. Phys. Chem. C, 2008, 112: 5651-5657
[27] Shane D T, Corey R L, Mclntosh C, Rayhel L H, Bowman R C, Vajo J J. J. Phys. Chem. C, 2010, 114: 4008-4014
[28] Lee H S, Lee Y S, Suh J Y, Kim M, Yu J S, Cho Y W. J. Phys. Chem. C, 2011, 115: 20027-20035
[29] Gosalawit-Utke R, Nielsen T K, Saldan I, Laipple D, Cerenius Y, Jensen T R, Klassen T, Dornheim M. J. Phys. Chem. C, 2011, 115: 10903-10910
[30] Nielsen T K, Bosenberg U, Gosalawsit R, Dorbheim M, Cerenius Y, Besenbacher F, Jensen T R. ACS Nano, 2010, 4: 3903-3908
[31] Nielsen T K, Manickam K, Hirscher M, Besenbacher F, Jensen T R. ACS Nano, 2009, 3: 3521-3528
[32] Nielsen T K, Polanski M, Zasada D, Javadian P, Besenbacher F, Bystrzycki J, Skibsted J, Jensen T R. ACS Nano, 2011, 5: 4056-4064
[33] Li L, Yao X D, Sun C H, Du A J, Cheng L, Zhu Z H, Yu C Z, Zou J, Smith S C, Wang P, Cheng H M, Frost R L, Lu G Q. Adv. Funct. Mater., 2009, 19: 265-271
[34] Ngene P, Verkuijlen M H W, Zheng Q, Kragten J, Bentum P J M, Bittera J H, Jongh P E. Faraday Discuss., 2011, 151: 47-58
[35] Li S F, Guo Y H, Sun W W, Sun D L, Yu X B. J. Phys. Chem. C, 2010, 114: 21885-21890
[36] Balde C P, Hereijgers B P C, Bitter J H, Jong K P. Angew. Chem. Int. Ed., 2006, 45: 3501-3503
[37] Sun C, Du A, Yao X, Smith S C. J. Phys. Chem. C, 2011, 115: 12580-12585
[38] Chang K, Kim E, Weck P F, Tománek D. J. Chem. Phys., 2011, 134: 214501-214507
[39] Bhakta R K, Herberg J L, Jacobs B, Highley A, Behrens R Jr, Ockwig N W, Greathouse J A, Allendorf M D. J. Am. Chem. Soc., 2009, 131: 13198-13199
[40] Li Z, Zhu G, Lu G, Qiu S, Yao X. J. Am. Chem. Soc., 2010, 132: 1490-1491
[41] Gadipelli S, Ford J, Zhou W, Wu H, Udvic T J, Yildirim T. Chem. Eur. J., 2011, 17: 6043-6047
[42] Srinivas G, Ford J, Zhou W, Yildirim T. Int. J. Hydrogen Energy, 2011, 37: 3633-3638
[43] Sun W W, Li S F, Mao J F, Guo Z P, Liu H K, Dou S X, Yu X B. Dalton Trans., 2011, 40: 5673-5676
[44] Zhang Y, Zhang W S, Wang A Q, Sun L X, Fan M Q, Chu H L, Sun J C, Zhang T. Int. J. Hydrogen Energy, 2007, 32: 3976-3980
[45] Si X L, Li F, Sun L X, Xu F, Liu S S, Zhang J, Zhu M, Ouyang L Z, Sun D L, Liu Y L. J. Phys. Chem. C, 2011, 115: 9780-9786
[46] Zheng S, Fang F, Zhou G, Chen G, Ouyang L, Zhu M. Chem. Mater., 2008, 20: 3954-3958
[47] Zhang T R, Yang X J, Yang S Q, Li D X, Cheng F Y, Tao Z L, Chen J. Phys. Chem. Chem. Phys., 2011, 13: 18592-18599
[48] 李永涛(Li Y T), 周广有(Zhou G Y), 方方(Fang F), 陈国荣(Chen G R), 桑革(Sang G), 孙大林(Sun D L). 化学进展(Progress in Chemistry), 2010, 22: 241-247
[49] Li S F, Tang Z W, Tan Y B, Yu X B. J. Phys. Chem. C, 2012, 116: 1544-1549
[50] Fichtner M. Phys. Chem. Chem. Phys., 2011, 13: 21186-21195
[51] Nielsen T K, Besenbacher F, Jenen T R. Nanoscale, 2011, 3: 2086-2098
[52] Rude L H, Nielsen T K, Ravnsbak D B, Bosenberg U, Ley M B, Richter B, Arnbjerg L M, Dornheim M, Filinchuk Y, Besenbacher F, Jensen T R. Phys. Status Solidi. A, 2011, 8: 1754-1773

[1] 杨国栋, 苑高千, 张竞哲, 吴金波, 李发亮, 张海军. 多孔电磁波吸收材料[J]. 化学进展, 2023, 35(3): 445-457.
[2] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[3] 王杰, 冯亚青, 张宝. MOF-COF框架杂化材料[J]. 化学进展, 2022, 34(6): 1308-1320.
[4] 汤波, 王微, 罗爱芹. 新型多孔材料用作色谱手性固定相[J]. 化学进展, 2022, 34(2): 328-341.
[5] 付素芊, 汪英, 刘凯, 贺军辉. 微纳多孔聚合物薄膜的制备与应用[J]. 化学进展, 2022, 34(2): 241-258.
[6] 丁朝, 杨维结, 霍开富, Leon Shaw. LiBH4储氢热力学和动力学调控[J]. 化学进展, 2021, 33(9): 1586-1597.
[7] 罗贤升, 邓汉林, 赵江颖, 李志华, 柴春鹏, 黄木华. 多孔氮化石墨烯(C2N)的合成及应用[J]. 化学进展, 2021, 33(3): 355-367.
[8] 王斐然, 蒋峰景. 全钒液流电池离子导电膜[J]. 化学进展, 2021, 33(3): 462-470.
[9] 王德超, 辛洋洋, 李晓倩, 姚东东, 郑亚萍. 多孔液体在气体捕集与分离领域的应用[J]. 化学进展, 2021, 33(10): 1874-1886.
[10] 袁思成, 林丹, 张曦光, 汪怀远. SLIPS功能表面的制备及应用[J]. 化学进展, 2021, 33(1): 87-96.
[11] 陈香李, 刘凯强, 房喻. 分子凝胶:从结构调控到功能应用[J]. 化学进展, 2020, 32(7): 861-872.
[12] 李健, 张恩爽, 刘圆圆, 黄红岩, 苏岳锋, 李文静. 超低密度气凝胶的制备及应用[J]. 化学进展, 2020, 32(6): 713-726.
[13] 庄全超, 杨梓, 张蕾, 崔艳华. 锂离子电池的电化学阻抗谱分析研究进展[J]. 化学进展, 2020, 32(6): 761-791.
[14] 顾婷婷, 顾坚, 张喻, 任华. 金属硼氢化物基固态储氢体系[J]. 化学进展, 2020, 32(5): 665-686.
[15] 赵苏艳, 刘畅, 徐浩, 杨晓博. 二维共价有机框架光催化剂[J]. 化学进展, 2020, 32(2/3): 274-285.
阅读次数
全文


摘要

纳米限域的储氢材料