English
新闻公告
More
化学进展 2021, Vol. 33 Issue (9): 1586-1597 DOI: 10.7536/PC200831 前一篇   后一篇

• 综述 •

LiBH4储氢热力学和动力学调控

丁朝1,2, 杨维结3,*(), 霍开富1,*(), Leon Shaw2   

  1. 1 耐火材料与冶金国家重点实验室 先进材料与纳米技术研究院 武汉科技大学 武汉 430081
    2 伊利诺伊理工大学机械、材料和航空航天学院 芝加哥 60616
    3 华北电力大学能源动力与机械工程学院 保定 071003
  • 收稿日期:2020-08-12 修回日期:2020-12-07 出版日期:2021-09-20 发布日期:2020-12-28
  • 通讯作者: 杨维结, 霍开富
  • 基金资助:
    美国国家自然科学基金项目(CMMI-1261782)

Thermodynamics and Kinetics Tuning of LiBH4 for Hydrogen Storage

Zhao Ding1,2, Weijie Yang3(), Kaifu Huo1(), Leon Shaw2   

  1. 1 The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology,Wuhan 430081, China
    2 Department of Mechanical, Materials and Aerospace Engineering, Illinois Institute of Technology, Chicago 60616,U.S.A.
    3 School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding 071003, China
  • Received:2020-08-12 Revised:2020-12-07 Online:2021-09-20 Published:2020-12-28
  • Contact: Weijie Yang, Kaifu Huo
  • Supported by:
    U.S. National Science Foundation(CMMI-1261782)

为应对能源短缺和气候变化的挑战,调整以化石能源为主的传统能源框架,形成以可再生能源为基础的新型能源结构是我国能源结构升级的必然之路。氢能以其能量密度高、热值大、资源丰富、无污染等优点备受关注。LiBH4作为最有希望的车载固体储氢能源载体之一已有多年研究,但该材料当前仍无法满足工业应用需求。本文围绕LiBH4放/充氢反应稳定的热力学与缓慢的动力学的调控,讨论了当前各种主流工艺及其最新研究成果,包括机械球磨激活、纳米限域、催化剂掺杂改性、离子替代、反应物失稳和高能球磨结合气溶胶喷涂(BMAS)新工艺,旨在为其推广应用提供参考和解决方案。值得注意的是,BMAS有能力帮助LiBH4 + MgH2复合物等热力学有利体系克服其动力学障碍,并在较低温度下提供促进释放氢气的热力学驱动力。

To meet the challenge of energy shortage and climate change, it is required to build the new renewable energy based structure and gradually abandon the conventional fossil fuel based energy structure. Hydrogen energy has attracted more and more attention, due to its high energy density, large calorific value, abundant resource and zero pollution. LiBH4, which has been acknowledged as one of the most promising hydrogen storage alternatives for onboard energy carrier applications, is still not qualified for the industrialization, though it has been studied for years. Herein, a state-of-the-art review on the modification of stable thermodynamics and sluggish kinetics of hydrogen storage in LiBH4, aiming to providing reference and solutions for its promotion and application. Multiple main-stream techniques along with their latest efforts have been discussed, including mechanical milling activation, nanoscaffold confinement, catalyst modification, ions substitution, reactant destabilization and a novel process termed as high-energy ball milling with in-situ aerosol spraying (BMAS). Remarkable, BMAS is the technology of proven ability to overcome the kinetic barriers for thermodynamically favorable systems like LiBH4 + MgH2 mixture and provide thermodynamic driving force to enhance hydrogen release at a lower temperature.

Contents

Contents

1 Introduction

2 Thermodynamical tuning of LiBH4

2.1 Cation/anion substitution

2.2 Reactant destabilization

3 Kinetics tuning of LiBH4

3.1 Mechanical milling activation

3.2 Nanoscaffold confinement by the infiltration approach

3.3 Modification by doping catalysts

4 Dual-tuning thermodynamics and kinetics of LiBH4

5 Conclusion and outlook

()
图1 (a)LiZn2(BH4)5和(b)NaZn(BH4)3的晶体结构[15]。其中,蓝球、棕球、深灰球和浅灰球分别代表Zn原子、B原子、M(M=Li或Na)原子和H原子
Fig. 1 Crystal structures of (a) LiZn2(BH4)5 and (b) NaZn(BH4)3[15]. Zn blue, B brown, M dark gray (M=Li, Na), H light gray
图2 (a) LiM(BH4)3Cl的晶体结构;(b)一个拥有扭曲M4Cl4立方烷结构的[M4Cl4(BH4)12]4-四核阴离子簇, M=La、Gd[20]
Fig.2 (a) Crystal structure of the novel compounds LiLa(BH4)3Cl and LiGd(BH4)3Cl (b) Isolated tetranuclear anionic clusters [M4Cl4(BH4)12]4- (M = La or Gd) with a distorted cubane M4Cl4 core[20]
图3 LiBH4、MgH2以及LiBH4/MgH2体系的焓变示意图[7]
Fig.3 Enthalpy diagram of LiBH4, MgH2 and LiBH4/MgH2 system[7]
图4 (a)介孔碳空心球(MCHSs)的制备过程示意图,以及MCHSs的(b)SEM图和(c)TEM图[64]
Fig.4 (a) Schematic illustration of the fabrication procedure of MCHSs, (b) SEM and (c) TEM images[64]
图5 SiB4催化LiBH4的脱氢和再吸氢机理示意图[68]
Fig.5 Schematic illustration of dehydrogenation and rehydrogenation mechanism of SiB4 catalyzed LiBH4[68] (b)
图6 LiBH4-0.04(Li3BO3+NbH)体系和块状LiBH4在不同温度下的(a)等温放氢曲线与(b)等温充氢曲线[73]
Fig.6 (a) Isothermal dehydrogenation and (b) hydrogenation curves of the LiBH4-0.04(Li3BO3 + NbH) system and the pristine LiBH4 at different temperatures[73]
图7 (a)全自动BMAS装置设备简图及(b)工作流程图,其中1表示开,0表示关[77]
Fig. 7 (a) Schematic of the automated BMAS device and (b) its operation flow-chart where “1” means “on” and “0” means “off” on the Y axis[77]
图8 LiBH4/THF气溶胶中的LiBH4颗粒的(a)总体和(b)局部放大SEM图[78]
Fig.8 SEM images of LiBH4 particles generated via aerosol spraying of the LiBH4/THF solution using the TSI aerosol generator. (a) A general view and (b) a closer view[78]
图9 (a)BMAS粉末和(b)六次放/充氢循环后粉末的FESEM影像,以及(c)BMAS粉末在不同温度下的放/充氢循环(1~6)曲线[77]
Fig.9 FESEM images of (a) BMAS sample and (b) 6R sample; (c) Comparisons of dehydrogenation and re-hydrogenation behaviors of the BMAS mixtures for six cycles[77]
图10 (a)265 ℃时,BMAS粉末和未处理的MgH2粉末、LiBH4粉末的分解压比较;(b)BMAS粉末与未处理的LiBH4粉末、球磨MgH2粉末的表观活化能比较[94]
Fig.10 (a) The dissociation pressure for BMAS sample at 265 ℃ in comparison with the dissociation pressure of bulk MgH2 and LiBH4; (b) Kissinger plots of the bulk LiBH4, ball-milled MgH2+C, and BMAS powder with 50% LiBH4[94]
[1]
Path to Hydrogen Competitiveness A Cost Perspective 2020. [2020-06-10]. https://hydrogencouncil.com/wp-content/uploads/2020/01/Path-to-Hydrogen-Competitiveness_Full-Study-1.pdf. 2020.
[2]
[2020-06-10]. https://www.gg-fc.com/art-39735.html. 2020.
[3]
[2020-06-10]. https://jcpage.jp/f19/01_hydrogen/01_hydrogen_06_guanghe_huang_cn.pdf?1575796716755. 2019.
[4]
Soulié J P, Renaudin G, Černý R, Yvon K. J. Alloys Compd., 2002, 346(1/2): 200.

doi: 10.1016/S0925-8388(02)00521-2     URL    
[5]
Ding Z, Li S Y, Zhou Y, Chen Z Q, Yang W J, Ma W H, Shaw L. Nano Mater. Sci., 2020, 2(2): 109.
[6]
Ding Z, Chen Z Q, Ma T Y, Lu C T, Ma W H, Shaw L. Energy Storage Mater., 2020, 27: 466.
[7]
Vajo J J, Skeith S L, Mertens F. J. Phys. Chem. B, 2005, 109(9): 3719.

doi: 10.1021/jp040769o     URL    
[8]
Züttel A, Rentsch S, Fischer P, Wenger P, Sudan P, Mauron P, Emmenegger C. J. Alloys Compd., 2003, 356/357: 515.

doi: 10.1016/S0925-8388(02)01253-7     URL    
[9]
Züttel A. Mater. Today, 2003, 6(9): 24.
[10]
Target Explanation Document: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles. [2020-06-10]. https://www.energy.gov/sites/prod/files/2017/05/f34/fcto_targets_onboard_hydro_storage_explanation.pdf.
[11]
Matsunaga T, Buchter F, Miwa K, Towata S, Orimo S, Züttel A. Renew. Energy, 2008, 33(2): 193.

doi: 10.1016/j.renene.2007.05.004     URL    
[12]
Nakamori Y, Miwa K, Ninomiya A, Li H W, Ohba N, Towata S I, Züttel A, Orimo S I. Phys. Rev. B, 2006, 74(4): 045126.

doi: 10.1103/PhysRevB.74.045126     URL    
[13]
Miwa K, Ohba N, Towata S, Nakamori Y, Orimo S. J. Alloys Compd., 2005, 404/406: 140.

doi: 10.1016/j.jallcom.2004.09.090     URL    
[14]
Nakamori Y, Orimo S I. J. Alloys Compd., 2004, 370(1/2): 271.

doi: 10.1016/j.jallcom.2003.08.089     URL    
[15]
Ravnsbæk D, Filinchuk Y, Cerenius Y, Jakobsen H, Besenbacher F, Skibsted J, Jensen T. Angew. Chem. Int. Ed., 2009, 48(36): 6659.

doi: 10.1002/anie.v48:36     URL    
[16]
Bai Y, Pei Z W, Wu F, Wu C. ACS Appl. Mater. Interfaces, 2018, 10(11): 9514.

doi: 10.1021/acsami.8b01529     URL    
[17]
Corno M, Pinatel E, Ugliengo P, Baricco M. J. Alloys Compd., 2011, 509: S679.

doi: 10.1016/j.jallcom.2010.10.005     URL    
[18]
Yin L C, Wang P, Fang Z Z, Cheng H M. Chem. Phys. Lett., 2008, 450(4/6): 318.

doi: 10.1016/j.cplett.2007.11.060     URL    
[19]
Huang Z N, Wang Y Q, Wang D, Yang F S, Wu Z, Zheng L, Han X L, Wu L, Zhang Z X. J. Phys. Chem. C, 2019, 123(3): 1550.

doi: 10.1021/acs.jpcc.8b08198     URL    
[20]
Ley M B, Boulineau S, Janot R, Filinchuk Y, Jensen T R. J. Phys. Chem. C, 2012, 116(40): 21267.

doi: 10.1021/jp307762g     URL    
[21]
Frommen C, Sørby M H, Ravindran P, Vajeeston P, Fjellvåg H, Hauback B C. J. Phys. Chem. C, 2011, 115(47): 23591.

doi: 10.1021/jp205105j     URL    
[22]
Rude L H, Filinchuk Y, Sørby M H, Hauback B C, Besenbacher F, Jensen T R. J. Phys. Chem. C, 2011, 115(15): 7768.

doi: 10.1021/jp111473d     URL    
[23]
Černý R, Ravnsbæk D B, Schouwink P, Filinchuk Y, Penin N, Teyssier J, Smrčok L, Jensen T R. J. Phys. Chem. C, 2012, 116(1): 1563.

doi: 10.1021/jp209848r     URL    
[24]
Bösenberg U, Doppiu S, Mosegaard L, Barkhordarian G, Eigen N, Borgschulte A, Jensen T R, Cerenius Y, Gutfleisch O, Klassen T, Dornheim M, Bormann R. Acta Mater., 2007, 55(11): 3951.

doi: 10.1016/j.actamat.2007.03.010     URL    
[25]
Walker G S, Grant D M, Price T C, Yu X B, Legrand V. J. Power Sources, 2009, 194(2): 1128.

doi: 10.1016/j.jpowsour.2009.06.075     URL    
[26]
Pinkerton F E, Meyer M S, Meisner G P, Balogh M P, Vajo J J. J. Phys. Chem. C, 2007, 111(35): 12881.

doi: 10.1021/jp0742867     URL    
[27]
Ohba N, Miwa K, Aoki M, Noritake T, Towata S, Nakamori Y, Orimo S, Züttel A. Phys. Rev. B, 2006, 74: 075110.

doi: 10.1103/PhysRevB.74.075110     URL    
[28]
Orimo S I, Nakamori Y, Ohba N, Miwa K, Aoki M, Towata S I, Züttel A. Appl. Phys. Lett., 2006, 89(2): 021920.

doi: 10.1063/1.2221880     URL    
[29]
Ozolins V, Majzoub E H, Wolverton C. J. Am. Chem. Soc., 2009, 131(1): 230.

doi: 10.1021/ja8066429     pmid: 19072157
[30]
Pinkerton F E, Meyer M S. J. Alloys Compd., 2008, 464(1/2): L1.

doi: 10.1016/j.jallcom.2007.09.125     URL    
[31]
Barkhordarian G, Klassen T, Dornheim M, Bormann R. J. Alloys Compd., 2007, 440(1/2): L18.

doi: 10.1016/j.jallcom.2006.09.048     URL    
[32]
Liu D, Yang J, Ni J, Drews A. J. Alloys Compd., 2012, 514: 103.

doi: 10.1016/j.jallcom.2011.11.009     URL    
[33]
Lim J H, Shim J H, Lee Y S, Cho Y W, Lee J. Scr. Mater., 2008, 59(12): 1251.

doi: 10.1016/j.scriptamat.2008.08.037     URL    
[34]
Lim J H, Shim J H, Lee Y S, Suh J Y, Cho Y W, Lee J. Int. J. Hydrog. Energy, 2010, 35(13): 6578.

doi: 10.1016/j.ijhydene.2010.04.046     URL    
[35]
Jiang K, Xiao X Z, Chen L X, Han L Y, Li S Q, Ge H W, Wang Q D. J. Alloys Compd., 2012, 539: 103.

doi: 10.1016/j.jallcom.2012.06.039     URL    
[36]
Alapati S V, Johnson J K, Sholl D S. J. Alloys Compd., 2007, 446/447: 23.

doi: 10.1016/j.jallcom.2006.10.166     URL    
[37]
Purewal J, Hwang S J, Bowman R C, Rönnebro E, Fultz B, Ahn C. J. Phys. Chem. C, 2008, 112(22): 8481.

doi: 10.1021/jp800486n     URL    
[38]
Orimo S, Fujii H, Ikeda K. Acta Mater., 1997, 45(1): 331.

doi: 10.1016/S1359-6454(96)00158-9     URL    
[39]
Yu X B, Grant D M, Walker G S. Chem. Commun., 2006(37): 3906.
[40]
Orimo S I, Fujii H. Intermetallics, 1998, 6(3): 185.

doi: 10.1016/S0966-9795(97)00064-2     URL    
[41]
Gross K J, Chartouni D, Leroy E, Züttel A, Schlapbach L. J. Alloys Compd., 1998, 269(1/2): 259.

doi: 10.1016/S0925-8388(97)00627-0     URL    
[42]
Liang G, Boily S, Huot J, van Neste A, Schulz R. J. Alloys Compd., 1998, 267(1/2): 302.

doi: 10.1016/S0925-8388(97)00533-1     URL    
[43]
Nakagawa T, Ichikawa T, Hanada N, Kojima Y, Fujii H. J. Alloys Compd., 2007, 446/447: 306.

doi: 10.1016/j.jallcom.2007.02.097     URL    
[44]
Vajo J J, Salguero T T, Gross A F, Skeith S L, Olson G L. J. Alloys Compd., 2007, 446/447: 409.

doi: 10.1016/j.jallcom.2007.02.080     URL    
[45]
Au M, Jurgensen A. J. Phys. Chem. B, 2006, 110(13): 7062.

doi: 10.1021/jp056240o     URL    
[46]
Kostka J, Lohstroh W, Fichtner M, Hahn H. J. Phys. Chem. C, 2007, 111(37): 14026.

doi: 10.1021/jp073783k     URL    
[47]
Yang J, Sudik A, Wolverton C. J. Phys. Chem. C, 2007, 111(51): 19134.

doi: 10.1021/jp076434z     URL    
[48]
Fecht H J, Hellstern E, Fu Z, Johnson W L. Metall. Trans. A, 1990, 21(9): 2333.

doi: 10.1007/BF02646980     URL    
[49]
Yang Z G, Shaw L L. Nanostructured Mater., 1996, 7(8): 873.

doi: 10.1016/S0965-9773(96)00058-X     URL    
[50]
Koch C C. Nanostructured Mater., 1997, 9(1/8): 13.

doi: 10.1016/S0965-9773(97)00014-7     URL    
[51]
Suryanarayana C. Prog. Mater. Sci., 2001, 46(1/2): 1.

doi: 10.1016/S0079-6425(99)00010-9     URL    
[52]
Pang Y P, Liu Y F, Gao M X, Ouyang L Z, Liu J W, Wang H, Zhu M, Pan H G. Nat. Commun., 2014, 5(1): 1.
[53]
Lobo N, Takasaki A, Mineo K, Klimkowicz A, Goc K. Int. J. Hydrog. Energy, 2019, 44(55): 29179.

doi: 10.1016/j.ijhydene.2019.02.191     URL    
[54]
Agresti F, Khandelwal A. Scr. Mater., 2009, 60(9): 753.

doi: 10.1016/j.scriptamat.2009.01.010     URL    
[55]
Çakanyıldırım Ç, Gürü M. Renew. Energy, 2008, 33(11): 2388.

doi: 10.1016/j.renene.2008.01.015     URL    
[56]
Guo L L, Li Y, Ma Y F, Liu Y, Peng D D, Zhang L, Han S M. Int. J. Hydrog. Energy, 2017, 42(4): 2215.

doi: 10.1016/j.ijhydene.2016.11.184     URL    
[57]
Sun T, Liu J, Jia Y, Wang H, Sun D L, Zhu M, Yao X D. Int. J. Hydrog. Energy, 2012, 37(24): 18920.

doi: 10.1016/j.ijhydene.2012.09.119     URL    
[58]
Gross A F, Vajo J J, van Atta S L, Olson G L. J. Phys. Chem. C, 2008, 112(14): 5651.

doi: 10.1021/jp711066t     URL    
[59]
Vajo J J, Olson G L. Scr. Mater., 2007, 56(10): 829.

doi: 10.1016/j.scriptamat.2007.01.002     URL    
[60]
Javadian P, Zlotea C, Ghimbeu C M, Latroche M, Jensen T R. J. Phys. Chem. C, 2015, 119(11): 5819.

doi: 10.1021/jp5117307     URL    
[61]
Shao J, Xiao X Z, Fan X L, Huang X, Zhai B, Li S Q, Ge H W, Wang Q D, Chen L X. Nano Energy, 2015, 15: 244.

doi: 10.1016/j.nanoen.2015.04.023     URL    
[62]
Zang L, Sun W Y, Liu S, Huang Y K, Yuan H T, Tao Z L, Wang Y J. ACS Appl. Mater. Interfaces, 2018, 10(23): 19598.

doi: 10.1021/acsami.8b02327     URL    
[63]
Wang S, Gao M X, Xian K C, Li Z L, Shen Y, Yao Z H, Liu Y F, Pan H G. ACS Appl. Energy Mater., 2020, 3(4): 3928.

doi: 10.1021/acsaem.0c00325     URL    
[64]
Wu R Y, Zhang X, Liu Y F, Zhang L C, Hu J J, Gao M X, Pan H G. Small, 2020, 16(32): 2001963.

doi: 10.1002/smll.v16.32     URL    
[65]
Mosegaard L, Møller B, Jørgensen J E, Filinchuk Y, Cerenius Y, Hanson J C, Dimasi E, Besenbacher F, Jensen T R. J. Phys. Chem. C, 2008, 112(4): 1299.

doi: 10.1021/jp076999v     URL    
[66]
Zang L, Zhang Q Y, Li L, Huang Y K, Chang X Y, Jiao L F, Yuan H T, Wang Y J. Chem. Asian J., 2018, 13(1): 99.

doi: 10.1002/asia.201701524     URL    
[67]
Cai W T, Wang H, Liu J W, Jiao L F, Wang Y J, Ouyang L Z, Sun T, Sun D L, Wang H H, Yao X D, Zhu M. Nano Energy, 2014, 10: 235.

doi: 10.1016/j.nanoen.2014.09.001     URL    
[68]
Cai W T, Yang Y Z, Tao P J, Ouyang L Z, Wang H, Yang X S. Dalton Trans., 2019, 48(4): 1314.

doi: 10.1039/C8DT04720K     URL    
[69]
Dolotko O, Gupta S, Kobayashi T, McDonald E, Hlova I, Majzoub E, Balema V P, Pruski M, Pecharsky V K. Int. J. Hydrog. Energy, 2019, 44(14): 7381.

doi: 10.1016/j.ijhydene.2019.01.211     URL    
[70]
He T, Wu H, Wu G T, Wang J H, Zhou W, Xiong Z T, Chen J E, Zhang T, Chen P. Energy Environ. Sci., 2012, 5(2): 5686.

doi: 10.1039/C2EE03205H     URL    
[71]
Pinkerton F E, Meisner G P, Meyer M S, Balogh M P, Kundrat M D. J. Phys. Chem. B, 2005, 109(1): 6.

doi: 10.1021/jp0455475     URL    
[72]
Wang H, Cao H, Zhang W, Chen J, Wu H, Pistidda C, Ju X, Zhou W, Wu G, Etter M, Chem. Eur. J. 2018, 24, 1342.

doi: 10.1002/chem.v24.6     URL    
[73]
Li Z L, Gao M X, Gu J, Xian K C, Yao Z H, Shang C X, Liu Y F, Guo Z X, Pan H G. ACS Appl. Mater. Interfaces, 2020, 12(1): 893.

doi: 10.1021/acsami.9b19287     URL    
[74]
Zhu J, Mao Y, Wang H, Liu J, Ouyang L, Zhu M, ACS Appl. Energy Mater. 2020, 3(12): 11964.

doi: 10.1021/acsaem.0c02140     URL    
[75]
Wan X F, Shaw L L. Acta Mater., 2011, 59(11): 4606.

doi: 10.1016/j.actamat.2011.04.006     URL    
[76]
Zhong Y, Wan X F, Ding Z, Shaw L L. Int. J. Hydrog. Energy, 2016, 41(47): 22104.

doi: 10.1016/j.ijhydene.2016.09.195     URL    
[77]
Ding Z, Lu Y, Li L, Shaw L. Energy Storage Mater., 2019, 20: 24.
[78]
Ding Z, Zhao X Z, Shaw L L. J. Power Sources, 2015, 293: 236.

doi: 10.1016/j.jpowsour.2015.05.079     URL    
[79]
Ding Z, Li H, Shaw L. Chem. Eng. J., 2020, 385: 123856.

doi: 10.1016/j.cej.2019.123856     URL    
[80]
Crosby K, Shaw L L. Int. J. Hydrog. Energy, 2010, 35(14): 7519.

doi: 10.1016/j.ijhydene.2010.04.124     URL    
[81]
Davis R M, McDermott B, Koch C C. Metall. Trans. A, 1988, 19(12): 2867.

doi: 10.1007/BF02647712     URL    
[82]
Bhattacharya A K, Arzt E. Scr. Metall. Et Mater., 1992, 27(6): 749.

doi: 10.1016/0956-716X(92)90500-E     URL    
[83]
Deprez E, Muñoz-Márquez M A, Roldán M A, Prestipino C, Palomares F J, Minella C B, Bösenberg U, Dornheim M, Bormann R, Fernández A. J. Phys. Chem. C, 2010, 114(7): 3309.

doi: 10.1021/jp910955r     URL    
[84]
Zeng L, Miyaoka H, Ichikawa T, Kojima Y. J. Phys. Chem. C, 2010, 114(30): 13132.

doi: 10.1021/jp1042443     URL    
[85]
Weng B C, Yu X B, Wu Z, Li Z L, Huang T S, Xu N X, Ni J. J. Alloys Compd., 2010, 503(2): 345.

doi: 10.1016/j.jallcom.2009.11.059     URL    
[86]
Crosby K, Wan X F, Shaw L L. J. Power Sources, 2010, 195(21): 7380.

doi: 10.1016/j.jpowsour.2010.05.052     URL    
[87]
Price T E C, Grant D M, Legrand V, Walker G S. Int. J. Hydrog. Energy, 2010, 35(9): 4154.

doi: 10.1016/j.ijhydene.2010.02.082     URL    
[88]
Bösenberg U, Kim J W, Gosslar D, Eigen N, Jensen T R, von Colbe J M B, Zhou Y, Dahms M, Kim D H, Günther R. Acta Mater., 2010, 58(9): 3381.

doi: 10.1016/j.actamat.2010.02.012     URL    
[89]
Wan X F, Markmaitree T, Osborn W, Shaw L L. J. Phys. Chem. C, 2008, 112(46): 18232.

doi: 10.1021/jp8033159     URL    
[90]
Ding Z, Wu P K, Shaw L. J. Alloys Compd., 2019, 806: 350.

doi: 10.1016/j.jallcom.2019.07.218     URL    
[91]
Ding Z, Li H, Yan G, Yang W J, Gao Z Y, Ma W H, Shaw L. Chem. Commun., 2020, 56(91): 14235.

doi: 10.1039/D0CC03741A     URL    
[92]
Hao S Q, Sholl D S. J. Chem. Phys., 2009, 130(24): 244705.

doi: 10.1063/1.3158619     URL    
[93]
Hao S Q, Widom M, Sholl D S. J. Phys.: Condens. Matter, 2009, 21(11): 115402.
[94]
Ding Z, Shaw L. ACS Sustainable Chem. Eng., 2019, 7(17): 15064.

doi: 10.1021/acssuschemeng.9b03724     URL    
[95]
Fang Z Z, Kang X D, Wang P, Li H W, Orimo S I. J. Alloys Compd., 2010, 491(1/2): L1.

doi: 10.1016/j.jallcom.2009.10.149     URL    
[96]
Lee J Y, Ravnsbæk D, Lee Y S, Kim Y, Cerenius Y, Shim J H, Jensen T R, Hur N H, Cho Y W. J. Phys. Chem. C, 2009, 113(33): 15080.

doi: 10.1021/jp904400b     URL    
[97]
Soloveichik G L, Gao Y, Rijssenbeek J, Andrus M, Kniajanski S, Bowman R C, Hwang S J, Zhao J C. Int. J. Hydrog. Energy, 2009, 34(2): 916.

doi: 10.1016/j.ijhydene.2008.11.016     URL    
[98]
Rönnebro E, Majzoub E H. J. Phys. Chem. B, 2007, 111(42): 12045.

doi: 10.1021/jp0764541     URL    
[1] 顾婷婷, 顾坚, 张喻, 任华. 金属硼氢化物基固态储氢体系[J]. 化学进展, 2020, 32(5): 665-686.
[2] 姚淇露, 杜红霞, 卢章辉. 氨硼烷催化水解制氢[J]. 化学进展, 2020, 32(12): 1930-1951.
[3] 张世亮, 姚淇露, 卢章辉*. 肼硼烷的合成及产氢[J]. 化学进展, 2017, 29(4): 426-434.
[4] 李超, 范美强, 陈海潮, 陈达, 田光磊, 舒康颖. Li-Mg-N-H体系储氢材料的热力学和动力学调控[J]. 化学进展, 2016, 28(12): 1788-1797.
[5] 李雪, 张伊放, 齐卫宏, 曹晓武, 王渊, 李浩华. 纳米储氢合金[J]. 化学进展, 2013, 25(07): 1122-1130.
[6] 徐叔军, 梁丽芸, 李步怡, 罗亚莉, 刘承美, 谭必恩. 有机微孔聚合物研究进展[J]. 化学进展, 2011, 23(10): 2085-2094.
[7] 段东红 孙彦平. 直接硼氢化物燃料电池(DBFC)阳极材料及反应机理*[J]. 化学进展, 2010, 22(09): 1720-1728.
[8] 陈兆旭 黄玉成 李哲 康国俊. 理论化学与新能源*[J]. 化学进展, 2009, 21(11): 2271-2284.
[9] 方占召 康向东 王平. 硼氢化锂储氢材料研究* [J]. 化学进展, 2009, 21(10): 2212-2218.
[10] 贾超,原鲜霞,马紫峰. 金属有机骨架化合物(MOFs)作为储氢材料的研究进展* [J]. 化学进展, 2009, 21(09): 1954-1962.
[11] 陶占良,陈军. MAlH4(M=Li, Na)储氢材料*[J]. 化学进展, 2009, 21(09): 1945-1953.
阅读次数
全文


摘要

LiBH4储氢热力学和动力学调控