English
新闻公告
More
化学进展 2020, Vol. 32 Issue (5): 665-686 DOI: 10.7536/PC190829 前一篇   

• 综述 •

金属硼氢化物基固态储氢体系

顾婷婷1,2, 顾坚1,2,**(), 张喻3, 任华1,2   

  1. 1.南京大学现代工程与应用科学学院 南京 210093
    2.南京大学材料工程技术研究院 南通 226019
    3.湖北汽车工业学院材料科学与工程学院 十堰 442002
  • 收稿日期:2019-08-29 修回日期:2019-12-12 出版日期:2020-05-15 发布日期:2020-02-20
  • 通讯作者: 顾坚
  • 基金资助:
    国家自然科学基金项目(51701092); 江苏省自然科学基金项目(BK20160419); 南通市科技计划(JC2018111)

Metal Borohydride-Based System for Solid-State Hydrogen Storage

Tingting Gu1,2, Jian Gu1,2,**(), Yu Zhang3, Hua Ren1,2   

  1. 1.College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
    2.Institute of Materials Engineering, Nanjing University, Nantong 226019, China
    3.College of Materials and Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
  • Received:2019-08-29 Revised:2019-12-12 Online:2020-05-15 Published:2020-02-20
  • Contact: Jian Gu
  • About author:
  • Supported by:
    National Natural Science Foundation of China(51701092); Natural Science Foundation of Jiangsu Province(BK20160419); Science and Technology Plan of Nantong City(JC2018111)

氢气储存仍是制约氢经济推行的关键问题,开发一种高效、安全的储氢技术仍面临着巨大挑战。近年来,利用固态氢化物的化学吸附储氢技术由于可靠、结构紧密和高储氢容量的特点,被视为最有潜力的储氢手段之一。在众多固态氢化物储氢材料中,金属硼氢化物由于其极高的重量和体积储氢密度而备受关注。然而,金属硼氢化物热力学稳定,动力学缓慢,导致其吸/放氢温度高、速率慢、可逆性及循环稳定性差。本文从替代、复合、掺杂、纳米结构限域及相应的反应机理等角度总结了金属硼氢化物储氢材料的最新改性研究和应用,并提出了其中存在的问题和相应对策,同时指出了未来的研究方向。

Hydrogen storage is the key technological problem for a viable hydrogen economy and so far, finding an efficient and safe method of storing hydrogen remains an indomitable challenge. Chemical sorption via solid-state hydrides, offering reliable, compact and high capacity features, is considered one of the most promising avenues for hydrogen storage. Among the diverse hydrides, metal borohydrides are excellent candidates on account of their high gravimetric and volumetric density. However, these hydrides generally suffer from high temperatures of de/rehydrogenation, slow sorption rate, limited reversiblity and poor cyclability due to the intrinsic thermodynamic stability and/or sluggish kinetics. In this review, we summarize recent researches and applications on the aspect of optimizing performance through substitution, composite, doping, and nanostructure, cognizing the relevant reaction mechanism for the metal borohydride-based system. The challenges and countermeasures are illustrated, and the direction to further enhancing the hydrogen storage properties of the system is also pointed out.

Contents

1 Introduction

2 Metal Borohydrides

2.1 Substitution

2.2 Composite

2.3 Doping

2.4 Nanostructure

3 Conclusion and prospect

()
表1 DOE为车载氢气车辆设定的技术指标[16]
Table 1 The technical targets set by the DOE for on-board hydrogen based vehicles[16]
表2 几种代表性硼氢化物的储氢性能
Table 2 Hydrogen storage properties for several representative borohydrides
图1 M(BH4) n 热力学性能调控方法示意图
Fig. 1 Schematic illustration of desorption process and two main approaches to tailor the thermodynamic stability of M(BH4) n
表3 代表性双阳离子硼氢化物的合成方法及其纯度
Table 3 The synthesis method and purity of the representative mixed-cation borohydrides
图式1 混合金属硼氢化物( M y 3 [M2(BH4) z ], z=x+y)的合成示意图以含Zn混合金属硼氢化物合成为例,M1=Li, M2=Zn, M3=Li、Na、K、[Cat]=[Ph4P] or [nBu4N], [An]=[Al{OC(CF3)3}4]或[B{3,5-(CF3)2C6H3}4][94]
Scheme 1 Illustration of the synthesis of mixed-metal borohydrides, M y 3 [M2(BH4) z ], z=x+y. For zinc compounds prepared this way: M1=Li, M2=Zn, M3=Li, Na, K, [Cat]=[Ph4P] or [nBu4N], [An]=[Al{OC(CF3)3}4] or [B{3,5-(CF3)2C6H3}4][94]
图2 2LiBH4: MgH2: 5 wt% Ni体系的吸氢van't Hoff曲线[138]
Fig. 2 Adsorption van't Hoff plot of the composite 2LiBH4: MgH2: 5 wt% Ni[138]
图3 2LiBH4 + nano-MgH2和2LiBH4 + 商用 MgH2体系在360 ℃下的放氢(空心点)和吸氢(实心点)压力-组分-等温(PCI)曲线[140]
Fig. 3 Desorption(open marks) and absorption(filled marks) pressure-composition isotherm(PCI) curves of 2LiBH4 + nano-MgH2 composite and 2LiBH4 + commercial MgH2 composite at 360 ℃[140]
表4 共晶熔融复合体系的热解行为
Table 4 Summary of the pyrolysis behavior for the eutectic melting composites
图4 Ca(BH4)2 + 2LiBH4 + 2MgH2, Ca(BH4)2、Ca(BH4)2 + MgH2以及2LiBH4 + MgH2体系的TPD (a)和体积放氢(b)曲线[174]
Fig. 4 TPD(a) and volumetric dehydrogenation(b) curves of the ball-milled Ca(BH4)2 + 2LiBH4 + 2MgH2,Ca(BH4)2, Ca(BH4)2 + MgH2 and 2LiBH4 + MgH2 systems[174]
图5 Mg(BH4)2·6NH3纳米颗粒的合成示意图(a)和合成设备(b)[195]
Fig. 5 Schematic illustration(a) and equipment(b) of the fabrication procedure for Mg(BH4)2·6NH3 nanoparticles[195]
图6 纳米棒制备方法示意图[238]
Fig. 6 A schematic diagram of the nanorodpreparation process[238]
图7 (a)多孔CapB2H7/0.1TiO2体系的合成过程;(b)从室温加热到550 ℃的TG-MS曲线:纯Ca(BH4)2(1),Ca(BH4)2+0.1Ti(OEt)4球磨混合物(2)和多孔CaB2H7/0.1TiO2体系(3)[275]
Fig. 7 (a) Schematic illustration of the synthetic procedure of the porous CaB2H7/0.1TiO2 system;(b) TG(lines + symbols)-MS(lines) curves of the pure Ca(BH4)2(1), the as-milled Ca(BH4)2+0.1Ti(OEt)4 mixture(2) and porous CaB2H7/0.1TiO2 system(3) upon heating from RT to 550 ℃[275]
[1]
Balla M , Wietschelb M . In nation Journal of Hydrogen Energy, 2009,34(2):615.
[2]
Edwards P P , Kuznetsov V L , David W I F , Brandon N P . Energy Policy, 2008,36(12):4356.
[3]
Yu Y C . China Automobile Industry Development International BBS. Modern Components, 2017,8(1):18.
[4]
Jacobson M Z . Energy & Environmental Science, 2009,2(2):148.
[5]
Timm W , Christoph H G . European Journal of Operational Research, 2018,264(2):582.
[6]
Goodenough J B , Park K S . Journal of the American Chemical Society, 2013,135(4):1167.
[7]
Yu Z N , Tetard L , Zhai L , Thomas J . Energy & Environmental Science, 2015,8(3):702.
[8]
Sharaf O Z , Orhan M F . Renewable & Sustainable Energy Reviews, 2014,32(1):810.
[9]
Yang J , Sudik A , Wolverton C , Siegel D J . Chemical Society Reviews, 2010,39(2):656.
[10]
Ley M B , Jepsen L H , Lee Y S , Cho Y W , Bellosta C J M , Dornheim M , Rokni M , Jensen J O , Sloth M , Filinchuk Y , Jørgensen J E , Besenbacher F , Jensen T R . Materials Today, 2014,17(3):122.
[11]
Nassivera J . Toyota Hydrogen Fuel Cell Vehicles to be Available in 2016.[ 2019-12-01].. http://www.hngn.com/articles/33584/20140612/toyota-hydrogen-fuel-cell-vehicles-to-be-available-in-2016.htm
[12]
Schlapbach L , Züttel A . Nature, 2001,414(6861):353.
[13]
Balat M . International Journal of Hydrogen Energy, 2008,33(15):4013.
[14]
Hirscher M . Handbook of Hydrogen Storage New Materials for Future Energy Storage. Weinheim: Wiley-VCH-Verl, 2010.
[15]
Muller K . ChemBioEng Reviews, 2019,6(3):1.
[16]
Targets for Onboard Hydrogen Storage Systems for Lightduty Vehicles, Freedom Car and Fuel Partnership, US Department of Energy.[ 2019-12-01].. http://energy.gov/eere/fuelcells/doe-technical-targetsonboard-hydrogen-storage-light-duty-vehicles
[17]
Zhang C , Sun L , Ouyang Y , Xu F , Wei S , Chu H , Zhang H . Sci Sin Chim, 2019,49.
[18]
Reilly J J , Wiswall R H . Inorganic Chemistry, 1968,7(11):2254.
[19]
Buschow K H , Van Mal H H . Journal of the Less Common Metals, 1972,29(2):203.
[20]
Eberle U , Felderhoff M , Schüth F . Angewandte Chemie International Edition, 2009,48(36):6608
[21]
Graetz J . Chemical Society Reviews, 2009,38(1):73.
[22]
Klontzas E , Tylianakis E , Froudakis G E . Nano Letters, 2010,10(2):452.
[23]
Li H , Pan Q Y , Ma Y C . Journal of the American Chemical Society, 2016,138(44):14783.
[24]
Chandrakumar K R S , Ghosh S K . Nano Letters, 2008,8(1):13.
[25]
Prabhakaran P K , Catoire L , Deschamps J . Microporous and Mesoporous Materials, 2017,243(3):214.
[26]
Wang H , Lin H J , Cai W T , Ouyang L Z , Zhu M . Journal of Alloys and Compounds, 2016,658(8):280.
[27]
Ahmed A , Liu Y Y , Purewal J , Tran L D , Wong-Foy A G , Veenstra M , Matzger A J , Siegel D J . Energy & Environmental Science, 2017,10(11):2459.
[28]
Goldsmith J , Wong-Foy A G , Cafarella M J , Siegel D J . Chemistry Materials, 2013,25(16):3373.
[29]
Anton D L , Motyka T . Hydrogen Storage Engineering Center of Excellence, U.S. Department of Energy, Hydrogen and Fuel Cells Program 2015 Annual Merit Review Proceedings. [2019-12-01].. https://www.hydrogen.energy.gov/pdfs/review15/st004_anton_2015_o.pdf.46
[30]
Okada M , Kuriiwa T , Kamegawa A , H Takamura . Materials Science & Engineering A, 2002,329/331(01):305.
[31]
Pan H G , Liu Y F , Gao M X , Zhu Y F , Lei Y Q . International Journal of Hydrogen Energy, 2003,28(11):1219. https://linkinghub.elsevier.com/retrieve/pii/S0360319902002859

doi: 10.1016/S0360-3199(02)00285-9     URL    
[32]
Rusman N A A , Dahari M . International Journal of Hydrogen Energy, 2016,41(28):12108.
[33]
Gandhi K , Dixit D K , Dixit B K . Physica B: Condensed Matter, 2010,405(15):3075.
[34]
Bogdanovic B , Bohmhammel K , Christ B , Reiser A . Journal of Alloys and Compounds, 1999,282(1/2):84.
[35]
Jain I P , Lal C , Jain A . International Journal of Hydrogen Energy, 2010,35(10):5133.
[36]
Liu T , Wang C , Wu Y . International Journal of Hydrogen Energy, 2014,32(16):14262.
[37]
Hanada N , Ichikawa T , FuJii H . The Journal of Physical Chemistry B, 2005,109(15):7188.
[38]
Sadhasivam T , Kim H T , Jung S , Roh S H , Park J H , Jung H Y . Renewable and Sustainable Energy Reviews, 2017,72(1):523.
[39]
Liu Y , Zou J , Zeng X , Wu X , Tian H , Ding W , Wang J , Walter A . International Journal of Hydrogen Energy, 2013,38(13):5302.
[40]
Jeon K J , Moon H R , Ruminski A M , Jiang B , Kisielowski C , Bardhan R , Urban J J . Nature Materials, 2011,10(4):286.
[41]
Bogdanovic B , Schwickardi M . Journal of Alloys and Compounds, 1997,253(1):1.
[42]
Srinivasan S S , Brinks H W , Hauback B C , Sun D , Jensen C M . Journal of Alloys and Compounds, 2004,377(1/2):283.
[43]
Wang J , Ebner A D , Ritter J A . Journal of the American Chemical Society, 2006,128(17):5949.
[44]
Fichtner M , Fuhr O , Kircher O . Journal of Alloys and Compounds, 2003,356/357(2):418.
[45]
Chen P , Xiong Z T , Luo J Z , Lin J Y , Tan K L . Nature, 2002,420(6913):302.
[46]
Chen P , Xiong Z T , Wu G T , Liu Y F , Hu J J , Luo W F . Scripta Materialia, 2007,56(10):817.
[47]
Leng H , Ichikawa T , FuJii H . The Journal of Physical Chemistry B, 2006,110(26):12964.
[48]
Li C , Liu Y F , Yang Y J , Gao M X . Journal of Materials Chemistry A, 2014,2(20):7345.
[49]
Liu Y F , Zhong K , Luo K , Gao M X , Pan H G , Wang Q D . Journal of the American Chemical Society, 2009,131(5):1862.
[50]
Xiong Z T , Hu J J , Wu G T , Chen P , Luo W F , Gross K , Wang J . Journal of Alloys and Compounds, 2005,398(1/2):235.
[51]
Züttel A , Wenger P , Rentsch S , Sudan P , Mauron P , Emmenegger C . Journal of Power Sources, 2003,118(1/2):1.
[52]
George L , Saxena S K . International Journal of Hydrogen Energy, 2010,35(11):5454.
[53]
Callini E , Atakli Z O K , Hauback B C , Orimo S , Jensen C , Dornheim M , Grant D , Cho Y W , Chen P , Hjörvarsson, B , Jongh P D , Weidenthaler C , Baricco M , Paskevicius M , Jensen T R , Bowden M E , Autrey T S , Züttel A . Applied Physics A-Materials Science & Processing, 2016,122(4):352.
[54]
Ge Q . The Journal of Physical Chemistry A 2004; 108(41):8682. https://pubs.acs.org/doi/10.1021/jp048829d

doi: 10.1021/jp048829d     URL    
[55]
VaJeeston P , Ravindran P , Kjekshus A , Fjellvag H . Journal of Alloys and Compounds, 2005,387(1):97.
[56]
Orimo S , Nakamori Y , Kitahara G , Miwa K . Journal of Alloys and Compounds, 2005,404(1):427.
[57]
Mao J F , Guo Z P , Yu X B , Liu H K . The Journal of Physical Chemistry C, 2011,115(18):9283. https://pubs.acs.org/doi/10.1021/jp2020319

doi: 10.1021/jp2020319     URL    
[58]
Van Setten M J , de Wijs G A , Brocks G F . Physical Review B, 2008,77(16):709.
[59]
Marynick D S , Lipscomb W N . Inorganic Chemistry, 1972,11(4):820. https://pubs.acs.org/doi/abs/10.1021/ic50110a033

doi: 10.1021/ic50110a033     URL    
[60]
Li H W , Kikuchi K , Nakamori Y , Ohba N , Miwa K , Towata S , Orimo S . Acta Materialia, 2008,56(6):1342.
[61]
Miwa K , Aoki K , Noritake T , Ohba N . Physical Review B, 2006,74(15):155122.
[62]
Mao J F , Guo Z P , Poh C K , Ranjbar A , Guo Y H , Yu X B , Liu H K . Journal of Alloys and Compounds, 2010,500(2):200.
[63]
Harrison D , Thonhauser T . International Journal of Hydrogen Energy, 2016,41(28):3571.
[64]
Miwa K , Ohba N , Towata S I , Nakamori Y , Züttel A , Orimo, S . Journal of Alloys and Compounds, 2006,446(5):310.
[65]
Roedern E , Jensen T R . The Journal of Physical Chemistry C, 2014,118(41):23567.
[66]
Yadav M , Xu Q . Energy & Environmental Science, 2012,5(12):9698.
[67]
Kim Y , Hwang S J , Lee Y S , Suh J Y . The Journal of Physical Chemistry C, 2012,116(49):25715.
[68]
Pendolino, Flavio . Journal of Thermal Analysis and Calorimetry, 2013,112(3):1207.
[69]
Züttel A , Borgschulte A , Orimo SI . Scripta Materialia, 2007,56(10):823. https://linkinghub.elsevier.com/retrieve/pii/S1359646207000474

doi: 10.1016/j.scriptamat.2007.01.010     URL    
[70]
Verdal N , Her J H , Stavila V , Soloninin A V , Babanova O A , Skripov A V , Udovic T J , Rush J J . Journal of Solid State Chemistry, 2014,212(1):81.
[71]
Kim Y , Hwang S J , Shim J H , Lee Y S , Han H N , Cho Y W . The Journal of Physical Chemistry C, 2012,116(6):4330.
[72]
Sahle C J , Kujawski S , Remhof A , Yan Y , Stadie N P , Al-Zein A , Tolan M , Huotari S , Krisch M , Sternemann C . Physical Chemistry Chemical Physics, 2016,18(7):5397. http://xlink.rsc.org/?DOI=C5CP06571B

doi: 10.1039/C5CP06571B     URL    
[73]
Yan Y , Rentsch D , Remhof A . Physical Chemistry Chemical Physics, 2017,19(11):7788.
[74]
Ohba N , Miwa K , Aoki M , Noritake T , Towata S , Nakamori Y , Orimo S , Züttel A . Physical Review B, 2006,74(7):075110.
[75]
Yan Y , Remhof, Rentsch D , Züttel A , Giri S , Jena P . Chemical Communications, 2015,51(55):11008.
[76]
Li H W , Yan Y G , Orimo S I , Züttel A , Jensen C M . Energies, 2011,4(1):185.
[77]
Nakamori Y , Miwa K , Ninoyiya A , Li H W , Ohba N , Towata S I , Züttel A , Orimo S I . Physical Review B, 2006,74(4):045126.
[78]
Sugiyama J , Ikedo Y , Noritake T , Miwa K , Towata S , Goko T , Ofer O , Månsson M , Ansaldo E J , Brewer J H . Physical Review B, 2010,225(1):012051.
[79]
Hagemann H , Cerny R . Dalton Transactions, 2010,39(26):6006.
[80]
Nickels E A , Jones M O , David W I F , Johnson S R , Lowton R L , Sommariva M , Edwards P P . Angewandte International Edition Chemie, 2008,47(15):2817.
[81]
Jaron T , Grochala W . Dalton Transactions, 2010,39(1):160.
[82]
Bardaji E G , Zhao-Karger Z R , Boucharat N , Nale A C , Setten M J V , Lohstroh W , Röhm E , Catti M , Fichtner M M . The Journal of Physical Chemistry C, 2011,115(13):6095. https://pubs.acs.org/doi/10.1021/jp110518s

doi: 10.1021/jp110518s     URL    
[83]
Lee J Y , Ravnsbaek D B , Lee Y S , Kim Y Y , Cerenius Y , Shim J H , Jensen T R , Hur N H , Cho Y W . The Journal of Physical Chemistry C, 2009,113(33):15080.
[84]
Li H W , Orimo S , Nakamori Y , Miwa K , Ohba N , Towata S , Züttel A . Journal of Alloys and Compounds, 2007, 446-447(5):315.
[85]
Choudhury P , Srinivasan S S , Bhethanabotla V R , Goswami Y , McGrath K , Stefanakos E K . International Journal of Hydrogen Energy, 2009,34(15):6325. http://www.sciencedirect.com/science/article/pii/S0360319909008726

doi: 10.1016/j.ijhydene.2009.06.004     URL    
[86]
Kim C , Hwang S , Bowman R C , Jr Reiter J W , Zan J A , Kulleck J G , Kabbour H , Majzoub E H , Ozolins V . The Journal of Physical Chemistry C, 2009,113(22):9956. https://pubs.acs.org/doi/10.1021/jp9011685

doi: 10.1021/jp9011685     URL    
[87]
Severa G , Hagemann H , Longhini M , Kaminski J W , Wesolowski T A , Jensen C M . The Journal of Physical Chemistry C, 2010,114(36):15516. https://pubs.acs.org/doi/10.1021/jp101675q

doi: 10.1021/jp101675q     URL    
[88]
Cerny R , Kim K C , Penin N , D’Anna V , Hagemann H , Sholl D S . The Journal of Physical Chemistry C, 2010,114(44):19127. https://pubs.acs.org/doi/10.1021/jp105957r

doi: 10.1021/jp105957r     URL    
[89]
Zhang L T , Zheng J G , Xiao X Z , Fan X L , Huang X , Yang X L , Chen L X . RSC Advances, 2017,7(59):36852. http://xlink.rsc.org/?DOI=C7RA06599J

doi: 10.1039/C7RA06599J     URL    
[90]
Jiang K , Xiao X Z , Deng S S , Zhang M , Li S Q , Ge H W , Chen L X . The Journal of Physical Chemistry C, 2011,115(40):19986. https://pubs.acs.org/doi/10.1021/jp203896w

doi: 10.1021/jp203896w     URL    
[91]
Fang Z Z , Kang X D , Wang P , Li H W , Orimo S I . Journal of Alloys and Compounds, 2010,491(1/2):L1. https://linkinghub.elsevier.com/retrieve/pii/S0925838809021495

doi: 10.1016/j.jallcom.2009.10.149     URL    
[92]
Fang Z Z , Kang X D , Luo J H , Wang P , Li H W , Orimo S I . The Journal of Physical Chemistry C, 2010,114(51):22736. https://pubs.acs.org/doi/10.1021/jp109260g

doi: 10.1021/jp109260g     URL    
[93]
Roedern E , Lee Y S , Ley M B , Park K , Cho Y W , Skibsted J , Jensen T R . Journal of Materials Chemistry A, 2016,4(22):8793. http://xlink.rsc.org/?DOI=C6TA02761J

doi: 10.1039/C6TA02761J     URL    
[94]
Tomasz J , Piotr A O , Wojciech W , Karol J F , Piotr J L , Wojciech G . Angewandte International Edition Chemie, 2015,54(4):1236. http://doi.wiley.com/10.1002/anie.201408456

doi: 10.1002/anie.201408456     URL    
[95]
Starobrat A , Jaron T , Grochala W . Inorganica Chimica Acta, 2015,437(1):70. https://linkinghub.elsevier.com/retrieve/pii/S0020169315003898

doi: 10.1016/j.ica.2015.08.005     URL    
[96]
Yang Y J , Liu Y F , Wu H , Zhou W , Gao M X , Pan H G . Physical Chemistry Chemical Physics, 2014,16(1):135. http://dx.doi.org/10.1039/c3cp54099e

doi: 10.1039/c3cp54099e     URL    
[97]
Blonski P , Lodziana Z . Physical Review B, 2014,90(5):054114. https://link.aps.org/doi/10.1103/PhysRevB.90.054114

doi: 10.1103/PhysRevB.90.054114     URL    
[98]
Guo Y J , Jia J F , Wu H S . Structural Chemistry, 2015,26(3):647. http://link.springer.com/10.1007/s11224-014-0516-1

doi: 10.1007/s11224-014-0516-1     URL    
[99]
Schouwink P , Ley M B , Tissot A , Hagemann H , Jensen T R , Smr$\check{c}$ok L , $\check{D} ern \check{y}$ R . Nature Communications, 2014,5:5706. https://doi.org/10.1038/ncomms6706

doi: 10.1038/ncomms6706     URL    
[100]
Brighi M , Schouwink P , Sadikin Y , $\check{D} ern \check{y}$ R . Journal of Alloys and Compounds, 2016,662:388. https://linkinghub.elsevier.com/retrieve/pii/S0925838815317746

doi: 10.1016/j.jallcom.2015.11.218     URL    
[101]
Payandeh G S , Heere M , Sørby M H , Ley M B , Ravnsbæk D B , Hauback B C , $\check{D} ern \check{y}$ R , Jensen T R . Dalton Transactions, 2016,45(47):19002. http://xlink.rsc.org/?DOI=C6DT03671F

doi: 10.1039/C6DT03671F     URL    
[102]
Shannon R D . Acta Crystallographica Section A Foundations of Crystallography, 1976,32(SEP1):751.
[103]
Rude L H , Zavorotynska O , ArnbJerg L M , Ravnsbæk D B , Malmkjær R A , Grove H , Hauback B C , Baricco M , Filinchuk Y , Besenbacher F , Jensen T R . International Journal of Hydrogen Energy, 2011,36(24):15664. http://www.sciencedirect.com/science/article/pii/S0360319911020088

doi: 10.1016/j.ijhydene.2011.08.087     URL    
[104]
Rude L H , Groppo E , ArnbJerg L M , Ravnsbaek D B , Malmkjaer R A , Filinchuk Y,Baricco M , Besenbacher F , Jensen T R . Journal of Alloys and Compounds, 2011,509(33):8299. http://dx.doi.org/10.1016/j.jallcom.2011.05.031

doi: 10.1016/j.jallcom.2011.05.031     URL    
[105]
Yin L C , Wang P , Fang Z Z , Cheng H M . Chemical Physics Letters, 2008,450(4/6):318. https://linkinghub.elsevier.com/retrieve/pii/S0009261407015874

doi: 10.1016/j.cplett.2007.11.060     URL    
[106]
Richter B , Ravnsbaek D B , Sharma M , Spyratou A , Hagemann H , Jensen T R . Physical Chemistry Chemical Physics, 2017,19(44):30157. http://xlink.rsc.org/?DOI=C7CP05565J

doi: 10.1039/C7CP05565J     URL    
[107]
Ravnsbaek D B , Rude L H , Jensen T R . Journal of Solid State Chemistry, 2011,184(7):1858. http://dx.doi.org/10.1016/j.jssc.2011.05.030

doi: 10.1016/j.jssc.2011.05.030     URL    
[108]
Lee J Y , Lee Y S , Suh J Y , Shim J H , Cho Y W . Journal of Alloys and Compounds, 2010,506(2):721. https://linkinghub.elsevier.com/retrieve/pii/S0925838810017512

doi: 10.1016/j.jallcom.2010.07.051     URL    
[109]
Hino S , Fonnelop J E , Corno M , Zavorotynska O , Damin A , Richter B , Baricco M , Jensen T R , Sørby M H , Hauback B C . The Journal of Physical Chemistry C, 2012,116(23):12482. https://pubs.acs.org/doi/10.1021/jp303123q

doi: 10.1021/jp303123q     URL    
[110]
Rude L H , Filinchuk Y , Sorby M H , Hauback B C , Besenbacher F , Jensen T R . The Journal of Physical Chemistry C, 2011,115(15):7768. https://pubs.acs.org/doi/10.1021/jp111473d

doi: 10.1021/jp111473d     URL    
[111]
Grove H , Rude L H , Jensen T R , Corno M , Ugliengo P , Baricco M , Sørby M H , Hauback B C . RSC Advances, 2014,4(9):4736. http://dx.doi.org/10.1039/c3ra46226a

doi: 10.1039/c3ra46226a     URL    
[112]
Jaroń T , Wegner W , Grochala W . Dalton Transactions, 2013,42(19):6886. http://xlink.rsc.org/?DOI=c3dt33048f

doi: 10.1039/c3dt33048f     URL    
[113]
Matsuo M , Nakamori Y , Orimo SI , Maekawa H , Takamura H . Applied Physics Letters, 2007,91(22):224103. http://aip.scitation.org/doi/10.1063/1.2817934

doi: 10.1063/1.2817934     URL    
[114]
Maekawa H , Matsuo M , Takamura H , Ando M , Noda Y , Karahashi T , Orimi S I . Journal of the American Chemical Society, 2009,131(3):894. https://pubs.acs.org/doi/10.1021/ja807392k

doi: 10.1021/ja807392k     URL    
[115]
Lee Y S , Cho Y W . The Journal of Physical Chemistry C, 2017,121(33):17773. https://pubs.acs.org/doi/10.1021/acs.jpcc.7b06328

doi: 10.1021/acs.jpcc.7b06328     URL    
[116]
Udovic T J , Matsuo M , Tang W S , Wu H , Stavila V , Soloninin A V , Skoryunov R V , Babanova O A , Skripov A V , Rush J J , Unemoto A , Takamura A , Orimo S . Advanced Materials, 2014,26(45):7622. http://dx.doi.org/10.1002/adma.201403157

doi: 10.1002/adma.201403157     URL    
[117]
Udovic T J , Matsuo M , Unemoto A , Verdal N , Stavila V , Skripov A V , Rush J J , Takamura H , Orimo S . Chemical Communications, 2014,50(28):3750. http://dx.doi.org/10.1039/c3cc49805k

doi: 10.1039/c3cc49805k     URL    
[118]
Tang W S , Unemoto A , Zhou W , Stavila V , Matsuo M , Wu H , Orimo S I , Udovic T J . Energy & Environmental Science, 2015,8(12):3637.
[119]
Unemoto A , Matsuo M , Orimo S . Advanced Functional Materials, 2014,24(16):2267. http://onlinelibrary.wiley.com/doi/10.1002/adfm.201303147/abstract

doi: 10.1002/adfm.201303147     URL    
[120]
De Jongh P E , Blanchard D , Matsuo M , Udovic T J , Orimo S . Applied Physics A, 2016,122(3):251. http://link.springer.com/10.1007/s00339-016-9807-2

doi: 10.1007/s00339-016-9807-2     URL    
[121]
Unemoto A , Chen C L , Wang Z C , Matsuo M , Ikeshoji T , Orimo S . Nanotechnology, 2015,26(25):254001. https://iopscience.iop.org/article/10.1088/0957-4484/26/25/254001

doi: 10.1088/0957-4484/26/25/254001     URL    
[122]
Cascallana-Matias I , Keen D A , Cussen E J , Gregory D H . Chemistry of Materials, 2015,27(22):7780. https://pubs.acs.org/doi/10.1021/acs.chemmater.5b03642

doi: 10.1021/acs.chemmater.5b03642     URL    
[123]
Martelli P , Remhof A , Borgschulte A , Ackermann R , Strässle T , Embs JP , Ernst M , Matsuo M , Orimo S , Züttel A . The Journal of Physical Chemistry A, 2011,115(21):5329. https://pubs.acs.org/doi/10.1021/jp201372b

doi: 10.1021/jp201372b     URL    
[124]
SveinbJornsson D , Christiansen A S , Viskinde R , Norby P , Vegge T . Journal of the Electrochemical Society, 2014,161(9):A1432. http://dx.doi.org/10.1149/2.1061409jes

doi: 10.1149/2.1061409jes     URL    
[125]
Xiang M Y , Zhang Y , Zhan L Y , Zhu Y F , Guo X L , Chen J , Wang Z M , Li L Q . Journal of Alloys and Compounds, 2017,729:936. https://linkinghub.elsevier.com/retrieve/pii/S0925838817329924

doi: 10.1016/j.jallcom.2017.08.253     URL    
[126]
Mezaki T , Kuronuma Y , Oikawa I , Kamegawa A , Takamura H . Inorganic Chemistry, 2016,55(20):10484. https://pubs.acs.org/doi/10.1021/acs.inorgchem.6b01678

doi: 10.1021/acs.inorgchem.6b01678     URL    
[127]
Vajo J J , Skeith S L , Mertens F . The Journal of Physical Chemistry B, 2005,109(9):3719. https://pubs.acs.org/doi/10.1021/jp040769o

doi: 10.1021/jp040769o     URL    
[128]
Pendolino F . The Journal of Physical Chemistry C, 2012,116(1):1390. https://pubs.acs.org/doi/10.1021/jp206038a

doi: 10.1021/jp206038a     URL    
[129]
Ravnsbaek D B , Jensen T R . Journal of Applied Physics, 2012,111(11):112621. http://aip.scitation.org/doi/10.1063/1.4726244

doi: 10.1063/1.4726244     URL    
[130]
Hansen B R S , Tavnsbaek D B , Reed D , Book D , Gundlach C , Skibsted J , Jensen T R . The Journal of Physical Chemistry C, 2013,117(15):7423. https://pubs.acs.org/doi/10.1021/jp312480h

doi: 10.1021/jp312480h     URL    
[131]
Mao J F , Wu Z , Yu X B , Dou T , Chen T , Weng B , Ni J , Xu N , Huang T . Rare Metal Materials and Engineering, 2007,36(12):2248.
[132]
Kim Y , Reed D , Lee Y S , Lee J Y , Shim J H , Book D , Cho Y W . The Journal of Physical Chemistry C, 2009,113(14):5865. https://pubs.acs.org/doi/10.1021/jp8094038

doi: 10.1021/jp8094038     URL    
[133]
Yan Y , Li H W , Maekawa H , Miwa K , Towata S I , Orimo S I . The Journal of Physical Chemistry C, 2011,115(39):19419. https://pubs.acs.org/doi/10.1021/jp205450c

doi: 10.1021/jp205450c     URL    
[134]
Kim K B , Shim J H , Park S H , Choi I S , Oh K H , Cho Y W . The Journal of Physical Chemistry C, 2015,119(18):9714. https://pubs.acs.org/doi/10.1021/jp5123757

doi: 10.1021/jp5123757     URL    
[135]
Kim K B , Shim J H , Cho Y W , Oh K H . Chemical Communications, 2011,47(35):9831. http://dx.doi.org/10.1039/c1cc14072h

doi: 10.1039/c1cc14072h     URL    
[136]
Kim K B , Shim J H , Oh K H , Cho Y W . The Journal of Physical Chemistry C, 2013,117(16):8028. https://pubs.acs.org/doi/10.1021/jp4000208

doi: 10.1021/jp4000208     URL    
[137]
Kim K B , Shim J H , Choi I S , Cho Y W , Oh K H . Journal of Nanoscience and Nanotechnology, 2016,16(10):10869. http://openurl.ingenta.com/content/xref?genre=article&issn=1533-4880&volume=16&issue=10&spage=10869

doi: 10.1166/jnn.2016.13255     URL    
[138]
Cova F , Ronnebro E C E , Choi Y J , Gennari F C , Larochette P A . The Journal of Physical Chemistry C, 2015,119(28):15816. https://pubs.acs.org/doi/10.1021/acs.jpcc.5b02047

doi: 10.1021/acs.jpcc.5b02047     URL    
[139]
Sahle C J , Sternemann C , Giacobbe C , Yan Y G , Weis C , Harder M , Forov Y , Spiekermann G , Tolan M , Krisch M , Remhof A . Physical Chemistry Chemical Physics, 2016,18(29):19866. http://xlink.rsc.org/?DOI=C6CP02495E

doi: 10.1039/C6CP02495E     URL    
[140]
Shao H Y , Felderhoff M , Weldenthaler C . The Journal of Physical Chemistry C, 2015,119(5):2341.
[141]
Zhong Y , Wan X F , Ding Z , Shaw L L . International Journal of Hydrogen Energy, 2016,41(47):22104. https://linkinghub.elsevier.com/retrieve/pii/S0360319916303573

doi: 10.1016/j.ijhydene.2016.09.195     URL    
[142]
Puszkiel J A , Riglos M V C , Karimi F , Santoru A , Pistidda C , Klassen T , Bellosta C J M , Dornheim M . Physical Chemistry Chemical Physics, 2017,19(11):7455. http://xlink.rsc.org/?DOI=C6CP08278E

doi: 10.1039/C6CP08278E     URL    
[143]
Shim J H , Lim J H , Rather S U , Lee Y S , Reed D , Kim Y Y , Book D , Cho Y W . The Journal of Physical Chemistry Letters, 2010,1(1):59. https://pubs.acs.org/doi/10.1021/jz900012n

doi: 10.1021/jz900012n     URL    
[144]
Minella C B , Pistidda C , Garroni S , Nolis P , Baró M D , Gutfleisch O , Klassen T , Bormann R , Dornheim M . The Journal of Physical Chemistry C, 2013,117(8):3846. https://pubs.acs.org/doi/10.1021/jp312271s

doi: 10.1021/jp312271s     URL    
[145]
Huang X , Xiao X Z , Wang X C , Yao Z D , Wang C T , Fan X L , Chen L X . Energy Storage Materials, 2018,13:199. https://linkinghub.elsevier.com/retrieve/pii/S2405829717306633

doi: 10.1016/j.ensm.2018.01.012     URL    
[146]
VaJo J J , Li W , Liu P . Chemical Communications, 2010,46(36):6687. http://xlink.rsc.org/?DOI=c0cc01026j

doi: 10.1039/c0cc01026j     URL    
[147]
Ghaani M R , Catti M , Nale A . The Journal of Physical Chemistry C, 2012,116(51):26694. https://pubs.acs.org/doi/10.1021/jp310786k

doi: 10.1021/jp310786k     URL    
[148]
Yvon K , Renaudin G . Hydrides: Solid State Transition Metal Complexes, in Encyclopedia of Inorganic Chemistry, King R B, ed. New York: Wiley & Sons, 2006.
[149]
Zhou Y F , Liu Y F , Wu W , Zhang Y , Gao M X , Pan H G . The Journal of Physical Chemistry C, 2012,116(1):1588. https://pubs.acs.org/doi/10.1021/jp2101573

doi: 10.1021/jp2101573     URL    
[150]
Huang J J , Gao M X , Li Z L , Cheng X B , Gu J , Liu Y F , Pan H G . Journal of Alloys and Compounds, 2016,670(1):135. https://linkinghub.elsevier.com/retrieve/pii/S0925838816303036

doi: 10.1016/j.jallcom.2016.02.035     URL    
[151]
Yuan P P , Liu B H , Li Z P . International Journal of Hydrogen Energy, 2011,36(23):15266. http://www.sciencedirect.com/science/article/pii/S0360319911020131

doi: 10.1016/j.ijhydene.2011.09.001     URL    
[152]
Fang Z Z , Ma L P , Kang X D , Wang P J , Wang P , Cheng H M . Applied Physics Letters, 2009,94(4):044104. http://aip.scitation.org/doi/10.1063/1.3076106

doi: 10.1063/1.3076106     URL    
[153]
Zhang L T , Zheng J G , Xiao X Z , Wang X C , Huang X , Liu M J , Wang Q D , Chen L X . International Journal of Hydrogen Energy, 2017,42(31):20046. https://linkinghub.elsevier.com/retrieve/pii/S0360319917319250

doi: 10.1016/j.ijhydene.2017.05.060     URL    
[154]
Gosalawit-Utke R , Suarez K , von Colbe J M B , Bösenberg U , Jensen T R , Cerenius Y , Minella C B , Pistidda C , Barkhordarian G , Schulze M , Klassen T , Bormann R , Dornheim M . The Journal of Physical Chemistry C, 2011,115(9) 3762. https://pubs.acs.org/doi/10.1021/jp108236e

doi: 10.1021/jp108236e     URL    
[155]
Minella C B , Garroni S , Pistidda C , Gosalawit-Utke R , Barkhordarian G , Rongeat C , Lindemann I , Gutfleisch O , Jensen T R , Cerenius Y , Christensen J , Baro M D , Bormann R , Klassen T , Dornheim M . The Journal of Physical Chemistry C, 2011,115(5):2497. https://pubs.acs.org/doi/10.1021/jp107781m

doi: 10.1021/jp107781m     URL    
[156]
Gosalawit-Utke R , von Colbe J M B , Dornheim M , Jensen T R , Cerenius Y , Minella C B , Peschke M , Bormann R . The Journal of Physical Chemistry C, 2010,114(22):10291. https://pubs.acs.org/doi/10.1021/jp910266m

doi: 10.1021/jp910266m     URL    
[157]
Saldan I , Gosalawit-Utke R , Pistidda C , Bösenberg U , Schulze M , Jensen T R , aube K , Dornheim M , Klassen T . The Journal of Physical Chemistry C, 2012,116(12):7010. https://pubs.acs.org/doi/10.1021/jp212322u

doi: 10.1021/jp212322u     URL    
[158]
Saldan I , Ramallo-Lopez J M , Requejo F G , Suarez-Alcantara K , Bellosta von Colbe J , Avila J . International Journal of Hydrogen Energy, 2012,37(13):10236. http://dx.doi.org/10.1016/j.ijhydene.2012.04.010

doi: 10.1016/j.ijhydene.2012.04.010     URL    
[159]
Saldan I , Schulze M , Pistidda C , Gosalawit-utke R , Zavorotynska O , Rude R H , Skibsted J , Haase D , Cerenius Y , Jensen T R , Spoto G , Baricco M , Taube K , Dornheim M . The Journal of Physical Chemistry C, 2013,117(33):17360. https://pubs.acs.org/doi/10.1021/jp405856s

doi: 10.1021/jp405856s     URL    
[160]
Alcantara K S , Boesenberg U , Zavorotynska O , Bellosta von Colbe , J, Taube K , Baricco M , Klassen T , Dornheim M . Journal of Solid State Chemistry, 2011,184(11):3104. https://linkinghub.elsevier.com/retrieve/pii/S002245961100510X

doi: 10.1016/j.jssc.2011.09.019     URL    
[161]
Alcantara K S , Ramallo-Lopez J M , Boesenberg U , Saldan I , Pistidda C , Requejo F , Jensen T R , Cerenius Y , Sørby M H , Avila J , Bellosta von Colbe J M , Taube K , Klassen T , Dornheim M . The Journal of Physical Chemistry C, 2012,116(12):7207. https://pubs.acs.org/doi/10.1021/jp211620h

doi: 10.1021/jp211620h     URL    
[162]
Roedern E , Hansen B R S , Ley M B , Jensen T R . The Journal of Physical Chemistry C, 2015,119(46):25818. https://pubs.acs.org/doi/10.1021/acs.jpcc.5b09228

doi: 10.1021/acs.jpcc.5b09228     URL    
[163]
Semenenko K N , Chavgun A P , Surov V N . Russian Journal of Inorganic Chemistry, 1971,16(1):271.
[164]
Dematteis E M , Roedern E , Pinatel E R , Jensen T R , Baricco M . RSC Advances, 2016,6(65):60101. http://xlink.rsc.org/?DOI=C6RA09301A

doi: 10.1039/C6RA09301A     URL    
[165]
Ley M B , Roedern E , Jensen T R . Physical Chemistry Chemical Physics, 2014,16(44):24194. http://dx.doi.org/10.1039/c4cp03207a

doi: 10.1039/c4cp03207a     URL    
[166]
Hagemann H , D’Anna V , Rapin J P , Černý R , Filinchuk Y , Kim K C , Sholl D S , Parker S F . Journal of Alloys and Compounds, 2011,509(s2):5688. https://linkinghub.elsevier.com/retrieve/pii/S0925838811004919

doi: 10.1016/j.jallcom.2011.02.128     URL    
[167]
Ley M B , Roedern E , Thygesen P M M , Jensen T R . Energies, 2015,8(4):2701. http://www.mdpi.com/1996-1073/8/4/2701

doi: 10.3390/en8042701     URL    
[168]
Paskevicius M , Ley M B , Sheppard D A , Jensen T R , Buckley C E . Physical Chemistry Chemical Physics, 2013,15(45):19774. http://dx.doi.org/10.1039/c3cp53920b

doi: 10.1039/c3cp53920b     URL    
[169]
Dematteis E M , Pinatel E R , Corno M , Jensen T R , Baricco M . Physical Chemistry Chemical Physics, 2017,19(36):25071. http://xlink.rsc.org/?DOI=C7CP03816J

doi: 10.1039/C7CP03816J     URL    
[170]
Javadian P , GharibDoust S P , Li H W , Sheppard D A , Buckley C E , Jensen T R . The Journal of Physical Chemistry C, 2017,121(34):18439. https://pubs.acs.org/doi/10.1021/acs.jpcc.7b06228

doi: 10.1021/acs.jpcc.7b06228     URL    
[171]
Yan Y G , Remhof A , Mauron P , Rentsch D , Łodziana Z , Lee Y S , Lee H S , Cho Y W , Züttel A . The Journal of Physical Chemistry C, 2013,117(17):8878. https://pubs.acs.org/doi/10.1021/jp401628g

doi: 10.1021/jp401628g     URL    
[172]
Ibikunle A A , Goudy A J . International Journal of Hydrogen Energy, 2012,37(17):12420. https://linkinghub.elsevier.com/retrieve/pii/S0360319912013948

doi: 10.1016/j.ijhydene.2012.06.047     URL    
[173]
Liu Y Z , Reed D , Paterakis C , Vasquez L C , Baricco M , Book D . International Journal of Hydrogen Energy, 2017,42(35):22480. https://linkinghub.elsevier.com/retrieve/pii/S0360319917311059

doi: 10.1016/j.ijhydene.2017.03.141     URL    
[174]
Gao M X , Gu J , Pan H G , Wang Y L , Liu Y F , Liang C , Guo Z X . Journal of Materials Chemistry A, 2013,1(39):12285. http://dx.doi.org/10.1039/c3ta12472j

doi: 10.1039/c3ta12472j     URL    
[175]
Gu J , Gao M X , Wen L J , Huang J J , Liu Y F , Pan H G . International Journal of Hydrogen Energy, 2015,40(36):12325. https://linkinghub.elsevier.com/retrieve/pii/S0360319915018923

doi: 10.1016/j.ijhydene.2015.07.089     URL    
[176]
Pinkerton F E , Meisner G P , Meyer M S , Balogh M P , Kundrat M D . The Journal of Physical Chemistry B, 2005,109(1):6. https://pubs.acs.org/doi/10.1021/jp0455475

doi: 10.1021/jp0455475     URL    
[177]
Meisner G P , Scullin M L , Balogh M P , Pinkerton F E , Meyer M S . The Journal of Physical Chemistry B, 2006,110(9):4186. https://pubs.acs.org/doi/10.1021/jp056019b

doi: 10.1021/jp056019b     URL    
[178]
Wu H , Zhou W , Udovic T J , Rush J J , Yildirim T . Chemistry of Materials, 2008,20(4):1245. https://pubs.acs.org/doi/10.1021/cm703315e

doi: 10.1021/cm703315e     URL    
[179]
Wolczyk A , Pinatel E R , Chierotti M R , Nervi C , Gobetto R , Baricco M . International Journal of Hydrogen Energy, 2016,41(32):14475. https://linkinghub.elsevier.com/retrieve/pii/S0360319916305870

doi: 10.1016/j.ijhydene.2016.03.040     URL    
[180]
Tang W S , Wu G T , Liu T , Wee A T S , Yong C K , Xiong Z T , Hor A T S , Chen P . Dalton Transactions, 2008,18:2395.
[181]
Liu Y F , Luo K , Zhou Y F , Gao M X , Pan H G . Journal of Alloys and Compounds, 2009,481(1/2):473. https://linkinghub.elsevier.com/retrieve/pii/S0925838809004708

doi: 10.1016/j.jallcom.2009.02.142     URL    
[182]
Zhang Y , Liu Y F , Liu T , Gao M X , Pan H G . International Journal of Hydrogen Energy, 2013,38(30):13318. http://dx.doi.org/10.1016/j.ijhydene.2013.07.084

doi: 10.1016/j.ijhydene.2013.07.084     URL    
[183]
Li Y , Zhang Y , Gao M X , Pan H G , Liu Y F . Progress in Natural Science: Materials International, 2017,27(1):132. https://linkinghub.elsevier.com/retrieve/pii/S1002007116303203

doi: 10.1016/j.pnsc.2016.12.010     URL    
[184]
Zhang Y , Liu Y F , Yang Y X , Li Y , Hu J J , Gao M X , Pan H G . Materials Research Bulletin, 2018,97:544. https://linkinghub.elsevier.com/retrieve/pii/S0025540817303835

doi: 10.1016/j.materresbull.2017.09.037     URL    
[185]
Zhang Y , Lan Z Y , Jian N , Ren Z H , Hu J J , Gao M X , Pan H G , Lu Y H , Liu Y F . Catalysis Science & Technology, 2017,7(9):1838.
[186]
Wang K , Pan Z X , Yu X B . Journal of Alloys and Compounds, 2019,794:303. https://linkinghub.elsevier.com/retrieve/pii/S0925838819315282

doi: 10.1016/j.jallcom.2019.04.240     URL    
[187]
Zhang Y , Liu Y F , Zhang X , Li Y , Gao M X , Pan H G . The Journal of Physical Chemistry C, 2015,119(44):24760. https://pubs.acs.org/doi/10.1021/acs.jpcc.5b09256

doi: 10.1021/acs.jpcc.5b09256     URL    
[188]
Pei Z W , Bai Y , Wang Y , Wu F , Wu C . Applied Materials & Interfaces, 2017,9(37):31977.
[189]
Zhang Y S , Farrell D , Yang J , Sudik A , Wolverton C . The Journal of Physical Chemistry C, 2014,118(21):11193. https://pubs.acs.org/doi/10.1021/jp500318e

doi: 10.1021/jp500318e     URL    
[190]
Morelle F , Jepsen L H , Jensen T R , Sharma M , Hagemann H , Filinchuk Y . The Journal of Physical Chemistry C, 2016,120(16):8428. https://pubs.acs.org/doi/10.1021/acs.jpcc.6b00209

doi: 10.1021/acs.jpcc.6b00209     URL    
[191]
Chu H L , Xiong Z T , Wu G T , Guo J P , Zheng X L , He T , Wu C Z , Chen P . Chemistry-an Asian Journal, 2010,5(7):1594. http://doi.wiley.com/10.1002/asia.v5%3A7

doi: 10.1002/asia.v5:7     URL    
[192]
Chu H L , Wu G T , Zhang Y , Xiong Z T , Guo J P , He T , Chen P . The Journal of Physical Chemistry C, 2011,115(36):18035. https://pubs.acs.org/doi/10.1021/jp2052695

doi: 10.1021/jp2052695     URL    
[193]
Zheng X L , Chua Y S , Xiong Z T , Chen W D , Jiang Z J , Wu G T , Chen P . International Journal of Hydrogen Energy, 2015,40(13):4573. https://linkinghub.elsevier.com/retrieve/pii/S0360319915002049

doi: 10.1016/j.ijhydene.2015.01.134     URL    
[194]
Wang K , Liu Q , Lang X Q , Tang K , Zhang J G . International Journal of Hydrogen Energy, 2017,42(22):14936. https://linkinghub.elsevier.com/retrieve/pii/S0360319917318050

doi: 10.1016/j.ijhydene.2017.05.013     URL    
[195]
Li Y , Liu Y F , Zhang X , Zhou D , Lu Y H , Gao M X , Pan H G . Journal of Materials Chemistry A, 2016,4(21):8366. http://xlink.rsc.org/?DOI=C6TA02944B

doi: 10.1039/C6TA02944B     URL    
[196]
Chen J E , He T , Wu G T , Xiong Z T , Liu L , Ju X H , Chen P . The Journal of Physical Chemistry C, 2014,118(25):13451. https://pubs.acs.org/doi/10.1021/jp503123d

doi: 10.1021/jp503123d     URL    
[197]
Zhang Y , Liu Y F , Zhang X , Li Y , Gao M X , Pan H G . Dalton Transactions, 2015,44(32):14514. http://xlink.rsc.org/?DOI=C5DT02148K

doi: 10.1039/C5DT02148K     URL    
[198]
Amica G , Ronnebro E C E , Larochette P A , Gennari F C . Physical Chemistry Chemical Physics, 2017,19(47):32047. http://xlink.rsc.org/?DOI=C7CP04848C

doi: 10.1039/C7CP04848C     URL    
[199]
Tang Z W , Tan Y B , Gu Q F , Yu X B . Journal of Materials Chemistry, 2012,22(12):5312. http://dx.doi.org/10.1039/c2jm14990g

doi: 10.1039/c2jm14990g     URL    
[200]
Huang J M , Ouyang L Z , Gu Q F , Yu X B , Zhu M . Chemistry-A European Journal, 2015,21(42):14931. http://doi.wiley.com/10.1002/chem.201501461

doi: 10.1002/chem.201501461     URL    
[201]
Jepsen L H , Ley M B , Filinchuk Y , Besenbacher F , Jensen T R . ChemsusChem, 2015,8(8):1452. http://doi.wiley.com/10.1002/cssc.v8.8

doi: 10.1002/cssc.v8.8     URL    
[202]
Li Z M , Wng H , Ouyang L Z , Liu J W , Zhu M . International Journal of Hydrogen Energy, 2017,42(35):22406. https://linkinghub.elsevier.com/retrieve/pii/S0360319917310686

doi: 10.1016/j.ijhydene.2017.03.123     URL    
[203]
Li Y , Liu Y F , Zhang X , Yang Y X , Gao M X , Pan H G . International Journal of Hydrogen Energy, 2016,41(4):2788. https://linkinghub.elsevier.com/retrieve/pii/S0360319915312623

doi: 10.1016/j.ijhydene.2015.12.036     URL    
[204]
Li Y , Liu Y F , Yang Y J , Gao M X , Pan H G . International Journal of Hydrogen Energy, 2014,39(23):11999. http://dx.doi.org/10.1016/j.ijhydene.2014.05.191

doi: 10.1016/j.ijhydene.2014.05.191     URL    
[205]
Yang Y J , Liu Y F , Zhang Y , Li Y , Gao M X , Pan H G . Journal of Alloys and Compounds, 2014,585:674. http://dx.doi.org/10.1016/j.jallcom.2013.09.208

doi: 10.1016/j.jallcom.2013.09.208     URL    
[206]
Zhang P S , Xu B E , Li X Y , Zeng Y L , Meng L P . International Journal of Hydrogen Energy, 2014,39(30):17144. http://dx.doi.org/10.1016/j.ijhydene.2014.08.067

doi: 10.1016/j.ijhydene.2014.08.067     URL    
[207]
Zhao S S , Xu B E , Sun N N , Sun Z , Zeng Y L , Meng L P . International Journal of Hydrogen Energy, 2015,40(28):8721. https://linkinghub.elsevier.com/retrieve/pii/S0360319915011672

doi: 10.1016/j.ijhydene.2015.05.023     URL    
[208]
Yang Y J , Liu Y F , Li Y , Gao M X , Pan H G . Journal of Materials Chemistry A, 2015,3(2):570. http://xlink.rsc.org/?DOI=C4TA04765F

doi: 10.1039/C4TA04765F     URL    
[209]
Zheng X L , Wu G T , Li W , Xiong Z T , He T , Guo J P , Chen H , Chen P . Energy & Environmental Science, 2011,4(9):3593.
[210]
Kim J H , Jin S A , Shim J H , Cho Y W . Scripta Materialia, 2008,58(6):481. http://www.sciencedirect.com/science/article/pii/S1359646207007816

doi: 10.1016/j.scriptamat.2007.10.042     URL    
[211]
Kim J H , Shim J H , Cho Y W . Journal of Power Sources, 2008,181(1):140. https://linkinghub.elsevier.com/retrieve/pii/S0378775308005065

doi: 10.1016/j.jpowsour.2008.02.094     URL    
[212]
Liu G L , Zhang G Y , Bao J S , Zhang H . Acta Physica Sinica, 2014,63(24):248801. http://wulixb.iphy.ac.cn//CN/abstract/abstract62420.shtml

doi: 10.7498/aps.63.248801     URL    
[213]
Wang Z G , Hui Q , Wang C L , Cheng N P . Computational Materials Science, 2011,50(11):3114. http://www.sciencedirect.com/science/article/pii/S0927025611003090

doi: 10.1016/j.commatsci.2011.05.036     URL    
[214]
Zhang W , Xu G , Chen L J , Pan S Y , Jing X , Wang J S , Han S M . International Journal of Hydrogen Energy, 2017,42(22):15262. https://linkinghub.elsevier.com/retrieve/pii/S0360319917318104

doi: 10.1016/j.ijhydene.2017.05.018     URL    
[215]
Bonatto M C , Pellicer E , Rossinyol E , Karimi F , Pistidda C , Garroni S , Milanese C , Nolis P , Baró M D , Gutfleisch O , Pranzas K P , Schreyer A , Klassen T , Bormann R , Dornheim M . The Journal of Physical Chemistry C, 2013,117(9):4394. https://pubs.acs.org/doi/10.1021/jp3116275

doi: 10.1021/jp3116275     URL    
[216]
Fan X L , Xiao X Z , Chen L X , Wang X H , Li S Q , Ge H W , Wang Q D . Journal of Materials Chemistry A, 2013,1(37):11368. http://dx.doi.org/10.1039/c3ta12401k

doi: 10.1039/c3ta12401k     URL    
[217]
Au M , Jurgensen A R , Spencer W A , Anton D L , Pinkerton F E , Hwang S J , Kim C , Bowman R C . The Journal of Physical Chemistry C, 2008,112(47):18661. https://pubs.acs.org/doi/10.1021/jp8024304

doi: 10.1021/jp8024304     URL    
[218]
Bidabadi A S , Varin R A , Polanski M , Stobinski L . RSC Advances, 2016,6(96):93245. http://xlink.rsc.org/?DOI=C6RA21539D

doi: 10.1039/C6RA21539D     URL    
[219]
Kou H Q , Sang G , Zhou Y L , Wang X Y , Huang Z Y , Luo W H , Chen L X , Xiao X Z , Yang G Y , Hu C Y . International Journal of Hydrogen Energy, 2014,39(22):11675. http://dx.doi.org/10.1016/j.ijhydene.2014.05.179

doi: 10.1016/j.ijhydene.2014.05.179     URL    
[220]
Nale A , Pendolino F , Maddalena A , Colombo P . International Journal of Hydrogen Energy, 2016,41(26):11225. https://linkinghub.elsevier.com/retrieve/pii/S036031991630533X

doi: 10.1016/j.ijhydene.2016.04.191     URL    
[221]
Wei J , Leng H Y , Li Q , Chou K C . International Journal of Hydrogen Energy, 2014,39(25):13609. http://dx.doi.org/10.1016/j.ijhydene.2014.02.130

doi: 10.1016/j.ijhydene.2014.02.130     URL    
[222]
Hu J J , Liu Y F , Wu G T , Xiong Z T , Chua Y S , Chen P . Chemistry of Materials, 2008,20(13):4398. https://pubs.acs.org/doi/10.1021/cm800584x

doi: 10.1021/cm800584x     URL    
[223]
Li B , Liu Y F , Gu J , Gao M X , Pan H G . Chemistry-An Asian Journal, 2013,8(2):374. http://dx.doi.org/10.1002/asia.201200938

doi: 10.1002/asia.201200938     URL    
[224]
Pan H G , Shi S B , Liu Y F , Li B , Yang Y J , Gao M X . Dalton Transactions, 2013,42(11):3802. http://dx.doi.org/10.1039/c2dt32266h

doi: 10.1039/c2dt32266h     URL    
[225]
Qiu S J , Ma X Y , Wang E R , Chu H L , Huot J , Zou Y J , Xiang C L , Xu F , Sun L X . Journal of Alloys and Compounds, 2017,704:44. https://linkinghub.elsevier.com/retrieve/pii/S0925838817304619

doi: 10.1016/j.jallcom.2017.02.045     URL    
[226]
Nielsen T K , Besenbacher F , Jensen T R . Nanoscale, 2011,3(5):2086. http://xlink.rsc.org/?DOI=c0nr00725k

doi: 10.1039/c0nr00725k     URL    
[227]
Ren J W , Musyoka N M , Langmi H W , Mathe M , Liao S J . International Journal of Hydrogen Energy, 2017,42(1):289. https://linkinghub.elsevier.com/retrieve/pii/S0360319916335285

doi: 10.1016/j.ijhydene.2016.11.195     URL    
[228]
Yu X B , Tang Z W , Sun D L , Ouyang L Z , Zhu M . Progress in Materials Science, 2017,88:1. https://linkinghub.elsevier.com/retrieve/pii/S0079642517300312

doi: 10.1016/j.pmatsci.2017.03.001     URL    
[229]
Mueller T , Ceder G . ACS Nano, 2010,4(10):5647. https://pubs.acs.org/doi/10.1021/nn101224j

doi: 10.1021/nn101224j     URL    
[230]
Aguey-Zinsou K F , Ares-Fernandes J R . Energy & Environmental Science, 2010,3(5):526.
[231]
Suryanarayana C , Al-Aqeeli N . Progress in Materials Science, 2013,58(4):383. http://dx.doi.org/10.1016/j.pmatsci.2012.10.001

doi: 10.1016/j.pmatsci.2012.10.001     URL    
[232]
Wu H , Zhao W F , Hu H W , Chen G H . Journal of Materials Chemistry, 2011,21(24):8626. http://dx.doi.org/10.1039/c1jm10819k

doi: 10.1039/c1jm10819k     URL    
[233]
Wagemans R W P , van Lenthe J H , de Jongh P E , Jos van Dillen A , de Jong K P . Journal of the American Chemical Society, 2005,127(47):16675. https://pubs.acs.org/doi/10.1021/ja054569h

doi: 10.1021/ja054569h     URL    
[234]
Kim K C , Dai B , Karl J J , Sholl D S . Nanotechnology, 2009,20(20):204001. https://iopscience.iop.org/article/10.1088/0957-4484/20/20/204001

doi: 10.1088/0957-4484/20/20/204001     URL    
[235]
Wu C Z , Wang P , Yao X , Liu C , Chen D M , Lu G Q , Cheng H M . Journal of Alloys and Compounds, 2006,420(1):278. https://linkinghub.elsevier.com/retrieve/pii/S0925838805015975

doi: 10.1016/j.jallcom.2005.10.028     URL    
[236]
Li H W , Kikuchi K , Nakamori Y , Miwa K , Towata S , Orimo S . Scripta Materialia, 2007,57(8):679. http://www.sciencedirect.com/science/article/pii/S1359646207004770

doi: 10.1016/j.scriptamat.2007.06.052     URL    
[237]
Li W Y , Li C S , Ma H , Chen J . Journal of the American Chemical Society, 2007,129(21):6710. https://pubs.acs.org/doi/10.1021/ja071323z

doi: 10.1021/ja071323z     URL    
[238]
Pang Y P , Liu Y F , Gao M X , Ouyang L Z , Liu J W , Wang H , Zhu M , Pan H G . Nature Communications, 2014,5(3):3519. https://doi.org/10.1038/ncomms4519

doi: 10.1038/ncomms4519     URL    
[239]
Cushing B L , Kilesnichenko V L , O’Connor C J . Chemical Reviews, 2004,104(9):3893. https://pubs.acs.org/doi/10.1021/cr030027b

doi: 10.1021/cr030027b     URL    
[240]
Aguey-Zinsou K F , Ares-Fernandez J R . Chemistry of Materials, 2008,20(2):376. https://pubs.acs.org/doi/10.1021/cm702897f

doi: 10.1021/cm702897f     URL    
[241]
Christian M L , Aguey-Zinsou K F . ACS Nano, 2012,6(9):7739. https://pubs.acs.org/doi/10.1021/nn3030018

doi: 10.1021/nn3030018     URL    
[242]
Christian M , Aguey-Zinsou K F . Chemical Communications, 2013,49(60):6794. http://dx.doi.org/10.1039/c3cc42815j

doi: 10.1039/c3cc42815j     URL    
[243]
Wang T , Aguey-Zinsou K F . Energy Technology, 2019,7, 1801159. https://onlinelibrary.wiley.com/toc/21944296/7/6

doi: 10.1002/ente.v7.6     URL    
[244]
Prieto G , Tuysuz H , Duyckaerts N , Knossalla J , Wang G H , Schüth F . Chemical Reviews, 2016,116(22):14056. https://pubs.acs.org/doi/10.1021/acs.chemrev.6b00374

doi: 10.1021/acs.chemrev.6b00374     URL    
[245]
ComaNescu C , Capurso G , Maddalena A . Nanotechnology, 2012,23(38):385401. https://iopscience.iop.org/article/10.1088/0957-4484/23/38/385401

doi: 10.1088/0957-4484/23/38/385401     URL    
[246]
Liu X F , Peaslee D , Jost C Z , Baumann T F , Majzoub E H . Chemistry of Materials, 2011,23(5):1331. http://dx.doi.org/10.1021/cm103546g

doi: 10.1021/cm103546g     URL    
[247]
Javadian P , Sheppard D A , Buckley C E , Jensen T R . International Journal of Hydrogen Energy, 2016,40(43):14916. https://linkinghub.elsevier.com/retrieve/pii/S0360319915301221

doi: 10.1016/j.ijhydene.2015.08.075     URL    
[248]
Javadian P , Jensen T R . International Journal of Hydrogen Energy, 2014,39(18):9871. http://dx.doi.org/10.1016/j.ijhydene.2014.03.007

doi: 10.1016/j.ijhydene.2014.03.007     URL    
[249]
Lee H S , Lee Y S , Suh J Y , Kim M , Yu J S , Cho Y W . The Journal of Physical Chemistry C, 2011,115(40):20027. https://pubs.acs.org/doi/10.1021/jp206000h

doi: 10.1021/jp206000h     URL    
[250]
Gross A F , Vajo J J , van Atta S L , Olson G L . The Journal of Physical Chemistry C, 2008,112(14):5651. https://pubs.acs.org/doi/10.1021/jp711066t

doi: 10.1021/jp711066t     URL    
[251]
Thiangviriya S , Utke R . International Journal of Hydrogen Energy, 2015,40(11):4167. https://linkinghub.elsevier.com/retrieve/pii/S0360319915002360

doi: 10.1016/j.ijhydene.2015.01.144     URL    
[252]
House S D , Liu X F , Rockett A A , Majzoub E H , Robertson I M . The Journal of Physical Chemistry C, 2014,118(17):8843. https://pubs.acs.org/doi/10.1021/jp4098205

doi: 10.1021/jp4098205     URL    
[253]
Hazrati E , Brocks G , Wijs G A D . The Journal of Physical Chemistry C, 2014,118(10):5102. https://pubs.acs.org/doi/10.1021/jp410676b

doi: 10.1021/jp410676b     URL    
[254]
Lodziana Z , Bloriski P . International Journal of Hydrogen Energy, 2014,39(18):9842. http://dx.doi.org/10.1016/j.lihydene.2014.02.150

doi: 10.1016/j.lihydene.2014.02.150     URL    
[255]
Ngene P , van Zwienen M R , de Jongh P E . Chemical Communications, 2010,46(43):8201. http://xlink.rsc.org/?DOI=c0cc03218b

doi: 10.1039/c0cc03218b     URL    
[256]
Zhao Y P , Jiao L F , Liu Y C , Guo L J , Li L , Liu H Q , Wang Y J , Yuan H T . International Journal of Hydrogen Energy, 2014,39(2):917. http://dx.doi.org/10.1016/j.ijhydene.2013.10.137

doi: 10.1016/j.ijhydene.2013.10.137     URL    
[257]
Shao J , Xiao X Z , Fan X L , Zhang L T , Li S Q , Ge H W , Wang Q D , Chen L X . The Journal of Physical Chemistry C, 2014,118(21):11252. https://pubs.acs.org/doi/10.1021/jp503127m

doi: 10.1021/jp503127m     URL    
[258]
Zhou H , Zhang L T , Gao S C , Liu H Z , Xu L , Wang X H , Yan M . International Journal of Hydrogen Energy, 2017,42(36):23010. https://linkinghub.elsevier.com/retrieve/pii/S0360319917326241

doi: 10.1016/j.ijhydene.2017.06.193     URL    
[259]
Sun W W , Li S F , Mao J F , Guo Z P , Liu H K , Dou S X , Yu X B . Dalton Transactions, 2011,40(21):5673. http://dx.doi.org/10.1039/c0dt01727b

doi: 10.1039/c0dt01727b     URL    
[260]
Guo L J , Jiao L F , Li L , Wang Q H , Liu G , Du H M , Wu Q , Du J , Yang J Q , Yan C , Wang Y J , Yuan H T . International Journal of Hydrogen Energy, 2013,38(1):162. http://dx.doi.org/10.1016/j.ijhydene.2012.10.038

doi: 10.1016/j.ijhydene.2012.10.038     URL    
[261]
Xu X H , Zang L , Zhao Y R , Zhao Y , Wang Y J , Jiao L F . Journal of Power Sources, 2017,359:134. https://linkinghub.elsevier.com/retrieve/pii/S0378775317306870

doi: 10.1016/j.jpowsour.2017.05.047     URL    
[262]
Gosalawitutke R , Nielsen T K , Saldan I , Laipple D , Cerenius Y , Jensen T R , Klassen T , Dornheim M . The Journal of Physical Chemistry C, 2011,115(21):10903. https://pubs.acs.org/doi/10.1021/jp2021903

doi: 10.1021/jp2021903     URL    
[263]
Wang K K , Kang X D , Zhong Y J , Hu C H , Ren J W , Wang P . The Journal of Physical Chemistry C, 2014,118(46):26447. https://pubs.acs.org/doi/10.1021/jp505535h

doi: 10.1021/jp505535h     URL    
[264]
Utke R , Thiangviriya S , Javadian P , Jensen T R , Milanese C , Klassen T , Dornheim M . Materials Chemistry and Physics, 2016,169:136. https://linkinghub.elsevier.com/retrieve/pii/S0254058415304673

doi: 10.1016/j.matchemphys.2015.11.040     URL    
[265]
Plerdsranoy P , Utke R . Journal of Physics and Chemistry of Solids, 2016,90:80. https://linkinghub.elsevier.com/retrieve/pii/S0022369715301037

doi: 10.1016/j.jpcs.2015.11.016     URL    
[266]
Karger Z Z , Witter R , Bardaji E G , Wang D , Cossement D , Fichtner M . Journal of Materials Chemistry A, 2013,1(10):3379. http://dx.doi.org/10.1039/c2ta00542e

doi: 10.1039/c2ta00542e     URL    
[267]
Javadian P , Sheppard D A , Buckley C E , Jensen T R . Nano Energy, 2015,11:96. https://linkinghub.elsevier.com/retrieve/pii/S221128551420019X

doi: 10.1016/j.nanoen.2014.09.035     URL    
[268]
de Jongh P E , Allendorf M , Vajo J J , Zlotea C . M R S Bulletin, 2013,38(6):488.
[269]
Lee H S , Hwang S J , Kim H K , Lee Y S , Park J , Yu J S , Cho Y W . The Journal of Physical Chemistry Letters, 2012,3(20):2922. https://pubs.acs.org/doi/10.1021/jz301199y

doi: 10.1021/jz301199y     URL    
[270]
Lee H S , Hwang S J , To M , Lee Y S , Cho Y W . The Journal of Physical Chemistry C, 2015,119(17):9025. https://pubs.acs.org/doi/10.1021/acs.jpcc.5b00111

doi: 10.1021/acs.jpcc.5b00111     URL    
[271]
Zhai B , Xiao X Z , Lin W P , Huang X , Fan X L , Li S Q , Ge H W , Wang Q D , Chen L X . International Journal of Hydrogen Energy, 2016,41(39):17462. https://linkinghub.elsevier.com/retrieve/pii/S0360319916318857

doi: 10.1016/j.ijhydene.2016.06.170     URL    
[272]
Javadian P , Sheppard D A , Buckley C E , Jensen T R . International Journal of Hydrogen Energy, 2015,40(43):14916. https://linkinghub.elsevier.com/retrieve/pii/S0360319915301221

doi: 10.1016/j.ijhydene.2015.08.075     URL    
[273]
Roedern E , Hansen B R S , Ley M B , Jensen T R . The Journal of Physical Chemistry C, 2015,119(46):25818. https://pubs.acs.org/doi/10.1021/acs.jpcc.5b09228

doi: 10.1021/acs.jpcc.5b09228     URL    
[274]
Xia G L , Li D , Chen X W , Tan Y B , Tang Z W , Guo Z P , Liu H K , Liu Z W , Yu X B . Advanced Materials, 2013,25(43):6238. http://doi.wiley.com/10.1002/adma.201301927

doi: 10.1002/adma.201301927     URL    
[275]
Gu J , Gao M X , Pan H G , Liu Y F , Li B , Yang Y J , Liang C , Fu H L , Guo Z X . Energy & Environmental Science, 2013,6(3):847.
[1] 戚琦, 徐佩珠, 田志东, 孙伟, 刘杨杰, 胡翔. 钠离子混合电容器电极材料的研究进展[J]. 化学进展, 2022, 34(9): 2051-2062.
[2] 彭诚, 吴乐云, 徐志建, 朱维良. 副本交换分子动力学[J]. 化学进展, 2022, 34(2): 384-396.
[3] 丁朝, 杨维结, 霍开富, Leon Shaw. LiBH4储氢热力学和动力学调控[J]. 化学进展, 2021, 33(9): 1586-1597.
[4] 张维佳, 邵学广, 蔡文生. 抗冻蛋白抗冻机制的分子模拟研究[J]. 化学进展, 2021, 33(10): 1797-1811.
[5] 潘志君, 庄巍, 王鸿飞. 凝聚态化学研究中的动力学振动光谱理论与技术[J]. 化学进展, 2020, 32(8): 1203-1218.
[6] 徐昌藩, 房鑫, 湛菁, 陈佳希, 梁风. 金属-二氧化碳电池的发展:机理及关键材料[J]. 化学进展, 2020, 32(6): 836-850.
[7] 姚淇露, 杜红霞, 卢章辉. 氨硼烷催化水解制氢[J]. 化学进展, 2020, 32(12): 1930-1951.
[8] 耿奥博, 钟强, 梅长彤, 王林洁, 徐立杰, 甘露. 湿法改性石墨烯在制备橡胶复合材料中的应用[J]. 化学进展, 2019, 31(5): 738-751.
[9] 李志勇, 冯莹, 王慧勇, 袁晓晴, 赵玉灵, 王键吉. 光响应离子液体的结构与性能调控[J]. 化学进展, 2019, 31(11): 1550-1559.
[10] 陈淏川, 付浩浩, 邵学广, 蔡文生. 重要性采样方法与自由能计算[J]. 化学进展, 2018, 30(7): 921-931.
[11] 张世亮, 姚淇露, 卢章辉*. 肼硼烷的合成及产氢[J]. 化学进展, 2017, 29(4): 426-434.
[12] 王建东, 许家喜. 含邻手性碳原子双键亲电加成反应的立体选择性模型[J]. 化学进展, 2016, 28(6): 784-800.
[13] 李超, 范美强, 陈海潮, 陈达, 田光磊, 舒康颖. Li-Mg-N-H体系储氢材料的热力学和动力学调控[J]. 化学进展, 2016, 28(12): 1788-1797.
[14] 刘新, 吴川, 吴锋, 白莹. 轻金属配位氢化物储氢体系[J]. 化学进展, 2015, 27(9): 1167-1181.
[15] 王霄, 许吉英, 陈义. 生物分子相互作用动力学的表面等离子体共振研究方法[J]. 化学进展, 2015, 27(5): 550-558.
阅读次数
全文


摘要

金属硼氢化物基固态储氢体系