English
新闻公告
More
化学进展 2021, Vol. 33 Issue (3): 462-470 DOI: 10.7536/PC200567 前一篇   后一篇

• 综述 •

全钒液流电池离子导电膜

王斐然1, 蒋峰景1,*()   

  1. 1 上海交通大学机械与动力工程学院燃料电池研究所 上海 200240
  • 收稿日期:2020-07-06 修回日期:2020-08-04 出版日期:2021-03-20 发布日期:2020-12-28
  • 通讯作者: 蒋峰景
  • 作者简介:
    * Corresponding author e-mail:
  • 基金资助:
    海南省重点研发计划项目(ZDYF2019004)

Ion-Conducting Membrane for Vanadium Redox Flow Batteries

Feiran Wang1, Fengjing Jiang1,*()   

  1. 1 Institute of Fuel Cell, School of Mechanical Engineering, Shanghai Jiao Tong University,Shanghai 200240, China
  • Received:2020-07-06 Revised:2020-08-04 Online:2021-03-20 Published:2020-12-28
  • Contact: Fengjing Jiang
  • Supported by:
    the Key Research and Develop Project of Hainan Province(ZDYF2019004)

随着可再生能源技术的不断发展,全钒液流电池作为具有较大发展前景的大规模储能装置,受到了国内外的广泛关注。离子导电膜作为全钒液流电池重要的组成部件之一,对于电池的性能、使用寿命和成本有着关键性的影响。根据国内外的研究报道,本综述详细介绍了全钒液流电池离子导电膜的科研与应用进展以及所面临的技术难题,为高性能、低成本、长寿命的离子导电膜的开发,促进全钒液流电池商业化利用提供了参考依据并对未来的研究方向进行了展望。

With the continuous development of renewable energy technology, vanadium redox flow battery, as a large-scale energy storage device with great development prospects, has widely drawn attention of domestic and foreign scholars. Ion-conducting membrane is one of the important components of vanadium redox flow battery, which has a key influence on the performance, life time and cost of the battery. Based on the research work reported domestically and abroad, this review reports in detail the research and application progress as well as the technical problems of ion-conducting membrane for vanadium redox flow battery. In addition, some new developments of ion-conducting membrane for vanadium redox flow battery are introduced.

Contents

1 Introduction

2 Performance requirements of ion?conducting membrane

3 Perfluorosulfonic acid ion exchange membrane

3.1 Modification of inorganic particles

3.2 Polymer blending

3.3 Porous matrix filling

4 Partial fluorination ion exchange membrane

5 Non?fluoride ion exchange membrane

6 Porous ion?conducting membrane

7 Conclusion and prospect

()
图1 全钒液流电池结构示意图
Fig.1 Diagram of structure of vanadium redox flow battery
图2 非对称多孔SPES膜制备流程[43]
Fig.2 Illustration of the formation process of porous SPES membrane[43]
图3 SPES/S-ZrO2复合膜制备方法[58]
Fig.3 Scheme of preparation of SPES/S-ZrO2 composite membranes[58]
图4 凝胶固定法制备PVDF离子导电膜[34]
Fig.4 Diagram of the preparation process of PVDF ion-conducting membranes[34]
表1 不同离子导电膜电池性能比较
Table 1 Battery performance of different ion-conducting membranes
[1]
Ding C , Zhang H M , Li X F , Liu T , Xing F. J. Phys. Chem. Lett., 2013, 4(8): 1281.
[2]
Ponce de LeÓn C, Frías-Ferrer A , González-García J , Szánto D A , Walsh F C. J. Power Sources, 2006, 160(1): 716.
[3]
Wang C X , Yang Z , Wang Y R , Zhao P Y , Yan W , Zhu G Y , Ma L B , Yu B , Wang L , Li G G , Liu J , Jin Z. ACS Energy Lett., 2018, 3(10): 2404.
[4]
Yan W , Wang C X , Tian J Q , Zhu G Y , Ma L B , Wang Y R , Chen R P , Hu Y , Wang L , Chen T , Ma J , Jin Z. All-polymer particulate slurry batteries. Nat. Commun., 2019, 10(1): 1.
[5]
Wang C X , Li X , Yu B , Wang Y R , Yang Z , Wang H Z , Lin H N , Ma J , Li G G , Jin Z. ACS Energy Lett., 2020, 5(2): 411.
[6]
Kear G , Shah A A , Walsh F C. Int. J. Energy Res., 2012, 36(11): 1105.
[7]
Li X F , Zhang H M , Mai Z S , Zhang H Z , Vankelecom I. Energy Environ. Sci., 2011, 4(4): 1147.
[8]
Liao W N , Jiang F J , Zhang Y , Zhou X J , He Z Q. Renewable energy, 2020, 152: 1310.
[9]
Li Y , Xu T W. Journal of Chemical Industry and Engineering, 2015, 9: 37.
( 李彦,徐铜文. 化工学报, 2015, 9: 37.).
[10]
Wang B G. Membrane Science and Technology, 2020, 40(1): 178.
( 王保国 膜科学与技术, 2020, 40(1): 178.).
[11]
Mauritz K A , Moore R B. Chem. Rev., 2004, 104(10): 4535.
[12]
Kusoglu A , Weber A Z. Chem. Rev., 2017, 117(3): 987.
[13]
Shi Y , Eze C K , Xiong B Y , He W D , Zhang H , Lim T M , Ukil A , Zhao J Y. Appl. Energy, 2019, 238: 202.
[14]
Jiang B , Wu L T , Yu L H , Qiu X P , Xi J Y. J. Membr. Sci., 2016, 510: 18.
[15]
Jiang F J , Zhang Y , Tong Y J , Yu Q C , Hu M R. Polym. Test., 2017, 59: 423.
[16]
Xi J Y , Wu Z H , Qiu X P , Chen L Q. J. Power Sources, 2007, 166(2): 531.
[17]
Teng X G , Zhao Y T , Xi J Y , Wu Z H , Qiu X P , Chen L Q. J. Power Source, 2009, 189: 1240.
[18]
Teng X G , Zhao Y T , Xi J Y , Wu Z H , Qiu X P , Chen L Q. . J. Power Sources, 2009, 341: 149.
[19]
Sang S B , Wu Q M , Huang K L. J. Membr. Sci., 2007, 3051/2: 118.
[20]
Shul Y G , Chu Y H. Sci. Adv. Mater., 2014, 6(7): 1445.
[21]
Hossain S I , Aziz M A , Shanmugam S. ACS Sustainable Chem. Eng., 2020, 8(4): 1998.
[22]
grosse Austing J , Nunes Kirchner C , Komsiyska L , Wittstock G. J. Membr. Sci., 2016, 510: 259.
[23]
Ma J , Wang S J , Peng J , Yuan J , Yu C H , Li J Q , Ju X C , Zhai M L. Eur. Polym. J., 2013, 49(7): 1832.
[24]
Mai Z S , Zhang H M , Li X F , Xiao S H , Zhang H Z. J. Power Sources, 2011, 196(13): 5737.
[25]
Li L Y , Kim S , Wang W , Vijayakumar M , Nie Z M , Chen B W , Zhang J L , Xia G G , Hu J Z , Graff G , Liu J , Yang Z G. Adv. Energy Mater., 2011, 1(3): 394.
[26]
Schwenzer B , Zhang J L , Kim S , Li L Y , Liu J , Yang Z G. ChemSusChem, 2011, 4(10): 1388.
[27]
Xie C X , Liu Y , Lu W J , Zhang H M , Li X F. Energy Environ. Sci., 2019, 12(6): 1834.
[28]
Darling R M , Gallagher K G , Kowalski J A , Ha S , Brushett F R. Energy Environ. Sci., 2014, 7(11): 3459.
[29]
Luo X L , Lu Z Z , Xi J Y , Wu Z H , Zhu W T , Chen L Q , Qiu X P. J. Phys. Chem. B, 2005, 109(43): 20310.
[30]
Qiu J Y , Zhai M L , Chen J H , Wang Y , Peng J , Xu L , Li J Q , Wei G S. J. Membr. Sci., 2009, 3421/2: 215.
[31]
Ling L , Xiao M , Han D M , Ren S , Wang S J , Meng Y Z. J. Membr. Sci., 2019, 585: 230.
[32]
Lai Y M , Wan L , Wang B G. Membranes, 2019, 9(7): 89.
[33]
Lee W , Jung M , Serhiichuk D , Noh C , Gupta G , Harms C , Kwon Y , Henkensmeier D. J. Membr. Sci., 2019, 591: 117333.
[34]
Xue R , Jiang F J , Wang F R , Zhou X J. J. Power Sources, 2020, 449: 227475.
[35]
Summers G J , Kasiama M G , Summers C A. Polym. Int., 2016, 65(7): 798.
[36]
Sun C Y , Zhang H , Luo X D , Chen N. Ionics, 2019, 25(9): 4219.
[37]
Li J C , Yuan X D , Liu S Q , He Z , Zhou Z , Li A K. ACS Appl. Mater. Interfaces, 2017, 9(38): 32643.
[38]
Ding L M , Song X P , Wang L H , Zhao Z P. J. Membr. Sci., 2019, 578: 126.
[39]
Liu J M , Yu L W , Cai X K , Khan U , Cai Z Y , Xi J Y , Liu B L , Kang F Y. ACS Nano, 2019: acsnano. 8b08680.
[40]
Ye J Y , Cheng Y H , Sun L D , Ding M , Wu C , Yuan D , Zhao X L , Xiang C J , Jia C K. J. Membr. Sci., 2019, 572: 110.
[41]
Xia Y F , Liu B , Wang Y H. J. Power Sources, 2019, 433: 126680.
[42]
Song X P , Ding L M , Wang L H , He M , Han X T. Electrochimica Acta, 2019, 295: 1034.
[43]
Zhou X J , Xue R , Zhong Y G , Zhang Y , Jiang F J. J. Membr. Sci., 2020, 595: 117614.
[44]
Hu M , Ding L , Shehzad M A , Ge Q Q , Liu Y H , Yang Z J , Wu L , Xu T W. J. Membr. Sci., 2019, 585: 150.
[45]
Leung P K , Xu Q , Zhao T S , Zeng L , Zhang C. Electrochimica Acta, 2013, 105: 584.
[46]
Ren J , Dong Y C , Dai J C , Hu H L , Zhu Y M , Teng X G. J. Membr. Sci., 2017, 544: 186.
[47]
Jung M S J , Parrondo J , Arges C G , Ramani V. J. Mater. Chem. A, 2013, 1(35): 10458.
[48]
Chen Y , Liu Z C , Lin M J , Lin Q L , Tong B H , Chen D Y. Sci. China Chem., 2019, 62(4): 479.
[49]
Si J J , Lv Y , Lu S F , Xiang Y. J. Power Sources, 2019, 428: 88.
[50]
Ma Y J , Li L , Ma L L , Qaisrani N A , Gong S T , Li P Y , Zhang F X , He G H. J. Membr. Sci., 2019, 586: 98.
[51]
Zhang H Q , Yan X M , Gao L , Hu L , Ruan X H , Zheng W J , He G H. ACS Appl. Mater. Interfaces, 2019, 11(5): 5003.
[52]
Oldenburg F J , Schmidt T J , Gubler L. J. Power Sources, 2017, 368: 68.
[53]
Chen D J , Chen X L , Ding L F , Li X F. J. Membr. Sci., 2018, 553: 25.
[54]
Wang L , Yu L H , Mu D , Yu L W , Wang L , Xi J Y. J. Membr. Sci., 2018, 552: 167.
[55]
Kim S , Tighe T B , Schwenzer B , Yan J L , Zhang J L , Liu J , Yang Z G , Hickner M A. J. Appl. Electrochem., 2011, 41(10): 1201.
[56]
Xi J Y , Jiang B , Yu L H , Liu L. J. Membr. Sci., 2017, 522: 45.
[57]
Yuan Z Z , Li X F , Hu J B , Xu W X , Cao J Y , Zhang H M. Phys. Chem. Chem. Phys., 2014, 16(37): 19841.
[58]
Zhang Y , Zhou X J , Xue R , Yu Q C , Jiang F J , Zhong Y G. Int. J. Hydrog. Energy, 2019, 44(12): 5997.
[59]
Liu S , Sang X X , Wang L H , Zhang J L , Song J L , Han B X. Electrochimica Acta, 2017, 257: 243.
[60]
Zhang Y , Zhong Y G , Bian W J , Liao W N , Zhou X J , Jiang F J. Int. J. Hydrog. Energy, 2020, 45(16): 9803.
[61]
Luo T , David O , Gendel Y , Wessling M. J. Power Sources, 2016, 312: 45.
[62]
Shi M L , Liu L , Tong Y J , Huang L K , Li W X , Xing W H. J. Appl. Polym. Sci., 2019, 136(28): 47752.
[63]
Zhang H Z , Zhang H M , Li X F , Mai Z S , Zhang J L. Energy Environ. Sci., 2011, 4(5): 1676.
[64]
Cao J Y , Zhang H M , Xu W X , Li X F. J. Power Sources, 2014, 249: 84.
[65]
Wei W P , Zhang H M , Li X F , Zhang H Z , Li Y , Vankelecom I. Phys. Chem. Chem. Phys., 2013, 15(6): 1766.
[66]
Qiao L , Zhang H M , Lu W J , Xiao C H , Fu Q , Li X F , Vankelecom I F J. Nano Energy, 2018, 54: 73.
[67]
Lu W J , Yuan Z Z , Zhao Y Y , Li X F , Zhang H M , Vankelecom I F J. Energy Environ. Sci., 2016, 9(7): 2319.
[68]
Zhang F X , Zhang H M , Qu C. ChemSusChem, 2013, 6(12): 2290.
[69]
Lu W J , Yuan Z Z , Li M R , Li X F , Zhang H M , Vankelecom I. Adv. Funct. Mater., 2017, 27(4): 1604587.
[70]
Zhao Y Y , Zhang H M , Xiao C H , Qiao L , Fu Q , Li X F. Nano Energy, 2018, 48: 353.
[71]
Dai Q , Lu W J , Zhao Y Y , Zhang H M , Zhu X X , Li X F. J. Membr. Sci., 2020, 595: 117569.
[72]
Lu W J , Shi D Q , Zhang H M , Li X F. Energy Storage Mater., 2019, 17: 325.
[73]
Chen D J , Li D D , Li X F. J. Power Sources, 2017, 353: 11.
[74]
Li B Y , Wang B G , Liu Z H , Qing G. J. Membr. Sci., 2016, 517: 111.
[1] 陈青柏, 刘雨, 赵津礼, 李鹏飞, 王建友. 基于新型离子交换膜过程的含盐废水零排放技术[J]. 化学进展, 2019, 31(12): 1669-1680.
[2] 汪南方, 刘素琴*. 全钒液流电池隔膜的制备与性能[J]. 化学进展, 2013, 25(01): 60-68.
[3] 吴翠明 肖新乐 崔鹏 徐铜文. 杂化离子膜的制备和应用*[J]. 化学进展, 2010, 22(10): 2003-2013.
[4] 孙航 吴立新. 水滴模板法构筑蜂窝状有序多孔膜*[J]. 化学进展, 2010, 22(09): 1784-1798.
[5] 陈国华,赵峰鸣. 阳极氧化法制备TiO2多孔薄膜*[J]. 化学进展, 2009, 21(01): 121-127.
[6] 张亚萍 徐铜文 . 荷电膜的膜电位研究进展[J]. 化学进展, 2006, 18(12): 1592-1598.
阅读次数
全文


摘要

全钒液流电池离子导电膜