English
新闻公告
More
化学进展 2011, Vol. 23 Issue (12): 2442-2456 前一篇   后一篇

• 综述与评论 •

离子液体微乳液体系的应用研究

孟雅莉1,2, 李臻1*, 陈静1, 夏春谷1   

  1. 1. 中国科学院兰州化学物理研究所 羰基合成与选择氧化国家重点实验室 兰州 730000;
    2. 中国科学院研究生院 北京 100049
  • 收稿日期:2011-04-01 修回日期:2011-07-01 出版日期:2011-12-24 发布日期:2011-09-29
  • 作者简介:e-mail:zhenli@licp.cas.cn
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No.2011CB201404)和“十二五”国家科技支撑计划重点项目(No.2011BAE17B00)资助

Application Studies of Ionic Liquid Based Microemulsions

Meng Yali1,2, Li Zhen1*, Chen Jing1, Xia Chungu1   

  1. 1. State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
    2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2011-04-01 Revised:2011-07-01 Online:2011-12-24 Published:2011-09-29
室温离子液体具有诸多优异的物理化学性质及功能,是一类备受关注的新型介质和材料,应用于诸多领域。特别是近年来,由离子液体参与形成的微乳液因其在生物、医药、催化以及材料制备等领域具有潜在的应用前景而备受关注。本文综述了近年来咪唑类离子液体作为极性、非极性和表面活性剂组分,分别取代微乳液体系中的水相、油相和表面活性剂相,形成的一系列新型的微乳液体系的研究进展,归纳了水、有机溶剂、高聚物、助表面活性剂、温度等因素对离子液体微乳液性质的影响。重点介绍了离子液体微乳液的热点应用,包括以离子液体微乳液液滴为模板合成纳米材料,离子液体微乳液作为酶反应的介质及其在有机反应等方面的研究进展。
Room temperature ionic liquids (RTILs) are being increasingly studied as environmentally benign media or catalysts for chemical reactions and new-style functional materials with promising applications in many fields, due to their unique and attractive physicochemical properties including negligible vapor pressure, nonflammability, high chemical/thermal stability, low toxicity and favorable conductivity. In recent years, great attention has been paid to ionic liquid based microemulsions due to their potential application prospects in biology, pharmaceutical, catalysis and material preparation. The recent studies in ionic liquid based microemulsions wherein ionic liquid is substituted for the oil component, for the polar or water component and for the surfactant component are reviewed in this paper. A series of influencing factors in the properties of ionic liquid based microemulsions are summarized, such as water, organic solvent, polymer, cosurfactant and temperature. The hot applications of ionic liquid based microemulsions in synthesis of nano-materials, biocatalysis, and organic reactions are also summarized. Foe enzyme in IL microemulsions, the improvement in activity is attributed to the safe environment created by IL-based reaction systems, in which enzyme molecules are entraped into aqueous microdroplets formed in W/IL microemulsions. The IL/O microemulsion systems are widely used as a medium to prepare porous or hollow nano materials. Contents 1 Introduction 2 Ionic liquid/oil/surfactant microemulsion system 2.1 Phase behavior and microstructure 2.2 Applications 3 Ionic liquid/water/surfactant microemulsion system 3.1 Phase behavior and microstructure 3.2 Applications 4 Other types of ionic liquid microemulsions 5 Conclusions and outlook

中图分类号: 

()
[1] Welton T. Chem. Rev., 1999, 99: 2071-2083
[2] Earle M J, Seddon K R. Pure Appl. Chem., 2000, 72: 1391-1398
[3] Anderson J L, Ding J, Welton T, Armstrong D W. J. Am. Chem. Soc., 2002, 124: 14247-14254
[4] Kosmulski M, Gustafsson J, Rosenholm J B. Thermochim. Acta, 2004, 412: 47-53
[5] Visser A E, Swatloski R P, Griffin S T, Hartman D H, Rogers R D. Sep. Sci. Technol., 2001, 36: 785-804
[6] Anderson J L, Armstrong D W. Anal. Chem., 2005, 77: 6453-6462
[7] Zhao H, Xia S Q, Ma P S. J. Chem. Technol. Biotechnol., 2005, 80: 1089-1096
[8] Sheldon R. Chem. Commun., 2001, 2399-2407
[9] Wilkes J S. J. Mol. Catal. A, 2004, 214: 11-17
[10] Harada M, Kimura Y, Saijo K, Ogawa T, Isoda S. J. Colloid Interface Sci., 2009, 339: 373-381
[11] Olivier-Bourbigou H, Magna L, Morvan D. Appl. Catal. A: Gen., 2010, 373: 1-56
[12] Hapiot P, Lagrost C. Chem. Rev., 2008, 108: 2238-2264
[13] Hoar J P, Schulman J H. Nature, 1943, 152: 102-103
[14] Anderson J L, Pino V, Hagbeerg E C, Sheares V V, Armstrong D W. Chem. Commun., 2003, 2444-2445
[15] 李干佐(Li G Z), 郭荣(Guo R). 微乳液理论及其应用(Theory and Application of Microemulsion). 北京: 石油工业出版社 (Beijing: Oil Industry Press), 1995. 138-163
[16] 崔正刚(Cui Z G), 殷福珊(Yin F S). 微乳化技术及应用(Technology and Application of Microemulsion). 北京: 中国轻工业出版社 (Beijing: China Light Industry Press), 1999. 292-435
[17] Gao H X, Li J C, Han B X, Chen W N, Zhang J L, Zhang R, Yan D D. PhysChemPhys, 2004, 6: 2914-2916
[18] Gao Y A, Zhang J, Xu H Y, Zhao X Y, Zheng L Q, Li X W, Yu L. ChemPhyChem, 2006, 7(7): 1554-1561
[19] Rabe C, Koetz J. Colloids Surf. A, 2010, 354: 261-267
[20] Gao Y N, Hilfert L, Voigt A, Sundmacher K. J. Phys. Chem. B, 2008, 112: 3711-3719
[21] Gao Y A, Li N, Zheng L Q, Bai X T, Yu L, Zhao X Y, Zhang J, Zhao M W, Li Z. J. Phys. Chem. B, 2007, 111: 2506-2513
[22] Gao Y A, Li N, Zhang S H, Zheng L Q, Li X W, Dong B, Yu L. J. Phys. Chem. B, 2009, 113: 1389-1395
[23] Gao Y A, Voigt A, Hilfert L, Sundmachera K. Colloids Surf. A, 2008, 329: 146-152
[24] Li N, Zhang S H, Li X W, Yu L, Zheng L Q. Colloid Polym. Sci., 2009, 287: 103-108
[25] Cheng S Q, Han F, Wang Y R, Yan J F. Colloids Surf. A, 2008, 317: 457-461
[26] Gao Y A, Li N, Hilfert L, Zhang S H, Zheng L Q, Yu L. Langmuir, 2009, 25: 1360 -1365
[27] Li N, Gao Y A, Zheng L Q, Zhang J, Yu L, Li X W. Langmuir, 2007, 23: 1091-1097
[28] Chakrabarty D, Seth D, Chakraborty A, Sarkar N. J. Phys. Chem. B, 2005, 109: 5753-5758
[29] Adhikari A, Sahu K, Dey S, Ghosh S, Mandal U, Bhattacharyya K. J. Phys. Chem. B, 2007, 111: 12809-12816
[30] Zhao M W, Zheng L Q, Li N, Yu L. Mater. Lett., 2008, 62: 4591-4593
[31] Zhao M W, Zheng L Q, Bai X T, Li N, Yu L. Colloids Surf. A, 2009, 346: 229-236
[32] Moniruzzaman M, Kamiya N, Goto M. Colloid Interface Sci., 2010, 352: 136-142
[33] Moniruzzaman M, Tamura M, Tahara Y, Kamiya N, Goto M. Int. J. Pharm., 2010, 400: 243-250
[34] Zech O, Bauduin P, Palatzky P, Tourauda D, Kunz W. Energy Environ. Sci., 2010, 3: 846-851
[35] Gao Y A, Han S B, Han B X, Li G Z, Shen D, Li Z H, Du J M, Hou W G, Zhang G Y. Langmuir, 2005, 21(13): 5681-5684
[36] Seth D, Chakraborty A, Setua P, Sarkar N. J. Chem. Phys., 2007, 126: art. no. 224512
[37] Seth D, Chakraborty A, Setua P, Sarkar N. Langmuir, 2006, 22: 7768-7775
[38] Gao Y A, Li N, Zheng L Q, Zhao X Y, Zhang S H, Han B X, Hou W G, Li G Z. Green Chem., 2006, 8: 43-49
[39] Wang T F, Peng C J, Liu H L, Hu Y. J. Mol. Liq., 2009, 146: 89-94
[40] Zhu D M, Schelly Z A. Langmuir, 1992, 8: 48-50
[41] Fu C P, Zhou H H, Peng W C, Chen J H, Kuang Y F. Electrochem. Commun., 2008, 10: 806-809
[42] Zhou Z, He D L, Guo Y N, Cui Z D, Wang M H, Li G X, Yang R H. Thin Solid Films, 2009, 517: 6767-6771
[43] Drury A, Chaure S, Kroll M, Nicolosi V, Chaure N, Blau W J. Chem. Mater., 2007, 19: 4252-4258
[44] Li Z H, Zhang J L, Du J M, Han B X, Wang J Q. Colloids Surf. A, 2006, 286(1/3): 117-120
[45] Fu X A, Qutubuddin S. Colloids Surf. A, 2001, 179: 65-70
[46] Li N, Dong B, Yuan W L, Gao Y A, Zheng L Q, Huang Y M, Wang S L. J. Disper. Sci. Technol., 2007, 28: 1030-1033
[47] Liu H W, Feng L B, Zhang X S, Xue Q J. J. Phys. Chem., 1995, 99: 332-334
[48] Zhang G P, Zhou H H, Hu J Q, Liu M, Kuang Y F. Green Chem., 2009, 11: 1428-1432
[49] Moniruzzaman M, Kamiya N, Nakashimaa K, Goto M. Green Chem., 2008, 10: 497-500
[50] Xue L Y, Qiu H J, Li Y, Lu L, Huang X R, Qu Y B. Colloids Surf. B, 2011, 82: 432-437
[51] Behera K, Malek N I, Pandey S. ChemPhysChem, 2009, 10: 3204-3208
[52] Zhou G P, Zhang Y, Huang X R, Shi C H, Liu W F, Li Y Z, Qu Y B, Gao P J. Colloids Surf. B, 2008, 66: 146-149
[53] Moniruzzaman M, Kamiya N, Goto M. Langmuir, 2009, 25: 977-982
[54] Pavlidis I V, Gournis D, Papadopoulos G K, Stamatis H. J. Mol. Catal. B-Enzym., 2009, 60: 50-56
[55] Shu Y, Cheng D H, Chen X W, Wang J H. Sep. Purif. Technol., 2008, 64: 154-159
[56] Pavlidis I V, Tzafestas K, Stamatis H. Biotechnol. J., 2010, 5: 805-812
[57] Delimitsou C, Zoumpanioti M, Xenakis A, Stamatis H. Biocatal. Biotransfor., 2002, 20: 319-327
[58] Cheng S Q, Zhang J L, Zhang Z F, Han B X. Chem. Commun., 2007, 2497-2499
[59] Yan F, Texter J. Chem. Commun., 2006, 2696-2698
[60] Li X W, Zhang J, Dong B, Zheng L Q, Tung C H. Colloids Surf. A, 2009, 335: 80-87
[61] Li X W, Zhang J, Zheng L Q, Chen B, Wu L Z, Lv F F, Dong B, Tung C H. Langmuir, 2009, 25: 5484-5490
[62] Safavi A, Maleki N, Farjami F. Colloids Surf. A, 2010, 355: 61-66
[63] Rojas O, Tiersch B, Frasca S, Wollenberger U, Koetz J. Colloids Surf. A, 2010, 369: 82-87
[64] Liu J H, Cheng S Q, Zhang J L, Feng X Y, Fu X G, Han B X. Angew. Chem. Int. Ed., 2007, 46: 3313-3315
[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[3] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[4] 陈一明, 李慧颖, 倪鹏, 方燕, 刘海清, 翁云翔. 含儿茶酚基团的湿态组织粘附水凝胶[J]. 化学进展, 2023, 35(4): 560-576.
[5] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[6] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[7] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[8] 赵晓竹, 李雯, 赵学瑞, 何乃普, 李超, 张学辉. MOFs在乳液中的可控生长[J]. 化学进展, 2023, 35(1): 157-167.
[9] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[10] 王克青, 薛慧敏, 秦晨晨, 崔巍. 二苯丙氨酸二肽微纳米结构的可控组装及应用[J]. 化学进展, 2022, 34(9): 1882-1895.
[11] 周丽, Abdelkrim Yasmine, 姜志国, 于中振, 曲晋. 微塑料:生物效应、分析和降解方法综述[J]. 化学进展, 2022, 34(9): 1935-1946.
[12] 李立清, 郑明豪, 江丹丹, 曹舒心, 刘昆明, 刘晋彪. 基于邻苯二胺氧化反应的生物分子比色/荧光探针[J]. 化学进展, 2022, 34(8): 1815-1830.
[13] 夏博文, 朱斌, 刘静, 谌春林, 张建. 电催化氧化制备2,5-呋喃二甲酸[J]. 化学进展, 2022, 34(8): 1661-1677.
[14] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[15] 王妍妍, 陈丽敏, 李思扬, 来鲁华. 无序蛋白质在生物分子凝聚相形成与调控中的作用[J]. 化学进展, 2022, 34(7): 1610-1618.
阅读次数
全文


摘要

离子液体微乳液体系的应用研究