English
新闻公告
More
化学进展 2011, Vol. 23 Issue (9): 1973-1984 前一篇   后一篇

• 综述与评论 •

单分散介孔氧化硅纳米颗粒的制备及其在生物材料方面的应用

唐诗洋1, 孙晓君1, 林丽2, 孙艳2*, 刘献斌1*   

  1. 1. 哈尔滨理工大学化学与环境工程学院,黑龙江省绿色化工技术重点实验室 哈尔滨 150040;
    2. 哈尔滨工业大学生命科学与工程系 哈尔滨 150001
  • 收稿日期:2010-12-01 修回日期:2011-01-01 出版日期:2011-09-24 发布日期:2011-09-02
  • 通讯作者: 孙艳, 刘献斌 E-mail:yansun@hit.edu.cn; liu_xb@dicp.ac.cn
  • 基金资助:

    国家自然科学基金项目(No. 30900336) 和教育部博士点基金项目(No. 20092302120070) 资助

Monodisperse Mesoporous Silica Nanoparticles: Synthesis and Application in Biomaterials

Tang Shiyang1, Sun Xiaojun1, Lin Li2, Sun Yan2*, Liu Xianbin1*   

  1. 1. Key Laboratory of Green Chemical Technology of Heilongjiang Province, The School of Chemistry and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040,China;
    2. Department of Life Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
  • Received:2010-12-01 Revised:2011-01-01 Online:2011-09-24 Published:2011-09-02

单分散介孔氧化硅纳米颗粒由于其自身的优点,在当前许多领域有着广泛的应用前景。本文综述了近十几年来单分散介孔氧化硅纳米颗粒的制备方法以及在生物材料方面的应用。在制备方法方面,根据其制备机理分为稀溶液法、微乳法、模板剂法以及向反应体系中加入不同的添加剂等方法,制备出分散性好、不同形态、孔径尺寸可调的介孔氧化硅纳米颗粒。在生物材料的应用方面,主要介绍了其在药物与生物活性分子的负载与控制释放、生物大分子的固载与分离、生物标记与临床诊断等方面的应用。

Monodisperse mesoporous silica nanoparticles are of promising applications in many current and emerging areas of technology because of their nature advantages. This review is devoted to the progress made in the last decade in synthesis and biomedical application of monodisperse mesoporous silica nanoparticles. We present a comprehensive overview of synthetic strategies for monodisperse mesoporous silica nanoparticles. These strategies are broadly categorized into three groups, such as dilute solution method, microemulsion method, and introduction of template/different additives to reaction system. Monodisperse mesoporous silica nanoparticles with good dispersion, different morphology and tuning pore sizes are successfully synthesized by means of the above-mentioned methods. Applications of monodisperse mesoporous silica nanoparticles in drug and large biomolecule delivery and controlled release, separation of the large bimolecular, biomarker and biomedical diagnosis are mostly described.

Contents
1 Introduction
2 Preparation of monodisperse mesoporous silica nanoparticles
2.1 Dilute solution method
2.2 Microemulsion method
2.3 Introduction of template/different additives
3 Application of monodisperse mesoporous silica nanoparticles
3.1 Loading and controlled release of drugs and large bimolecular
3.2 Separation of large biomacromolecule
3.3 Biomarker and biomedical diagnosis
4 Conclusion and outlook

 

中图分类号: 

()

[1] Kresge C T, L eonowicz M E, Roth W J, Vartuli J C, Beck J S.Nature, 1992, 359: 710-712
[2] Beck J S, VartUli J C, Roth W J, Leonowicz M E, Kresge C T, Schmitt K D, Chu C T W, Olson D H, Sheppard E W, McCullen S B, Higgins J B, Schlenkert J L.J.Am.Chem.Soc., 1992, 114: 10834-10843
[3] 韩涤非(Han D F), 王安杰(Wang A J), 孔祥国(Kong X G).化学进展(Progress in Chemistry), 2002, 14(2): 98-106
[4] 古芳娜(Gu F N), 杨佳园(Yang J Y), 魏峰(Wei F), 朱建华(Zhu J H).催化学报(Chinese Journal of Catalysis), 2010, 31: 267-272
[5] 刘峰(Liu F), 金海涛(Jin H T), 任红波(Ren H B), 陈国友(Chen G Y), 孟利(Meng L).农产品加工 ·学刊(Academic Periodical of Farm Products Processing), 2008, 7: 212-218
[6] Rurack K, Martínez-Màñez R.The Supramolecular chemistry of Organic-Inorganic Hybrid Materials.John Wiley & Sons Inc., 2010
[7] Cademartiri L, Ozin G A.Concepts of Nanochemistry.Wiley-VCH, 2009
[8] Torney F, Trewyn B G, Lin V S Y, Wang K.Nat.Nanotechnol., 2007, 2: 295-300
[9] Tan W, Wang K, He X, Zhao X J, Drake T, Wang L, Bagwe R.Med.Res.Rev., 2004, 24: 621-638
[10] Barbe C, Bartlett J, Kong L, Finnie K, Lin H Q, Larkin M, Calleja S, Bush A, Calleja G.Adv.Mater., 2004, 16: 1959-1966
[11] Angelos S, Liong M, Choi E, Zink J I.Chem.Eng.J., 2008, 137: 4-13
[12] Cai Q, Luo Z S, Pang W Q, Fan Y W, Chen X H, Cui F Z.Chem.Mater., 2001, 13: 258-263
[13] Fowler C E, Khushalani D, Lebeau B, Mann S.Adv.Mater., 2001, 13(9): 649-652
[14] Nooney R I, Thirunavukkarasu D, Chen Y, Josephs R, Ostafin A E.Chem.Mater., 2002, 14: 4721-4728
[15] Rathousky J, Zukalova M, Kooyman P J, Zukal A.Colloids Surf.A, 2004, 241: 81-86
[16] Nalwa H S.Encyclopedia of Nanoscience and Nanotechnology American Scientific Publishers, 2004
[17] Wan Y, Zhao D Y.Chem.Rev., 2007, 107: 2821-2860
[18] Yamada Y, Yano K.Micropor.Mesopor.Mater., 2006, 93: 190-198
[19] Shimura N, Ogawa M.J.Mater.Sci., 2007, 42: 5299-5306
[20] Stöber W, Fink A, Bohn E.J.Colloid.Interf.Sci., 1968, 26: 62-69
[21] He Q, Cui X., Cui F, Guo L, Shi J.Micropor.Mesopor.Mater., 2009, 117: 609-616
[22] Lu F, Wu S H, Hung Y, Mou C Y.Small, 2009, 5(12): 1408-1413
[23] Shi Y T, Cheng H Y, Geng Y, Nan H M, Chen W, Cai Q, Chen B H, Sun X D, Yao Y W, Li H D.Mater.Chem.Phys., 2010, 120: 193-198
[24] Huang X, Teng X, Chen D, Tang F, He J.Biomaterials, 2010, 31: 438-448
[25] Lee Y G, Oh C, Yoo S Y, Koo S M, Oh S G.Micropor.Mesopor.Mater., 2005, 86: 134-144
[26] Miao J, Qian J, Wang X, Zhang Y, Yang H, He P.Mater.Lett., 2009, 63: 989-990
[27] Nandiyanto A B D, Kim S G, Iskandar F, Okuyama K.Micropor.Mesopor.Mater., 2009, 120: 447-453
[28] Zhang Y, Zhi Z, Jiang T, Zhang J, Wang Z, Wang S.J.Control.Release, 2010: 1-7
[29] Lebedev O I, Tendeloo G V, Collart O, Cool P, Vansant E F.Solid State Sci., 2004, 6: 489-498
[30] Suzuki K, Ikari K, Imai H.J.Am.Chem.Soc., 2004, 126: 462-463
[31] Trewyn B G, Whitman C M, Lin V S Y.Nano Lett., 2004, 4(11): 2139-2143
[32] Möller K, Kobler J, Bein T.Adv.Funct.Mater., 2007, 17: 605-612
[33] Venkatathri N.Solid State Commun., 2007, 143: 493-497
[34] Chen H, He J.Chem.Commun., 2008, 4422-4424
[35] Wang J G, Xiao Q, Zhou H J, Sun P C, Ding D T, Chen T H.J.Colloid Interf.Sci., 2008, 323: 332-337
[36] Mukherjee I, Mylonakis A, Guo Y, Samuel S P, Li S, Wei R Y, Kojtari A, Wei Y.Micropor.Mesopor.Mater., 2009, 122: 168-174
[37] Zhang J, Liu M, Zhang A, Lin K, Song C, Guo X.Solid State Sci., 2010, 12: 267-273
[38] Skylesh S, Schünemann V, Thiel W R.Angew.Chem.Int.Ed., 2010, 49: 3428-3459
[39] Trewyn B G, Giri S, Slowing I I, Lin V S Y.Chem.Commun., 2007, 3236-3245
[40] Tsai C P, Chen C Y, Hung Y, Chang F H, Mou C Y.J.Mater.Chem., 2009, 19: 5737-5743
[41] Vallet-Regi M, Rmila A, Real R P, Pe'rez-Pariente J.Chem.Mater., 2001, 13: 308-311
[42] Munoz B, Rmila A, Pérez-Pariente J, D D' az I, Vallet-Reg M.Chem.Mater., 2003, 15: 500-503
[43] Lu J, Liong M, Zink J I, Tamano F.Small, 2007, 3(8): 1341-1346
[44] Zhao Y, Trewyn B G, Slowing I I, Lin V S Y.J.Am.Chem.Soc., 2009, 13: 8398-8400
[45] Slowing I I, Vivero-Escoto J L, Wu C W, Lin V S Y.Adv.Drug Delivery Rev., 2008, 60: 1278-1288
[46] Climent E, Martinez-Manezez R, Sancenon F, Marcos M D, Soto J, Maquieira A, Amoros P.Angew.Chem., 2010, 122: 7439-7441
[47] Torney F, Trewyn B G, Lin V S Y, Wang K.Nat.Nanotechnol., 2007, 2: 295-300
[48] Gao F, Botella P, Corma A, Blesa J, Gong L.J.Phys.Chem.B, 2009, 113: 1796-1804
[49] Chen C, Pu F, Huang Z, Liu Z, Ren J, Qu X.Nucleic Acids Res., 2011, 39(4): 1638-1644
[50] Katiyar A, Pinto N G.Small, 2006, 2(5): 644-648
[51] Fan J, Lei J, Wang L, Yu C, Zhao D.Chem.Commun., 2003: 2140-2141
[52] Chen L, Zhu G, Zhang D, Zhang D, Zhao H, Guo M, Shi W, Qiu S.J.Mater.Chem., 2009, 19: 2013-2017
[53] Zhang M, Wu Y, Feng X, He X, Chen L, Zhang Y.J.Mater.Chem., 2010, 2: 5835-5842
[54] Radu D R, Lai C Y, Wiench J W, Pruski M.J.Am.Chem.Soc., 2004, 126: 1640-1641
[55] Slowing I, Trewyn B G, Lin V S Y.J.Am.Chem.Soc., 2006, 128: 14792-14793
[56] Qian H S, Guo H C, Ho P C L, Mahendran R, Zhang Y.Small, 2009, 5(20): 2285-2290
[57] Taylor K M L, Kim J S, Rieter W J, An H, Lin W, Lin W.J.Am.Chem.Soc., 2008, 130: 2154-2155
[58] Lee J E, Lee N, Kim H, Kim J, Choi S H, Kim J H, Kim T, Song I C, Park S P, Moon W K, Hyeon T.J.Am.Chem.Soc., 2010, 132: 552-557

[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[3] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[4] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[5] 古孝雪, 于晶, 杨明英, 帅亚俊. 丝素蛋白3D打印在生物医学领域中的应用[J]. 化学进展, 2022, 34(6): 1359-1368.
[6] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[7] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[8] 孙浩, 王超鹏, 尹君, 朱剑. 用于电催化析氧反应电极的制备策略[J]. 化学进展, 2022, 34(3): 519-532.
[9] 钟琴, 周帅, 王翔美, 仲维, 丁晨迪, 傅佳骏. 介孔二氧化硅基智能递送体系的构建及其在各类疾病治疗中的应用[J]. 化学进展, 2022, 34(3): 696-716.
[10] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[11] 张丹丹, 吴琪, 曲广波, 史建波, 江桂斌. 单细胞水生生物金属纳米颗粒的定量分析[J]. 化学进展, 2022, 34(11): 2331-2339.
[12] 曹祥康, 孙晓光, 蔡光义, 董泽华. 耐久型超疏水表面:理论模型、制备策略和评价方法[J]. 化学进展, 2021, 33(9): 1525-1537.
[13] 张震, 赵爽, 陈国兵, 李昆锋, 费志方, 杨自春. 碳化硅块状气凝胶的制备及应用[J]. 化学进展, 2021, 33(9): 1511-1524.
[14] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[15] 陈立忠, 龚巧彬, 陈哲. 超薄二维MOF纳米材料的制备和应用[J]. 化学进展, 2021, 33(8): 1280-1292.