English
新闻公告
More
化学进展 2011, Vol. 23 Issue (5): 819-828   后一篇

• Mini Accounts •

一维纳米纤维构筑的导电聚合物三维结构及其可控的浸润性

朱英1, 刘明杰2, 万梅香2, 江雷1,2   

  1. 1. 北京航空航天大学 化学与环境学院 北京 100191;
    2. 中国科学院化学研究所 北京分子科学国家实验室 北京 100190
  • 收稿日期:2011-02-12 出版日期:2011-05-24 发布日期:2011-05-04

3D-Micro/Nanostructures of Conducting Polymers Assembled from 1D-Nanostructures and Their Controlling Wettability

Zhu Ying1, Liu Mingjie2, Wan Meixiang2, Jiang Lei1,2   

  1. 1. School of Chemistry and Enviroment, Beihang University, Beijing 100191, China;
    2. Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2011-02-12 Online:2011-05-24 Published:2011-05-04

微/纳米结构的导电聚合物由于具有高导电性、易合成以及优异的环境稳定性从而在许多先进的研究领域备受关注,并有望在分子导线、化学和生物传感器、发光器件等领域获得广泛应用。 特别是,复杂的三维自组装结构在获得高性能和功能化的材料方面提供了巨大的潜在应用价值。本文主要介绍了我们利用胶束的软模板和自组装驱动力的协同效应,实现由一维纳米结构组装的三维微米结构导电聚合物方面的研究进展。该制备技巧在于低表面自由能的含氟有机酸具有软模板、掺杂剂、自组装驱动力,以及诱导超疏水性的多重作用实现导电聚合物三维结构的组装和多功能化。介绍了利用环境湿度调整分子的自组装驱动力,实现导电聚合物由一维纳米结构向三维微米结构的组装。此外,还介绍了利用导电聚合物可逆的化学掺杂/脱掺杂机制,实现导电聚合物表面浸润性的可逆转化。最后介绍了在液/液/固三相体系中,通过外加电场刺激,可实现油滴在导电聚合物表面的浸润性和黏附力的控制。

Micro/nanostructured conducting polymers have received intense interest because of their high conductivity, ease of preparation, good environmental stability, and a large variety of applications in molecular wires, chemical sensors, biosensor, light-emmiting and electronic devices. Three dimensional (3D) conducting polymer microstructures assembled from one dimensional (1D) nanofibers have been required to provide multi-functionality and high performance applications in microelectronics technology. However, the design and synthesis of such novel 3D-microstructures assembled from 1D-nanostructure remain a challenge for materials science. Recently, our researches demonstrated that the cooperation effect of the micelles served as soft-template and the molecular interactions as self-assembly driving forces provides a facile and effective approach to construct conductive and supperhydrophobic functional 3D-micro/nanostructures of conducting polymers assembled from 1D-nanofibers. The trick of this approach is using low surface energy organic acids as the dopants that serve four functions of dopant, soft-template, self-assembly driving force, and deducing superhydrophobicity. Moreover, 3D-microstructures assembled from 2D-nanosheets consisted of 1D-nanofibers of conducting polymer were successfully synthesized by adjusting self-assembled driving force using the relative humidity of enviroment. Our researches also demonstrated that surface wettability of conducting polymer micro/nanostructures could be reversively controlled by means of chemical methods. In liquid/liquid/solid triphase system, the wettability and adhesion of oil droplet on the surface of the conducing polymers can be intelligently controlled by adjusting the electrochemical potentials.

中图分类号: 

()


[1] Wan M X. Conducting Polymers with Micro or Nanometer Structure. 1st ed. Beijing: Tsinghua University Press, Springer, 2008 88-140

[2] Wan M X. Adv. Mater., 2008, 20: 2926-2932

[3] Carswell A D W, O’Rear E A, Grady B P. J. Am. Chem. Soc., 2003, 125: 14793-14800

[4] Huang L, Wang Z, Wang H, Cheng X, Mitra A, Yan Y. J. Mater. Chem., 2002, 12: 388-391

[5] Rao P S, Subrahmanya S, Sathyanarayana D N. Synth. Met., 2002, 128: 311-316

[6] Spinks G M, Mottaghitalab V, BahramiSamani M, Whitten P G, Wallace G G. Adv. Mater., 2006, 18: 637-640

[7] Li W, Wang H L. J. Am. Chem. Soc., 2004, 126: 2278-2279

[8] Zhang X, Goux W J, Manohar S K. J. Am. Chem. Soc., 2004, 126: 4502-4503

[9] Wan M X, Shen Y Q, Huang J. CN 9810991655, 1998

[10] Wan M X. Macromol. Rapid Commun., 2009, 30: 936-975

[11] Yan Y, Deng K, Yu Z, Wei Z X. Angew. Chem., 2009, 121: 2037-2040

[12] Huang K, Wan M X. Chem. Mater., 2002, 14: 3486-3492

[13] De Crevoisier G, Fabre P, Corpart J M, Leibler L. Science, 1999, 285: 1246-1249

[14] Sun T, Feng L, Gao X, Jiang L. Acc. Chem. Res., 2005, 38: 644-652

[15] Feng L, Li S, Li Y, Li H, Zhang L, Zhai J, Song Y, Liu B, Jiang L, Zhu D. Adv. Mater., 2002, 14: 1857-1860

[16] Erbil H Y, Demirel A L, Avci Y, Mert O. Science, 2003, 299: 1377-1380

[17] Feng X, Feng L, Jin M, Zhai J, Jiang L, Zhu D. J. Am. Chem. Soc., 2004, 126: 62-63

[18] Rosario R, Gust D, Hayes M, Jahnke F, Springer J, Garcia A A. Langmuir, 2002, 18: 8062-8069

[19] Fu Q, Rao G V R, Basame S B, Keller D J, Artyushkova K, Fulghum J E, López G P. J. Am. Chem. Soc., 2004, 126: 8904-8905

[20] Ionov L, Houbenov N, Sidorenko A, Stamm M, Luzinov I, Minko S. Langmuir, 2004, 20: 9916-9919

[21] Schmidt C E, Shastri V R, Vacanti J P, Langer R. Proc. Natl. Acad. Sci., 1997, 94: 8948-8953

[22] Isaksson J, Tengstedt C, Fahlman M, Robinson N, Berggren M. Adv. Mater., 2004, 16: 316-320

[23] Xu L, Chen W, Mulchandani A, Yan Y. Angew. Chem. Int. Ed., 2005, 44: 6009-6012

[24] Kossmehl G, Niemitz M. Synth. Met., 1991, 41: 1065-1071

[25] Torres W, Donini J C, Vlcek A A, Lever A B P. Langmuir, 1995, 11: 2920-2925

[26] Zhu Y, Zhang J, Zheng Y, Huang Z, Feng L, Jiang L. Adv. Funct. Mater., 2006, 16: 568-574

[27] Gracias D H, Tien J, Breen T L, Hsu C, Whitesides G M. Science, 2000, 289: 1170-1172

[28] Sun Y, Xia Y. Science, 2002, 298: 2176-2179

[29] Tzitzios V, Niarchos D, Gjoka M, Boukos N, Petridis D. J. Am. Chem. Soc., 2005, 127: 13756-13757

[30] Boal A K, Iihan F, DeRouchey J E, ThurnAlbrecht T, Russell T P, Rotello V M. Nature, 2000, 404: 746-748

[31] Ikkala O, Brinke G T. Science, 2002, 295: 2407-2409

[32] Boal A K, Ilhan F, DeRouchey J E, Albrecht T T, Russell T P, Rotello V M. Nature, 2000, 404: 746-748

[33] Zhu Y, Hu D, Wan M X, Jiang L, Wei Y. Adv. Mater., 2007, 19: 2092-2096

[34] Zhu Y, Li J M, Wan M X, Jiang L. Macromol. Rapid Commun., 2008, 29: 239-243

[35] Zhu Y, Li J, Wan M X, Jiang L. Polymer, 2008, 49: 3419-3423

[36] Chiang J C, MacDiarmid A G. Synth. Met., 1986, 13: 193-205

[37] Taylor R S, Dang L X, Garrett B C. J. Phys. Chem., 1996, 100: 11720-11725

[38] Chen B, Siepmann J I, Klein M L. J. Am. Chem. Soc., 2002, 124: 12232-12237

[39] Paul S, Chandra A. Chem. Phys. Lett., 2004, 386: 218-224

[40] Zhu Y, He H, Wan M X, Jiang L. Macromol. Rapid Commun., 2008, 29: 1705-1710

[41] Banks C V, Patterson J H. J. Am. Chem. Soc., 1951, 73: 3062-3064

[42] Broumand H, Smith J H. J. Am. Chem. Soc., 1952, 74: 1013-1016

[43] Zhu Y, Ren G, Wan M X, Jiang L. Macromol. Chem. Phys., 2009, 210: 2046-2051

[44] Zhang L, Wan M X. Adv. Funct. Mater., 2003, 13: 815-820

[45] MacDiarmid A G. Angew. Chem. Int. Ed., 2001, 40: 2581-2590

[46] Zhu Y, Feng L, Xia F, Zhai J, Wan M X, Jiang L. Macromol. Rapid Commun., 2007, 28: 1135-1141

[47] Zhu Y, Li J, He H, Wan M, Jiang L. Macromol. Rapid Commun., 2007, 28: 2230-2236

[48] Virji S, Kaner R B, Weiller B H. Chem. Mater., 2005, 17: 1256-1260

[49] Huang J, Virji S, Weiller B H, Kaner R B. Chem. Eur. J., 2004, 10: 1314-1319

[50] Liu H, Kameoka J, Czaplewski D A, Craighead H G. Nano Lett., 2004, 4: 671-675

[51] Ma X, Li G, Wang M, Cheng Y, Bai R, Chen H. Chem. Eur. J., 2006, 12: 3254-3260

[52] Liu M, Nie F Q, Wei Z, Song Y, Jiang L. Langmuir, 2009, 26: 3993-3997

[1] 赵依凡, 毛琦云, 翟晓雅, 张国英. 钼酸铋光催化剂的结构缺陷调控[J]. 化学进展, 2021, 33(8): 1331-1343.
[2] 吴磊, 刘利会, 陈淑芬. 基于碳基透明电极的柔性有机电致发光二极管[J]. 化学进展, 2021, 33(5): 802-817.
[3] 郭华, 张蕾, 董旭, 申刚义, 尹俊发. 固定化多酶级联反应器[J]. 化学进展, 2020, 32(4): 392-405.
[4] 胡传波, 厉英, 孔亚州, 丁玉石. 改性聚苯胺及其衍生物涂层的防腐性能[J]. 化学进展, 2016, 28(8): 1238-1250.
[5] 舒昕, 李兆祥, 夏江滨. 聚噻吩的合成方法[J]. 化学进展, 2015, 27(4): 385-394.
[6] 杨雷, 程涛, 曾文进, 赖文勇, 黄维. 导电聚合物薄膜的喷墨打印制备及其光电器件[J]. 化学进展, 2015, 27(11): 1615-1627.
[7] 宿丹, 第凤, 邢季, 车剑飞, 肖迎红. 导电聚合物在药物可控释放领域的应用[J]. 化学进展, 2014, 26(12): 1962-1976.
[8] 李庆川, 曹立新, 胡海峰, 王凯, 闫培生. 黄曲霉毒素电化学生物传感器[J]. 化学进展, 2014, 26(04): 657-664.
[9] 苗力孝, 王维坤, 王梦佳, 段博超, 杨裕生, 王安邦. 含单质硫正极复合材料[J]. 化学进展, 2013, 25(11): 1867-1875.
[10] 肖横洋, 第凤, 车剑飞, 肖迎红. 神经元电极的表面修饰及其功能化设计[J]. 化学进展, 2013, 25(11): 1962-1972.
[11] 任芳芳, 蒋丰兴, 周卫强, 杜玉扣*, 徐景坤*. 导电聚合物/贵金属复合材料应用于C1小分子电催化氧化[J]. 化学进展, 2012, (9): 1818-1836.
[12] 涂亮亮 贾春阳 翁小龙 邓龙江 唐武. 导电聚合物电致变色材料*[J]. 化学进展, 2010, 22(10): 2053-2059.
[13] 涂亮亮 贾春阳. 导电聚合物超级电容器电极材料*[J]. 化学进展, 2010, 22(08): 1610-1618.
[14] 董彬,徐景坤,郑利强. 离子液体应用于电合成导电聚合物* [J]. 化学进展, 2009, 21(09): 1792-1799.
[15] 安红芳,王先友,李娜,郑丽萍,陈权启. 超级电容器用炭/导电聚合物复合材料*[J]. 化学进展, 2009, 21(09): 1832-1838.