English
新闻公告
More
化学进展 2020, Vol. 32 Issue (4): 392-405 DOI: 10.7536/PC190426 前一篇   后一篇

所属专题: 酶化学

• •

固定化多酶级联反应器

郭华1, 张蕾1, 董旭1, 申刚义1,**(), 尹俊发2,**()   

  1. 1. 中央民族大学药学院 民族医药教育部重点实验室(中央民族大学) 北京 100081
    2. 中国科学院生态环境研究中心 环境化学与生态毒理学国家重点实验室 北京 100085
  • 收稿日期:2019-10-15 修回日期:2019-08-13 出版日期:2020-04-05 发布日期:2019-10-12
  • 通讯作者: 申刚义, 尹俊发
  • 作者简介:
    * 通信作者 Corresponding author e-mail: (Gangyi Shen); (Junfa Yin)
  • 基金资助:
    国家自然科学基金项目(81573834, 21375142); 中央民族大学青年学术团队引领计划(2019QNYL26); 科技部重点研发专项(2016YFA0203102)

Immobilized Multi-Enzyme Cascade Reactor

Hua Guo1, Lei Zhang1, Xu Dong1, Gangyi Shen1,**(), Junfa Yin2,**()   

  1. 1. Key Laboratory of Ethnomedicine(Minzu University of China), Ministry of Education, School of Pharmacy, Minzu University of China, Beijing 100081, China
    2. State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
  • Received:2019-10-15 Revised:2019-08-13 Online:2020-04-05 Published:2019-10-12
  • Contact: Gangyi Shen, Junfa Yin
  • Supported by:
    the National Natural Science Foundation of China(81573834, 21375142); the Fundamental Research Funds for Minzu University of China(2019QNYL26); the Ministry of Science and Technology of China(2016YFA0203102)

多酶级联反应在生命活动过程中发挥着重要作用。固定化多酶级联反应器是将不同功能的酶通过物理化学或生物手段固定于特定载体上,以之模拟生物体内多种酶协同作用方式促使底物发生降解和转化等反应的新型仿生催化技术。该技术具有固定化酶的稳定性、可重复利用以及酶级联的高效协同催化等优点,近年来在生物传感、模拟生物学以及生物转化等领域得到越来越多的关注。本文从多酶级联反应原理、反应器制备、级联反应的影响因素及应用等方面对近年来固定化多酶级联反应器的进展进行详细评述,并展望其发展前景。

Both physiological behaviors and pathological processes of living organisms are related to the synergistic co-action of various enzymes. Inspired by this, a new bionic catalytic technology, immobilized multi-enzyme cascade reactor has been proposed for accelerating the bio-reactions including synthesis, substrate degradation, transformation and recombination. By taking advantages of the good stability, reusability and remarkable high efficiency, the immobilized multi-enzyme cascade reactor has attracted more and more attention in many fields including biological sensing, simulation biology and biological transformation and so on. This review focuses on the art-of-state and progress of immobilized multi-enzyme cascade reactor in recent years. The fundamentals, preparation approaches, advantages, factors affecting the efficiency, and applications of the technology are involved. Its trends in future study are also prospected.

Contents

1 Introduction

2 Basic principles of immobilized multi-enzyme cascade reaction

3 Preparation of immobilized multi-enzyme cascade reactor

3.1 Co-immobilization

3.2 Sequential immobilization

3.3 Spatially partition immobilization

3.4 Spatially addressable immobilization

4 Factors affecting the efficiency of immobilized multi-enzyme cascade

5 Applications of immobilized multi-enzyme cascade reactor

6 Conclusion and outlook

()
图1 固定多酶级联反应器示意图
Fig. 1 Schematic illustration of immobilized multi-enzyme cascade reactor
图2 DNA水凝胶多酶级联系统[24]:(A)DNA水凝胶的制备;(B)DNA水凝包埋的双酶或三酶的制备;(C)乳糖检测的β-半乳糖苷酶/GOx/DNAzyme三酶级联反应原理
Fig. 2 Schematic illustration of multi-enzyme cascade reaction systems based on the DNA hydrogel[24]:(A) preparation of the DNA hydrogel by TdT-generated X-shaped polymers(X-DNA-An and X-DNA-Tn),(B) illustration of X-shaped polymers incorporated with DNAzyme sequences forming peroxidase-mimicking DNAzyme hydrogel, the bienzyme cascade, and the trienzyme cascade,(C) activation of the β-gal/GOx/DNAzyme cascade. Copyright 2016, ACS
图3 基于层层组装法的生物燃料电池的构造(A)和蔗糖生物转化的多酶级联反应过程(B)[29]
Fig. 3 Schematic illustration of LbL assembled bioanode in a biofuel cell(A) and activation of the INV-GDH cascade reaction for catalyzing oxidation of sucrose(B)[29]. Copyright 2016, ECS
图4 基于DNA酶解的毛细管三酶级联微反应器[30]
Fig. 4 Three-enzyme cascade bioreactor for rapid digestion of genomic DNA into single nucleosides[30]. Copyright 2018, ACS
图5 GelCSi微囊分隔式固定化三酶级联系统用于CO2的转化(A)和GelCSi微囊分隔式固定化三酶的制备过程(B)[35]
Fig. 5 Proposed conversion process of CO2 to CH3OH catalyzed by the GelCSi-based three-enzyme cascade system(A) and preparation of a three-enzyme system based on GelCSi microcapsules(B)[35]. Copyright 2014, ACS
图6 DNA折纸单元的三维结构(A)和基于DNA折纸的模块化HRP-GOx双酶级联纳米反应器的构筑(B)[45]
Fig. 6 Schematic illustration of DNA origami unit(A) and a modular DNA origami-based HRP-GOx bienzyme cascade nanoreactor(B)[45]. Copyright 2015, RSC
图7 二维界面上单分子水平GOx-CAT双酶级联反应系统[47]
Fig. 7 Schematic illustration of molecule-level enzyme cascade on 2D surface[47]. Copyright 2017, ACS
图8 反应效率和酶间距的关系[66].(A) ZS-XR/G-XDH双酶体系中不同酶间距(10, 54, 98, 298 nm)下NADH产物量随时间的变化曲线;(B) 反应16 h后, NADH的初始生成速率、产量,及木糖产量和酶间距的关系
Fig. 8 Distance-dependent effect of assembled ZS-XR/G-XDH pairs[66].(A) Time-course profiles of the amount of NADH regenerated by G-XDH when the enzymes were coassembled with interenzyme distances of 10, 54, and 98 nm, and for the free diffusion system with that of 298 nm;(B) Plots of the normalized V ini, the normalized amount of regenerated NADH, and the normalized amount of xylulose produced after 16 h against the interenzyme distances. Copyright 2016, ACS
图9 人工细胞内的βGL-GOx-HRP三酶级联反应系统(A)和细胞内细胞器间的级联反应示意图(B)[77]
Fig. 9 Biomimetic βGL-GOx-HRP triple enzymes cascade reaction of subcompartments inside aqueous microconfinements(A), and a simplified cell with a cascade reaction between compartmentalized organelles(B) [77]. Copyright 2018, ACS
图10 模拟体内药物CYP酶代谢通道级联系统示意图[82]:(A) G6PD 和 CYP1A1在PAA纳米通道内的固定过程;(B)模拟代谢区室流通系统;(C)酶级联反应原理
Fig. 10 Schematic illustration of an artificial metabolon confined inside PAA nanochannels to mimic the natural enzyme complex systems[82]:(A) the immobilization of bi-enzymes inside the PAA nanochannels,(B) flow system of the artificial metabolon,(C) the cascade enzymatic reaction cycles catalyzed by G6PD and CYP1A1. Copyright 2017, RSC
图11 RGO-Enzyme 修饰的可抑制血小板聚集的组织工程血管及酶级联反应示意图[83]
Fig. 11 Construction of RGO-enzyme-coated tissue-engineered blood vessels for suppressing platelet aggregation and multi-enzymes cascade reaction[83]. Copyright 2015, ACS
[1]
Chen K , Huang X , Kan S , Zhang R K , Arnold F H . Science, 2018,360(6384):71. https://www.sciencemag.org/lookup/doi/10.1126/science.aar4239

doi: 10.1126/science.aar4239     URL    
[2]
Nestl B M , Hammer S C , Nebel B A , Hauer B. Angew. Chem. Int. Ed., 2014,53(12):3070. http://doi.wiley.com/10.1002/anie.201302195

doi: 10.1002/anie.201302195     URL    
[3]
戈钧(Ge J) . 科学通报(Chin. Sci. Bull.), 2016,(36):3924.
[4]
申刚义(Shen G T), 于婉婷(Yu W T), 刘美蓉(Liu M R), 崔勋(Cui X) . 化学进展(Prog. Chem.), 2013,25(7):1198. 424c96e4-d991-4f35-8ad1-1f66639446ba http://www.progchem.ac.cn//CN/abstract/abstract11144.shtml

doi: 10.7536/PC121161     URL    
[5]
许可(Xu K), 吕波(Lu B), 李春(Li C) . 中国科学: 化学(Sci. Chin. Chem.), 2015,(5):429.
[6]
Küchler A , Yoshimoto M , Luginbühl S , Mavelli F , Walde P . Nat. Nanotechnol, 2016,11(5):409. https://doi.org/10.1038/nnano.2016.54

doi: 10.1038/nnano.2016.54     URL    
[7]
Kazenwadel F , Franzreb M , Rapp B E . Anal. Methods, 2015,7(10):4030. http://xlink.rsc.org/?DOI=C5AY00453E

doi: 10.1039/C5AY00453E     URL    
[8]
Patterson D P , Schwarz B , Waters R S , Gedeon T , Douglas T . ACS Chem. Biol., 2014,9(2):359. 5df4317e-5d32-4ccb-a406-18935c2d8617 http://dx.doi.org/10.1021/cb4006529

doi: 10.1021/cb4006529     URL    
[9]
Ji Q , Wang B , Tan J , Zhu L , Li L . Process Biochem., 2016,51(9):1193. http://linkinghub.elsevier.com/retrieve/pii/S1359511316301829

doi: 10.1016/j.procbio.2016.06.004     URL    
[10]
Jo S , Wurm F R , Landfester K. ACS Appl. Mater. Interfaes., 2018,10(40):34230.
[11]
Belluati A , Craciun I , Liu J , Palivan C G . Biomacromolecules, 2018,19(10):4023. https://pubs.acs.org/doi/10.1021/acs.biomac.8b01019

doi: 10.1021/acs.biomac.8b01019     URL    
[12]
Simon R C , Richter N , Busto E , Kroutil W. . ACS Catal, 2014,4(1):129. 40201a8c-fd6c-4632-9d80-bec5c2418417 http://dx.doi.org/10.1021/cs400930v

doi: 10.1021/cs400930v     URL    
[13]
Xia S , Zhao X , Frigovaz B , Zheng W , Kim J , Wang P. . Bioresour. Technol, 2015,182:368. https://linkinghub.elsevier.com/retrieve/pii/S0960852415001133

doi: 10.1016/j.biortech.2015.01.093     URL    
[14]
Yin J F , Xu T , Zhang N , Wang H. . Anal. Chem, 2016,88(15):7730. https://pubs.acs.org/doi/10.1021/acs.analchem.6b01682

doi: 10.1021/acs.analchem.6b01682     URL    
[15]
Ricca E , Brucher B , Schrittwieser J H. Adv. Synth. Catal., 2011,353(13):2239. 61c4bd1b-64f4-4d9d-a1ba-2ecccda6be57 http://dx.doi.org/10.1002/adsc.201100256

doi: 10.1002/adsc.201100256     URL    
[16]
Meller K , Pomastowski P , Grzywiński D , Szumski M , Buszewski B . J. Chromatogr. A, 2016,1440:45. https://linkinghub.elsevier.com/retrieve/pii/S0021967316302151

doi: 10.1016/j.chroma.2016.02.070     URL    
[17]
Zhao Y , Wang Y , Zhang X , Kong R , Xia L , Qu F . Talanta, 2016,155:265. https://linkinghub.elsevier.com/retrieve/pii/S0039914016302958

doi: 10.1016/j.talanta.2016.04.056     URL    
[18]
Ibarlucea B , Munoz-Berbel X , Ortiz P , Büttgenbach S , Fernández-Sánchez C , Llobera A . Sensor. Actuat. B-Chem., 2016,237:16. https://linkinghub.elsevier.com/retrieve/pii/S092540051630911X

doi: 10.1016/j.snb.2016.06.059     URL    
[19]
Lin L , Yan J , Li J . Anal. Chem., 2014,86(21):10546. https://pubs.acs.org/doi/10.1021/ac501983a

doi: 10.1021/ac501983a     URL    
[20]
Jeong C Y , Han Y D , Yoon J H , Yoon H C . J Biotechnol., 2014,175(1):7. https://linkinghub.elsevier.com/retrieve/pii/S0168165614000698

doi: 10.1016/j.jbiotec.2014.01.036     URL    
[21]
Yu X , Lian W , Zhang J , Liu H . Bioelectron., 2016,80:631. https://linkinghub.elsevier.com/retrieve/pii/S0956566316301178

doi: 10.1016/j.bios.2016.02.010     URL    
[22]
Grotzky A , Nauser T , Erdogan H , Schlüter A D , Walde P . J. Am. Chem. Soc., 2012,134(28):11392. 347a7cde-84c6-4e9d-bd05-66035648bab4 http://dx.doi.org/10.1021/ja304837f

doi: 10.1021/ja304837f     URL    
[23]
Qu R , Shen L , Qu A , Wang R , An Y , Shi L . ACS Appl. Mater. Interfaces, 2015,7(30):16694. https://pubs.acs.org/doi/10.1021/acsami.5b04398

doi: 10.1021/acsami.5b04398     URL    
[24]
Xiang B , He K , Zhu R , Liu Z , Zeng S , Huang Y , Nie Z , Yao S . ACS Appl. Mater. Interfaces, 2016,8(35):22801. https://pubs.acs.org/doi/10.1021/acsami.6b03572

doi: 10.1021/acsami.6b03572     URL    
[25]
Yang L , Du J , Ming Y , Lau M Y , Hu J , Han H , Yang O O , Sheng L , Wei W , Wang H , Li X , Shi L , Chen W , Ji C , Lu Y . Nat. Nanotech., 2013,8(3):187. https://doi.org/10.1038/nnano.2012.264

doi: 10.1038/nnano.2012.264     URL    
[26]
de Oliveira R F , de Moraes M L , Oliverira O N , Ferreira M . J. Phys. Chem. C, 2011,115(39):19136. https://pubs.acs.org/doi/10.1021/jp207610w

doi: 10.1021/jp207610w     URL    
[27]
Palazzo G , Colafemmina G , Iudice C G , Mallardi A . Sensor. Actuat. B-Chem., 2014,202:2173.
[28]
Kang J , Hussain A T , Catt M , Trenell M , Haggett B , Yu E H. Sensor. Actuat. B-Chem., 2014,190(1):535. https://linkinghub.elsevier.com/retrieve/pii/S0925400513010514

doi: 10.1016/j.snb.2013.09.011     URL    
[29]
Zhang Y Y , Arugula M A , Williams S T , Minteer S D , Simonian A L . J Electrochemical Soc., 2016,163:449.
[30]
Yin J F , Chen S K , Zhang N , Zhang N , Wang H L. ACS Appl. Mater. Interfaces, 2018,10:21883. https://pubs.acs.org/doi/10.1021/acsami.8b05399

doi: 10.1021/acsami.8b05399     URL    
[31]
Vong T H , Schoffelen S , van Dongen S F M , van Beek T A V , Han Z , van Hest J C M Chem. Sci., 2011,2(7):1278. 525c48a1-0ade-46f7-b725-4e16a283a116 http://dx.doi.org/10.1039/c1sc00146a

doi: 10.1039/c1sc00146a     URL    
[32]
Mancini R J , Paluck S J , Bat E , Maynard H D . Langmuir, 2016,32(16):4043 https://pubs.acs.org/doi/10.1021/acs.langmuir.6b00560

doi: 10.1021/acs.langmuir.6b00560     URL    
[33]
Shi J , Wu Y , Zhang S , Tian Y , Yang D , Jiang Z Y. Chem. Soc. Rev., 2018,47(12):4295. http://xlink.rsc.org/?DOI=C7CS00914C

doi: 10.1039/C7CS00914C     URL    
[34]
Zhang L , Shi J , Jiang Z Y , Jiang Y , Qiao S , Jian L I , Wang R , Meng R , Zhu Y , Zheng Y . Green Chemistry, 2011,13(2):300. http://xlink.rsc.org/?DOI=C0GC00432D

doi: 10.1039/C0GC00432D     URL    
[35]
Wang X , Zheng L , Shi J , Hong W , Jiang Z , Zhang W , Song X , Ai Q . ACS Catal., 2014,4(3):962. d6660ac5-a4d6-4418-bffb-53e9e464acfb http://dx.doi.org/10.1021/cs401096c

doi: 10.1021/cs401096c     URL    
[36]
Shi J , Wang X , Zhang W , Jiang Z Y , Liang Y , Zhu Y , Zhang C. Adv. Funct. Mater., 2013,23(11):1450. http://doi.wiley.com/10.1002/adfm.201202068

doi: 10.1002/adfm.201202068     URL    
[37]
Hosta-Rigau L , York-Duran M J , Zhang Y , Goldie K N , Städler B. ACS Appl. Mater. Interfaces, 2014,6(15):12771. https://pubs.acs.org/doi/10.1021/am502743z

doi: 10.1021/am502743z     URL    
[38]
Ji X , Su Z , Ping W , Ma G , Zhang S . ACS Catal., 2014,4(12):4548. 308261b3-3c4f-431c-a077-629fddef4230 http://dx.doi.org/10.1021/cs501383j

doi: 10.1021/cs501383j     URL    
[39]
Vriezema D M , Aragonès M C , Elemans J A A W , Cornelissen J J L M , Rowan A E , Nolte R J M. Chem.Rev., 105(4):1445.
[40]
Li S , Jiang Q , Liu S , Zhang Y , Tian Y , Song C , Wang J , Zou Y , Anderson G J , Han J Y. Nat. Biotechnol., 2018,36(3):258. http://www.nature.com/articles/nbt.4071

doi: 10.1038/nbt.4071     URL    
[41]
贾思思(Jia S S), 晁洁(Chao J), 樊春海(Fan C H), 柳华杰(Liu H L) . 化学进展(Prog. Chem.), 2013,26(5):695.
[42]
Hong F , Zhang F , Liu Y , Yan H . Chem. Rev., 2017,117(20):12584.
[43]
Chao J , Wang J , Wang F , Ouyang X , Kopperger E , Liu H , Li Q , Shi J , Wang L , Hu J , Wang L , Huang W , Simmel F C , Fan C . Nat. Mater., 2019,18(3):273. https://doi.org/10.1038/s41563-018-0205-3

doi: 10.1038/s41563-018-0205-3     URL    
[44]
Timm C , Niemeyer C M. Angew.Chem. Int. Ed., 2015,54(23):6745.
[45]
Linko V , Eerikäinen M , Kostiainen M A. Chem. Comm., 2015,51(25):5351. http://xlink.rsc.org/?DOI=C4CC08472A

doi: 10.1039/C4CC08472A     URL    
[46]
Fu Y , Zeng D , Jie C , Jin Y , Zhao Z , Liu H , Di L , Ma H , Huang Q , Gothelf K V , Fan C H .J Am. Chem. Soc., 2013,135(2):696. https://pubs.acs.org/doi/10.1021/ja3076692

doi: 10.1021/ja3076692     URL    
[47]
Sun L , Gao Y , Xu Y , Chao J , Liu H , Wang L , Li D , Fan C H .J Am. Chem. Soc., 2017,139(48):17525. https://pubs.acs.org/doi/10.1021/jacs.7b09323

doi: 10.1021/jacs.7b09323     URL    
[48]
Ge Z , Fu J , Liu M , Jiang S , Andreoni A , Zuo X , Liu Y , Yan H , Fan C H. ACS Appl. Mater. Interfaces, 2019,11(15):13881 https://pubs.acs.org/doi/10.1021/acsami.8b12374

doi: 10.1021/acsami.8b12374     URL    
[49]
Delebecque C J , Lindner A B , Silver P A , Aldaye F A . Science, 2011,333(6041):470. 3e1be21d-91ee-4c50-aec9-0493bec26873 http://dx.doi.org/10.1126/science.1203903

doi: 10.1126/science.1203903     URL    
[50]
Dueber J E , Wu G C , Malmirchegini G R , Moon T S , Petzold C J , Ullal A V , Prather K L , Keasling J D. Nat. Biotechnol., 2009,27(8):753. https://doi.org/10.1038/nbt.1557

doi: 10.1038/nbt.1557     URL    
[51]
You C , Myung S , Zhang Y H P Angew. Chem. Int. Ed., 2012,51(35):8787. http://doi.wiley.com/10.1002/anie.v51.35

doi: 10.1002/anie.v51.35     URL    
[52]
Delebecque C J , Lindner A B , Silver P , Aldaye F A . Science, 2011,333:470. 3e1be21d-91ee-4c50-aec9-0493bec26873 http://dx.doi.org/10.1126/science.1203903

doi: 10.1126/science.1203903     URL    
[53]
Dueber J E , Wu G C , Malmirchegini G R , Moon T S , Petzold C J , Ullal A V , Keasling J D. Nat. Biotechnol., 2009,27:753. https://doi.org/10.1038/nbt.1557

doi: 10.1038/nbt.1557     URL    
[54]
Fan L H , Zhang Z J , Yu X Y , Xue Y X , Tan T W. Proc. Natl. Acad. Sci. USA, 2012,109:13260. http://www.pnas.org/cgi/doi/10.1073/pnas.1209856109

doi: 10.1073/pnas.1209856109     URL    
[55]
陈少坤(Chen S K) . 中国科学院大学硕士论文(Master Dissertation of University of Chinese Academy of Sciences), 2018.
[56]
申刚义(Shen G Y). . 固定化酶微反应器—制备与应用(mmobilized enzyme Micro-reactor: Preparation And Application). 北京: 中央民族大学出版社(Beijing: Minzu University of China Press), 2014.
[57]
Kreft O , Prevot M , Möhwald H , Sukhorukov G B. Angew Chem. Int. Ed. Engl., 2010,46(29):5605. http://doi.wiley.com/10.1002/%28ISSN%291521-3773

doi: 10.1002/(ISSN)1521-3773     URL    
[58]
Begum G , Goodwin W B , de Glee B M , Sandhage K H , Kröger N . J. Mater. Chem. B., 2015,3:5232. http://xlink.rsc.org/?DOI=C5TB00333D

doi: 10.1039/C5TB00333D     URL    
[59]
Tsitkoc S , Pesenti T , Palacci H , Blanchet J , Hess H . ACS Catal., 2018,8:10721. https://pubs.acs.org/doi/10.1021/acscatal.8b02760

doi: 10.1021/acscatal.8b02760     URL    
[60]
Lin J L , Palomec L , Wheeldon I . ACS Catal., 2014,4(2):505. ff7038d0-ab2e-4a1b-86da-ab30f93ef368 http://dx.doi.org/10.1021/cs401009z

doi: 10.1021/cs401009z     URL    
[61]
Kou B B , Chai Y Q , Yuan Y L , Yuan R . Anal. Chem., 2017,89(17):9383. https://pubs.acs.org/doi/10.1021/acs.analchem.7b02210

doi: 10.1021/acs.analchem.7b02210     URL    
[62]
Wu Z Q , Liu J J , Li J Y , Xu D , Xia X H. Anal. Chem., 2017,89(23):12394.
[63]
Yang Y R , Liu Y , Yan H . Bioconjugate. Chem., 2015,26(8):1381. https://pubs.acs.org/doi/10.1021/acs.bioconjchem.5b00194

doi: 10.1021/acs.bioconjchem.5b00194     URL    
[64]
Fu J , Liu M , Liu Y , Woodbury N W , Yan H .J Am. Chem. Soc., 2012,134(12):5516. 7b6840ac-bed6-40e9-a12c-2c74764a2af1 http://dx.doi.org/10.1021/ja300897h

doi: 10.1021/ja300897h     URL    
[65]
Chen Y , Ke G , Ma Y , Zhu Z , Liu M , Liu Y , Yan H , Yang C J .J Am. Chem. Soc., 2018,140(28):8996.
[66]
Ngo T A , Nakata E , Saimura M , Morii T .J Am. Chem. Soc., 2016,138(9):3012. https://pubs.acs.org/doi/10.1021/jacs.5b10198

doi: 10.1021/jacs.5b10198     URL    
[67]
Chado G R , Stoykovich M P , Kaar J L. ACS Catal., 2016,6(8):5161. https://pubs.acs.org/doi/10.1021/acscatal.6b01302

doi: 10.1021/acscatal.6b01302     URL    
[68]
Zhang Y , Qin W , Hess H . ACS Catal., 2017,7(3):20471.
[69]
Franssen M C , Steunenberg P , Scott E L , Zuilhof H , Sanders J P. Chem. Soc. Rev., 2013,42(15):6491. http://xlink.rsc.org/?DOI=c3cs00004d

doi: 10.1039/c3cs00004d     URL    
[70]
Zhang J , Zhou X , Wang D , Wang Y , Zhou X , Wang H , Li Q , Tan S . J. Mol. Catal. B-Enzym., 2013,97:80. 145421ca-bc50-4d79-84e9-127d88d5c159 http://dx.doi.org/10.1016/j.molcatb.2013.07.009

doi: 10.1016/j.molcatb.2013.07.009     URL    
[71]
Fang Y , Umasankar Y , Ramasamy R P. Biosens. Bioelectron., 2016,81(64):39. https://linkinghub.elsevier.com/retrieve/pii/S0956566316300963

doi: 10.1016/j.bios.2016.01.095     URL    
[72]
Fang Y , Bullock H , Lee S A , Sekar N , Eiteman M A , Whitman W B , Ramasamy R P. Biosens. Bioelectron., 2016,85:603. https://linkinghub.elsevier.com/retrieve/pii/S0956566316304900

doi: 10.1016/j.bios.2016.05.060     URL    
[73]
Zhang Y , Ren W , Luo H Q , Li N B. Biosens. Bioelectron., 2016,80(1):463. https://linkinghub.elsevier.com/retrieve/pii/S0956566316301221

doi: 10.1016/j.bios.2016.02.016     URL    
[74]
Yi H , Xu W , Yuan Y , Bai L , Wu Y , Chai Y , Yuan R . Biosens. Bioelectron., 2014,54(12):415. https://linkinghub.elsevier.com/retrieve/pii/S0956566313008221

doi: 10.1016/j.bios.2013.11.036     URL    
[75]
Peng K , Zhao H , Yuan Y , Yuan R , Wu X . Biosens. Bioelectron., 2014,55:366. https://linkinghub.elsevier.com/retrieve/pii/S0956566313008774

doi: 10.1016/j.bios.2013.12.008     URL    
[76]
Kim M C , Kwak J , Lee S Y. Actuat. B, 2016,232:744. https://linkinghub.elsevier.com/retrieve/pii/S0925400516305032

doi: 10.1016/j.snb.2016.04.033     URL    
[77]
Jo S M , Wurm F R , Landfester K . ACS Appl. Mater. Interfaces 2018,10:34230. https://pubs.acs.org/doi/10.1021/acsami.8b11198

doi: 10.1021/acsami.8b11198     URL    
[78]
Godoy-Gallardo M , Labay C , Trikalitis V D , Kempen P J , Larsen J B , Andresen T L , Hosta-Rigau L . ACS Appl. Mater. Interfaces, 2017,9(19):15907. https://pubs.acs.org/doi/10.1021/acsami.6b16275

doi: 10.1021/acsami.6b16275     URL    
[79]
Nijemeisland M , Abdelmohsen L K , Huck W T , Wilson D A , van Hest J C ACS Cent. Sci., 2016,2(11):843. https://pubs.acs.org/doi/10.1021/acscentsci.6b00254

doi: 10.1021/acscentsci.6b00254     URL    
[80]
Lu J S , Zhang Y J , Li H N , Yu J C , Liu S Q. Chem. Comm., 2014,50:13896. http://xlink.rsc.org/?DOI=C4CC06200K

doi: 10.1039/C4CC06200K     URL    
[81]
Lu J S , Cui D , Li H N , Zhang Y J , Liu S Q . Electrochimica Acta, 2015,165:36. https://linkinghub.elsevier.com/retrieve/pii/S0013468615005046

doi: 10.1016/j.electacta.2015.02.183     URL    
[82]
Shangguan L , Wei Y , Liu X , Yu J C , Liu S Q. Chem. Comm., 2017,53:2673. http://xlink.rsc.org/?DOI=C7CC00300E

doi: 10.1039/C7CC00300E     URL    
[83]
Huo D , Liu G , Li Y , Wang Y , Guan G , Yang M , Wei K , Yang J , Zeng L , Li G , Zeng W , Zhu C . ACS Nano, 2017,11:10964. https://pubs.acs.org/doi/10.1021/acsnano.7b04836

doi: 10.1021/acsnano.7b04836     URL    
[84]
Luo J , Meyer A S , Mateiu R V , Pinelo M . Nat. Biotechnol., 2015,32(3):319. https://doi.org/10.1038/nbt.2865

doi: 10.1038/nbt.2865     URL    
[85]
Rodríguez Alonso M J , Rodríguez Vico F , Heras-Vázquez F J L , Clemente-Jiménez J M . J Chem. Technol. Biotechnol., 2016,91(7):1972.
[86]
Bornadel A , Hatti-Kaul R , Hollmann F , Kara S . Tetrahedron, 2016,72(46):7222. https://linkinghub.elsevier.com/retrieve/pii/S0040402015302386

doi: 10.1016/j.tet.2015.11.054     URL    
[87]
刘强(Liu Q), 许鑫华(Xu X H), 任光雷(Ren G L), 王为(Wang W) . 化学进展(Prog. Chem.), 2006,18:1530. 30b3ce7b-1ff8-4e9d-ba91-69288b6d8259 http://www.progchem.ac.cn//CN/abstract/abstract9370.shtml
[88]
Minteer S D . Biochimica et Biophysica Acta, 2016,1857(5):621.
[89]
Hickey D P , Giroud F , Schmidtke D W , Glatzhofer D T , Minteer S D. ACS Catal., 2015,3(12):2729. https://pubs.acs.org/doi/10.1021/cs4003832

doi: 10.1021/cs4003832     URL    
[90]
Xia L , Nguyen K V , Holade Y , Han H , Dooley K , Atanassov P , Banta S , Minteer S D. ACS Energy Lett., 2017,2:1435. https://pubs.acs.org/doi/10.1021/acsenergylett.7b00134

doi: 10.1021/acsenergylett.7b00134     URL    
[91]
Lau C , Moehlenbrock M J , Arechederra R L , Falase A , Garcia K , Rincon R , Minteer S D , Banta S , Gupta G , Babanova S. Atanassov P. Int. J. Hydrogen Energ., 2015,40(42):14661. https://linkinghub.elsevier.com/retrieve/pii/S0360319915015931

doi: 10.1016/j.ijhydene.2015.06.108     URL    
[92]
Zhang Y , Ge J , Zheng L . ACS Catal., 2015,5(8):4503. https://pubs.acs.org/doi/10.1021/acscatal.5b00996

doi: 10.1021/acscatal.5b00996     URL    
[1] 赵依凡, 毛琦云, 翟晓雅, 张国英. 钼酸铋光催化剂的结构缺陷调控[J]. 化学进展, 2021, 33(8): 1331-1343.
[2] 侯晨, 陈文强, 付琳慧, 张素风, 梁辰. 共价有机框架材料在固定化酶及模拟酶领域的应用[J]. 化学进展, 2020, 32(7): 895-905.
[3] 申刚义, 于婉婷, 刘美蓉, 崔勋. 固定化酶微反应器的制备及应用[J]. 化学进展, 2013, 25(07): 1198-1207.
[4] 朱英, 刘明杰, 万梅香, 江雷. 一维纳米纤维构筑的导电聚合物三维结构及其可控的浸润性[J]. 化学进展, 2011, 23(5): 819-828.
[5] 辛宝娟 邢国文. 氧化铁磁性纳米粒子固定化酶*[J]. 化学进展, 2010, 22(04): 593-602.
[6] 王梦凡 齐崴 苏荣欣 何志敏. 交联酶聚体技术研究进展*[J]. 化学进展, 2010, 22(01): 173-178.
[7] 王永健,张政朴,何炳林. 环糊精聚合物的高分子效应[J]. 化学进展, 2000, 12(03): 318-.
阅读次数
全文


摘要

固定化多酶级联反应器