English
新闻公告
More
化学进展 2015, Vol. 27 Issue (4): 385-394 DOI: 10.7536/PC141029 前一篇   后一篇

• 综述与评价 •

聚噻吩的合成方法

舒昕, 李兆祥, 夏江滨*   

  1. 武汉大学化学与分子科学学院 武汉 430072
  • 收稿日期:2014-10-01 修回日期:2014-12-01 出版日期:2015-04-15 发布日期:2015-02-04
  • 通讯作者: 夏江滨 E-mail:jbxia@whu.edu.cn

Synthetic Methods for Poly(thiophene)s

Shu Xin, Li Zhaoxiang, Xia Jiangbin*   

  1. College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
  • Received:2014-10-01 Revised:2014-12-01 Online:2015-04-15 Published:2015-02-04
自从1977年白川英树等发现聚乙炔这种导电聚合物以来,打破了高分子材料长期以来被认为是绝缘体的观点。随后聚苯胺、聚吡咯、聚噻吩等的出现使导电聚合物的种类不断出新,其用途也扩展到如导电材料、电极材料、催化材料以及太阳能电池等应用中,且已有部分产品实现了商品化。其中,聚噻吩因其良好的稳定性、易于制备、掺杂后具有良好的光电化学性能等特点而受到广泛关注。本文总结了几种合成聚噻吩及其衍生物的常见方法,包括化学氧化聚合法、电化学聚合法、金属催化偶联法、光致合成法、光电化学沉积法,以及近年来新发现的固相聚合法和酸催化聚合法,并简要介绍了各自的合成机理及优缺点。
Since Shirakawa et al discovered that polyacetylene can reach extremely high conductivities, the polymer material has no longer been regarded as electrical insulators. Subsequently, the discovery of polyaniline, polypyrrole, poly(thiophene) expanded the type of conductive polymer. In addition, the conductive polymer has promising application in the fields such as electrode material, solar cell, and other applications, and some of them have achieved the commercialization. Among them, poly(thiophene)s has been widely concerned because of their good stability, easy preparation and good characteristics of photoelectrochemical performance after doping. Thus, in this review, several synthetic methods for poly(thiophene)s and their derivatives are reviewed, including chemical oxidation polymerization, electrochemical synthesis, and so on, especially the newly developed solid state polymerization and acid-assisted polymerization. Their synthesis mechanism, the advantages and disadvantages are also discussed.

Contents
1 Introduction
2 Synthetic methods
2.1 Chemical oxidation polymerization and electrochemical polymerization
2.2 Metal-catalysed polymerization
2.3 Photo-induced polymerization
2.4 Photo-electrochemically polymerization
2.5 Solid state polymerization
2.6 Acid-assisted polymerization
3 Conclusion and outlook

中图分类号: 

()
[1] (a)Shirakawa H, Louis E J, Macdiarmid A G, Chiang C K, Heeger A J. Chem. Commun., 1997, 16: 578.; (b) Handbook of Conducting Polymers. 2nd ed. Marcel Dekker: New York, 1998.; (c)Nalwa H S. Handbook of Organic Conductive Molecules and Polymer. Chichester, 1997, 1.
[2] Diaz A F, Kanazawa K K, Gardini G P. Chem. Commun., 1979, 14: 635.
[3] Diaz A F. Chem. Scr., 1981, 17: 145.
[4] Tourillon G, Garnier F J. J. Electroanal. Chem., 1982, 135(1): 173.
[5] Joachim B, Shamsher M, Robert J. IBM J. Res. Develop., 1983, 27(4): 330.
[6] Sharma P S, Pietrzyk-Le A, Souza F D, Kutner W. Anal. Bioanal. Chem., 2012, 402(10): 3177.
[7] Joelle R B, Jacques S. J. Electroanal. Chem., 1985, 182(1): 187.
[8] Naarmann H. Polymers, Electrically Conduction in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2002.
[9] Pei Q B, Yang Y G, Zhang C, Heeger A J. J. Am. Chem. Soc., 1996, 118(16): 3922.
[10] Wang H L, Huang F, MacDiarmid A G, Wang Y Z, Gebler D D, Epstein A J. Synth. Met., 1996, 80(2): 97.
[11] Xia J B, Masaki N, Jiang K, Yanagida S. J. Mater. Chem., 2007, 17(27): 2845.
[12] Xia Y J, Sun K, Ouyang J Y. Adv. Mater., 2012, 24(18): 2436.
[13] Yoshino K, Hayashi S, Sugimoto R.Japanese Journal of Applied Physics, Part2:Letters, 1984, 23(12): 899.
[14] Tourillon G, Garnier F. J. Electroanal. Chem., 1982, 135(1): 173
[15] Xu Z G, Gilles H, Francis G. J. Electroanal. Chem., 1988, 246(2): 467.
[16] Genies E M, Bidan G, Diaz A F. J. Electroanal. Chem., 1983, 149(1/2): 101.
[17] Abdulla H S. Int. J. Electrochem. Sci., 2013, 8(10): 11782.
[18] Hillman A R, Elizabeth F J. Electroanal. Chem., 1988, 243(2): 403.
[19] Tourillon G, Garnier F. J. Phys. Chem., 1983, 87(13): 2289.
[20] Waltman R J, Joachim B, Diaz A F. J. Phys. Chem., 1983, 87(8): 1459.
[21] Roncali J, Yaaaar A, Garnier F Z. Chem. Commun., 1988, 9: 581.
[22] Yaaaar A, Roncali J, Garnier F. Macromolecules, 1989, 22: 804.
[23] Hotta S, Hosaka T, Shimotsuma W. Synth. Met., 1983, 6: 317.
[24] Tanaka S, Sato M, Kaeriyama K. Makromol. Chem., 1984, 185: 1295.
[25] Sato M, Tanaka S, Kaeriyama K. J. Chem. Soc. Chem. Commun., 1985, 713.
[26] (a) Shi G Q, Jin S, Xue G, Li C. Science, 1995, 267: 994.; (b) Shi G Q, Shi G Q, Chun L, Liang Y Q. Adv. Mater., 1999, 11: 131145.;(c) Fu M X, Zhu Y F, Tan R Q, Shi G Q. Adv. Mater., 2001, 13: 1874.; (d) Li C, Bai H, Shi G Q. Chem. Soc. Rev., 2009, 38: 2397.
[27] Kochi J K, Tamura Masuhiko.J.Am.Chem.Soc., 1971, 93(6): 1483.
[28] Masuhiko T, Kochi J K. J. Am. Chem. Soc., 1971, 93(6): l487.
[29] Yamamoto T, Sanechika K, Yamamoto A. J. Polym. Sci. C: Polym. Lett., 1980, 18(1): 9.
[30] Lin J W P, Dudek L P. J. Polym. Sci. A: Polym. Chem., 1980, 18(9): 2869.
[31] Pei J, Ni J, Zhou X H, Cao X Y, Lai Y H. J. Org. Chem. 2002, 67: 4924.
[32] Chen T A, Wu X M, Rieke R D. J. Am. Chem. Soc. 1995, 117(1): 233.
[33] Chen T A, Rieke R D. J. Am. Chem. Soc., 1992, 114(25): 10087.
[34] McCullough R D, Lowe R D. J. Chem. Soc. Chem. Commun., 1992, 1: 70.
[35] McCullough R D, Williams S P, Tristram-Nagle S, Jayaraman M. Synth. Met., 1995, 69(1/3): 279.
[36] Loewe R S, Khersonsky S M, McCullough R D. Adv. Mater., 1999, 11(3): 250.
[37] Ullmann F, Bielecki J. Berichte der Deuts-chen Chemischen Gesellschaft, 1901, 34: 2174.
[38] Pomerantz M, Yang H, Cheng Y. Macromolecules, 1995, 28(17): 5706.
[39] Pomerantz M, Cheng Y, Kasim R K, Elsenbaumer R L. J. Mater. Chem., 1999, 9(9): 2155.
[40] Castro C E, Stephenes R D. J. Org. Chem., 1963, 28(8): 2163.
[41] Stephens R D, Castro C E. J. Org. Chem., 1963, 28(12): 3313.
[42] Cassar L. J. Organomet. Chem., 1975, 93(2): 253.
[43] Sonogashira K, Tohda Y, Hagihara N. Tetrahedron. Lett., 1975, 50: 4467.
[44] Coombs B A, Rutter S R, Goeta A E, Sparkes H A, Batsanov A S, Beeby A. RSC. Adv., 2012, 2: 1870.
[45] (a) Mizoroki T, Mori K, Ozaki A. Bull. Chem. Soc. Jpn., 1971, 44(2): 581.; (b) Heck R F, Nolley J P. J. Org. Chem., 1972, 37(14): 2320.
[46] Hassan J, Schulz E, Gozzi C, Lemaire M. J. Mol. Cataly. A: Chem., 2003, 195: 125.
[47] Guillerez S, Bidan G. Synth. Met., 1998, 93: 123.
[48] Rehahn M, Schlüter A D, Wegner G Feast W J. Polymer, 1989, 30: 1060
[49] Kosugi M, Shimizu Y, Migita T. Chem. Lett., 1977, 12: 1423.
[50] Milstein D, Stille J K. J. Am. Chem. Soc., 1978, 100(11):3636.
[51] Bochmann M, Kelly K. J. Chem. Soc. Chem. Commum., 1989, 9: 532.
[52] Giesa R, Schulz R C. Makromol. Chem., 1990, 191(4): 857.
[53] Galarini R, Musco A, Pontellini R, Bolognesi A, Destri S, Cataellani M, Mascherpa M, Zhuo G. J. Chem. Soc. Chem. Commum., 1991, 6: 364.
[54] Carsten B, He F, Son H J, Xu T, Yu L P. Chem. Rev., 2011, 111: 1493.
[55] Mak C S K, Cheung W K, Leung Q Y, Chan W K. Macromol. Rapid Commum., 2010, 31(9/10): 875.
[56] Sévignon M, Papillon J, Schulz E, Lemaire M. Tetrahedron Lett., 1999, 49: 5873.
[57] Wang Q F, Takita R, Kikuzaki Y, Ozawa F. J. Am. Chem. Soc., 2010, 132: 11420.
[58] Crivello J V. Adv. Polym. Sci., 1984, 62: 1.
[59] Rabeck J F, Lucki J, Zuber M. Polymer, 1992, 33(22): 4838.
[60] Iyoda T, Kitano M, Shimidzu T. J. Chem. Soc. Chem. Commun., 1991, 22: 1618.
[61] Yagci Y, Kornowski A, Schnabel W. J. Polym. Sci. Part A: Polym. Chem., 1992, 30(9): 1987.
[62] Yagci Y, Yilmaz F, Kiralp S, Toppare L. Macromol. Chem. Phys., 2005, 206(12): 1178.
[63] Aydogan B, Gunbas G E, Durmus A, Toppare L, Yagci Y. Macromolecules, 2010, 43(1): 101.
[64] Tabei H, Fujiki M, Imamura S. Jpn. J. Appl. Phys., 1985, 24(9): 685.
[65] Okano M, Itoh K, Kikuchi E, Akira F. J. App. Phys., 1987, 62(5): 1.
[66] Murakoshi K, Kogure R, Wada Y, Yanagida S. Chem. Lett., 1997, 5: 471.
[67] Saito Y, Fukuri N, Senadeera R, Kitamura T, Wada Y, Yanagida S. Electrochem. Commun., 2004, 6: 71.
[68] Xia J B, Masaki N, Lira-Cantu M, Kim Y, Jiang K J, Yanagida S. J. Am. Chem. Soc., 2008, 130: 1258.
[69] De Leeuw D M, Kraakman P, Bongaert P F G, Mutsaers C M J, Klaassen D B M. Synth. Metal., 1994, 66: 263.
[70] (a) Magat M. Polymer, 1962, 3(3): 449.;(b)Baughman R H. J. Polym. Sci.: Polym. Phys. Ed., 1974, 12: 1511.
[71] (a) Wenger G Z. Naturforsch, 1969, 24b: 824.;(b) Wegner G. Makromol. Chem., 1971, 145: 85.;(c) Enkelmann V, Schleier G, Wegner G, Eichelf H, Schwoerer M. Chem. Phys. Lett., 1977, 52(2): 314.;(d) Yee K C, Chance R R. J. Polym. Sci.: Polym. Phys. Ed., 1978, 16: 431.
[72] (a) Walatka V V, Labes M M, Perlstein J H. Phys. Rev. Lett., 1973, 31(18): 1139.; (b) Cohen M J, Garito A F, Heeger A J, MacDiarmid A G, Mikulski C M, Saran M S, Kleppinger J. J. Am. Chem. Soc., 1976, 98: 3844.
[73] Meng H, Perepichka D F, Wudl F. Angew. Chem. Int. Ed., 2003, 42: 658.
[74] Meng H, Perepichka D F, Bendikov M, Pan G Z, Yu W J, Dong W J, Brown S, Wudl F. J. Am. Chem. Soc., 2003, 125: 15151.
[75] Spencer H J, Berridge R, Crouch D J, Wrigh S P, Giles M, McCulloch I, Coles S J, Hursthouse M B, Skabara P J. J. Mater. Chem., 2003, 13: 2075.
[76] Patra A, Wijsboom Y H, Zade S S, Li M, Sheynin Y, Leitus G, Bendikov M. J. Am. Chem. Soc., 2008, 130: 6734.
[77] Chen S A, Xu J K, Lu B Y, Duan X M, Kong F F. Adv. Mater. Res., 2011, 239/242: 924.
[78] Chen S, Luo B Y, Duan X M, Xu J K. Polym. Chem., 2012, 50: 1967.
[79] Tusy C, Huang L L, Jin J P, Xia J B. RSC Adv., 2014, 4: 8011.
[80] Tusy C, Huang L L, Peng K, Xia J B. RSC Adv., 2014, 4: 29032.
[81] Walczak R M, Leonard J K, Reynolds J R. Macromolecules, 2008, 41: 691.
[82] Koh J K, Kim J, Kim B, Kim J H, Kim E. Adv. Mater., 2011, 23: 1641.
[83] Chen L, Jin J P, Shu X, Xia J B. J. Power Sources, 2014, 248: 1234.
[84] Yin X, Wu F, Fu N Q, Han J, Chen D L, Xu P, He M, Lin Y. Appl. Mater. Interfaces., 2013, 5: 8423.
[85] Wagner P, Jolley K W, Officer D L. Aust. J. Chem., 2011, 64: 335.
[86] (a) Yin Y H. Bachelor’s Thesis of Wuhan University, 2012. (b)Yin Y H, Li Z X, Jin J P, Tusy C, Xia J B. Synth. Met., 2013, 175: 97.
[87] Bonillo B, Swager T M. J. Am.Chem. Soc., 2012, 134: 18916.
[88] Balasubramanian A, Ku T C, Shih H P, Suman A, Lin H J, Shih T W, Han C C. Polym. Chem., 2014, 5: 5928
[89] Heeger A J. Chem. Soc. Rev., 2010, 39, 2354.
[1] 吴磊, 刘利会, 陈淑芬. 基于碳基透明电极的柔性有机电致发光二极管[J]. 化学进展, 2021, 33(5): 802-817.
[2] 李霞, 马红艳, 聂晓娟, 刘旭, 卞成明, 谢龙. 星形环糊精聚合物的制备及其应用[J]. 化学进展, 2020, 32(7): 935-942.
[3] 黄妮, 许峰, 夏江滨. 聚噻吩的固相聚合及其应用[J]. 化学进展, 2019, 31(8): 1103-1115.
[4] 胡传波, 厉英, 孔亚州, 丁玉石. 改性聚苯胺及其衍生物涂层的防腐性能[J]. 化学进展, 2016, 28(8): 1238-1250.
[5] 杨雷, 程涛, 曾文进, 赖文勇, 黄维. 导电聚合物薄膜的喷墨打印制备及其光电器件[J]. 化学进展, 2015, 27(11): 1615-1627.
[6] 宿丹, 第凤, 邢季, 车剑飞, 肖迎红. 导电聚合物在药物可控释放领域的应用[J]. 化学进展, 2014, 26(12): 1962-1976.
[7] 李庆川, 曹立新, 胡海峰, 王凯, 闫培生. 黄曲霉毒素电化学生物传感器[J]. 化学进展, 2014, 26(04): 657-664.
[8] 苗力孝, 王维坤, 王梦佳, 段博超, 杨裕生, 王安邦. 含单质硫正极复合材料[J]. 化学进展, 2013, 25(11): 1867-1875.
[9] 肖横洋, 第凤, 车剑飞, 肖迎红. 神经元电极的表面修饰及其功能化设计[J]. 化学进展, 2013, 25(11): 1962-1972.
[10] 任芳芳, 蒋丰兴, 周卫强, 杜玉扣*, 徐景坤*. 导电聚合物/贵金属复合材料应用于C1小分子电催化氧化[J]. 化学进展, 2012, (9): 1818-1836.
[11] 朱英, 刘明杰, 万梅香, 江雷. 一维纳米纤维构筑的导电聚合物三维结构及其可控的浸润性[J]. 化学进展, 2011, 23(5): 819-828.
[12] 涂亮亮 贾春阳 翁小龙 邓龙江 唐武. 导电聚合物电致变色材料*[J]. 化学进展, 2010, 22(10): 2053-2059.
[13] 涂亮亮 贾春阳. 导电聚合物超级电容器电极材料*[J]. 化学进展, 2010, 22(08): 1610-1618.
[14] 董彬,徐景坤,郑利强. 离子液体应用于电合成导电聚合物* [J]. 化学进展, 2009, 21(09): 1792-1799.
[15] 安红芳,王先友,李娜,郑丽萍,陈权启. 超级电容器用炭/导电聚合物复合材料*[J]. 化学进展, 2009, 21(09): 1832-1838.
阅读次数
全文


摘要

聚噻吩的合成方法