English
新闻公告
More
化学进展 2013, Vol. 25 Issue (11): 1962-1972 DOI: 10.7536/PC130321 前一篇   后一篇

• 综述与评论 •

神经元电极的表面修饰及其功能化设计

肖横洋1, 第凤1, 车剑飞1*, 肖迎红2*   

  1. 1. 南京理工大学化工学院 教育部软化学与功能材料重点实验室 南京 210094;
    2. 南京师范大学 江苏省生物功能材料重点实验室 南京 210097
  • 收稿日期:2013-03-01 修回日期:2013-06-01 出版日期:2013-11-15 发布日期:2013-09-12
  • 通讯作者: 车剑飞, 肖迎红 E-mail:chjianfei@mail.njust.edu.cn;yhxiao@njnu.edu.cn
  • 基金资助:

    教育部博士点基金(20123219110010)、江苏省自然科学基金项目(No.BK2012845)和江苏省优势学科建设项目资助

Surface Modification and Functionalization of Neural Electrodes

Xiao Hengyang1, Di Feng1, Che Jianfei1*, Xiao Yinghong2*   

  1. 1. Key Laboratory of Soft Chemistry and Functional Materials, Ministry of Education, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
    2. Jiangsu Key Laboratory of Biofunctional Materials, Nanjing Normal University, Nanjing 210097, China
  • Received:2013-03-01 Revised:2013-06-01 Online:2013-11-15 Published:2013-09-12

神经元电极与神经组织的物理化学性能之间存在着很大的差异,目前常采用优化电极表面性质的方法来改善神经元电极的长期稳定性。本文从神经元电极表面修饰的角度出发,首先介绍了神经元电极发展过程中在生物相容性、信号灵敏性、力学匹配性以及长期稳定性等方面遇到的困难,并总结了导电聚合物和碳纳米管这两种材料单独修饰以及协同修饰神经元电极在改善电极性能研究中取得的进展。最后指出神经元电极表面修饰及其功能化的未来发展趋势,包括生物分子的掺杂对修饰涂层的机械性能和表面形貌特征的调整,修饰涂层与电极基材之间的附着,以及涂层长期生物相容性的评价方法。

The great mismatch in physical and chemical properties between the hard electrodes and the soft brain tissues is still a barrier to achieve ideal neural prosthetic devices with excellent long-term performance. The current solutions focus on tailoring the properties of the electrode surface. This review summarizes the impediments that hinder the development of the neural electrodes including poor biocompatibility, low sensitivity, high impedance and poor stability, and then presents the progress in the surface modification and functionalization of neural electrodes. Conducting polymers and carbon nanotubes have been applied to modify the electrode surface due to their good electrical conductivity. Finally, promising strategies and methods for the development in the field are prospected, which include controlling surface morphology to optimize the mechanical properties, doping of biospecies and improving the interfacial adhesion between the modifying coatings and the electrode substrates.

Contents
1 Introduction
2 The development of neural electrodes
3 The challenges in the development of neural electrodes
3.1 Biocompatibility
3.2 Signal sensitivity
3.3 Mechanical match
3.4 Long-term stability
4 Surface modification with conducting polymers
4.1 Properties of conducting polymers
4.2 The methods of surface modification with conducting polymers
4.3 The challenges of surface modification with conducting polymers
5 Surface modification with carbon nanotubes
5.1 Properties of carbon nanotubes
5.2 The methods of surface modification with carbon nanotubes
5.3 The composite coating of conducting polymers and carbon nanotubes
6 Conclusions and prospects

中图分类号: 

()

[1] Charkhkar H, Knaack G L, Gnade B E, Keefer E W, Pancrazio J. Sens. Actuat. B Chem., 2012, 161: 655—660
[2] Kiyohara A, Taguchi T, Kudoh S N. IEEJ Trans. Electr. Electr., 2011, 6: 163—167
[3] Price A, Rayner L, Okon-Rocha E, Evans A, Valsraj K, Hotopf M. J. Neurol. Neurosurg. Psychiatry, 2011, 82: 914—923
[4] Khansari P S, Coyne L. Inflammopharmacology, 2012, 20: 159—167
[5] Schalk G, Miller K J, Anderson N R, Wilson J A, Smyth M D, Ojemann J G, Moran J G, Wolpaw J R, Leuthardt E C. J. Neural. Eng., 2008, 5: 75—84
[6] Wilson B S, Dorman M F. Hear. Res., 2008, 242: 3—21
[7] Hamani C, Nobrega J N, Lozano A M. Clin. Pharmacol. Ther., 2010, 88: 559—562
[8] Skarpaas T L, Morrell M J. Neurotherapeutics, 2009, 6: 238—243
[9] Gesteland R C, Howland B, Lettvin J Y, Pitts W H. Proc. Inst. Radio Eng., 1959, 47: 1856—1862
[10] Skrzypek J, Keller E. Biomed. Eng., 1975, 22: 435—437
[11] Terzuolo C A, Araki T. Ann. NY. Acad. Sci. 1961, 94, 547—558
[12] Tsytsarev V, Taketani M, Schottler F, Tanaka S, Hara M. J. Neural Eng., 2006, 3: 293—298
[13] Musallam S, Bak M J, Troyk P R, Andersen R A. J. Neurosci. Meth., 2007, 160: 122—127
[14] Wise K D, Angell J B, Starr A. IEEE Trans. Biomed. Eng., 1970, 17: 238—247
[15] Pearce T M, Williams J C. Lab. Chip, 2007, 7: 30—40
[16] Kim S, Bhandari R, Klein M, Negi S, Rieth L. Biomed. Microdevices, 2009, 11: 453—466
[17] Donaldson N, Rieger R, Schuettler M. Med. Biol. Eng. Comput., 2008, 46: 1005—1018
[18] Horch K W, Dhillon G S. Neuroprosthetics: Theory and Practice. New Jersey: World Scientific Publishing Co., 2004. 683—744
[19] Stieglitz T, Gross M. Sens. Actuat. B Chem., 2002, 83: 8—14
[20] Rousche P J, Pellinen D S, Pivin D P, Williams J C, Vetter R J, Kipke D R. Biomed. Eng., 2001, 48: 361—371
[21] Suh M, Ma H T, Zhao M R, Sharif S, Schwartz T H. Mol. Neurobiol., 2006, 33: 181—197
[22] Cui X T, Zhou D D. IEEE Trans. Neural Syst. Rehabil. Eng., 2007, 15: 502—508
[23] Stieglitz T, Schuettler M, Koch K P. Eng. Med. Biol. Mag., 2005, 24: 58—65
[24] Kim Y T, Hitchcock R W, Bridge M J, Tresco P A. Biomaterials, 2004, 25: 2229—2237
[25] Polikov V S, Tresco P A, Reichert W M. J. Neurosci. Meth., 2005, 148: 1—18
[26] Szarowski D H, Andersen M D, Retterer S, Spence A J, Isaacson M, Craighead H G, Turner J N, Shain W. Brain Res., 2003, 983: 23—35
[27] Norton W T, Aquino D A, Hozumi I, Chiu F C, Brosnan C F. Neurochem. Res., 1992, 17: 877—885
[28] Turner A M P, Dowell N, Turner S W P, Kam L, Isaacson M, Turner J N, Craighead H G, Shain W. J. Biomed. Mater. Res., 2000, 51: 430—441
[29] Bjornsson C S, Oh S J, Al-Kofahi Y A, Lim Y J, Smith K L, Turner J N, De S, Roysam B, Shain W, Kim S J. J. Neural. Eng., 2006, 3: 196—207
[30] Kotzar G, Freas M, Abel P, Fleischman A, Roy S, Zorman C, Moran J M, Melzak J. Biomaterials, 2003, 23: 2737—2750
[31] Mensinger A F, Anderson D J, Martin D, Buchko C J, Johnson M A, Martin D C, Tresco P A, Silver R B, Highstein S M. J. Neurophysiol., 2000, 83: 611—615
[32] Cogan S F. Annu. Rev. Biomed. Eng., 2008, 10: 275—309
[33] Buzsaki G, Anastassiou C A, Koch C. Nat. Rev. Neurosci., 2012, 13: 407—420
[34] Bernatchez S F, Parks P J, Gibbons D F. Biomaterials, 1996, 17: 2077—2086
[35] Sanders J E, Stiles C E, Hayes C L. J. Biomed. Mater. Res., 2000, 52: 231—237
[36] Keohan F, Wei X F, Wongsarnpigoon A, Lazaro E, Darga J E, Grill W M. J. Biomater. Sci. Polym. Ed., 2007, 18: 1057— 1073
[37] Subbaroyan J, Martin D C, Kipke D R. J. Neural Eng., 2005, 2: 103—113
[38] Llinas R R, Walton K D, Nakao M, Hunter I, Anquetil P A. J. Nanoparticle Res., 2005, 7: 111—127
[39] Paik S J, Park Y, Cho D I. J. Micromech. Microeng., 2003, 13: 373—379
[40] Webster T J, Waid M C, McKenzie J L, Price R L, Ejiofor J U. Nanotechnology, 2004, 15: 48—54
[41] Dalby M J, Gadegaard N, Riehle M O, Wilkinson C D W, Aitchison G. Nanobioscience, 2004, 3: 61—65
[42] Abrams G A, Goodman S L, Nealey P F, Franco M, Murphy C J. Cell Tissue Res., 2000, 299: 39—46
[43] McConnell G C, Schneider T M, Owens J, Bellamkonda R V. IEEE Trans. Biomed. Eng., 2007, 54: 1097—1107
[44] Grill W M, Norman S E, Bellamkonda R V. Annu. Rev. Biomed. Eng., 2009, 11: 1—24
[45] Snow S, Jacobsen S C, Wells D L, Horch K W. IEEE Trans. Biomed. Eng., 2006, 53: 320—326
[46] Mercanzini A, Cheung K, Buhl D L, Boers M, Maillard A, Colin P, Bensadoun J C, Bertsch A, Renaud P. Sens. Actuators A: Phys., 2008, 143: 90—96
[47] Abidian M R, Martin D C. Adv. Funct. Mater., 2009, 19: 573—585
[48] Jhaveri S J, Hynd M R, Dowell-Mesfin N, Turner J N, Shain W, Ober C K. Biomacromolecules, 2009, 10: 174—183
[49] Yoo J M, Song J I. J. Micromech. Microeng., 2012, 22: art. no. 105036
[50] Lacour S P, Benmerah S, Tarte E, FitzGerald J, Serra J, McMahon S, Fawcett J, Graudejus O, Yu Z, Morrison B. Med. Biol. Eng. Comput., 2010, 48: 945—954
[51] Fomani A A, Mansour R R. Sens. Actuators A: Phys., 2011, 168: 233—241
[52] Xiao Y H, He L, Che J F. J. Mater. Chem., 2012, 22: 8076—8082
[53] Ware T, Simon D, Arreaga-Salas D E, Reeder J, Rennaker R, Keefer E W, Voit W. Adv. Funct. Mater., 2012, 22: 3470— 3479
[54] Chen Y Y, Lai H Y, Lin S H, Cho C W, Chao W H, Liao C H, Tsang S, Chen Y F, Lin S Y. J. Neurosci. Methods, 2009, 182: 6—16
[55] Lempka S F, Miocinovic S, Johnson M D, Vitek J L, McIntyre C C. J. Neural Eng., 2009, 6: art. no. 046001
[56] Cheung K C, Renaud P, Tanila H, Djupsund K. Biosens. Bioelectron., 2007, 22: 1783—1790
[57] Berggren M, Richter-Dahlfors A. Adv. Mater., 2007, 19: 3201—3213
[58] Poole-Warren L, Lovell N, Baek S, Green R. Expert Rev. Med. Devices, 2010, 7: 35—49
[59] Isaksson J, Kjall P, Nilsson D, Robinson N D, Berggren M, Richter-Dahlfors A. Nat. Mater., 2007, 6: 673—679
[60] Abidian M R, Ludwig K A, Marzullo T C, Martin C R, Kipke D R. Adv. Mater., 2009, 21: 3764—3770
[61] Asplund M, Nyberg T, Ingans O. Polym. Chem., 2010, 1: 1374—1391
[62] Hassler C, Boretius T, Stieglitz T. J. Polym. Sci. B: Polym. Physics, 2011, 49: 18—33
[63] Abidian M R, Corey J M, Kipke D R, Martin D C. Small, 2010, 6: 421—429
[64] George P M, Lyckman A W, La Van D A, Hegde A, Leung Y, Avasare R, Testa C, Alexander P M, Langer R, Sur M. Biomaterials, 2005, 26: 3511—3519
[65] Gomez N, Lee J Y, Nickels J D, Schmidt C E. Adv. Funct. Mater., 2007, 17: 1645—1653
[66] Green R A, Lovell N H, Wallace G G, Poole-Warren L A. Biomaterials, 2008, 29: 3393—3399
[67] Richardson R T, Thompson B, Moulton S, Clark G, Newbold C, Lum M G, Cameron A, Wallace G, Kapsa R, O'Leary S. Biomaterials, 2007, 28: 513—523
[68] Chow W W Y, Herwik S, Ruther P, Gthelid E, Oscarsson S. Appl. Surf. Sci., 2012, 258: 7864—7871
[69] Green R A, Lovell N H, Poole-Warren L A. Acta Biomater., 2010, 6: 63—71
[70] Gelmi A, Higgins M J, Wallace G G. Biomaterials, 2010, 31: 1974—1983
[71] Green R A, Lovell N H, Poole-Warren L A. Biomaterials, 2009, 30: 3637—3644
[72] Lee J W, Serna F, Nickels J, Schmidt C E. Biomacromolecules, 2006, 7: 1692—1695
[73] Song H K, Toste B, Ahmann K, Hoffman-Kim D, Palmore G T R. Biomaterials, 2006, 27: 473—484
[74] Palecek S P, Loftus J C, Lauffenburger D A, Ginsberg M H, Horwitz A F. Nature, 1997, 385: 537—540
[75] Kim S Y, Kim K M, Hoffman-Kim D. Appl. Mater. Interfaces, 2011, 3: 16—21
[76] Thaning E M, Asplund M L, Nyberg T A, Inganas O W, Holst H V. J. Biomed. Mater. Res. B: Appl. Biomater., 2010, 93b: 407—415
[77] Green R A, Williams C M, Lovell N H. Poole-Warren L A. J. Mater. Sci.-Mater. Med., 2008, 19: 1625—1629
[78] Hendricks J, King Z A, Sereno A J, Richardson-Burns S, Martin D, Carmena J M. Neural Syst. Rehabil. Eng., 2011, 19: 307—316
[79] Hu H, Ni Y, Montana V, Haddon R C, Parpura V. Nano Letters, 2004, 4: 507—511
[80] Patolsky F, Timko B P, Yu G, Fang Y, Greytak A B, Zheng G, Lieber C M. Science, 2006, 313: 1100—1104
[81] Harris P J F. Carbon Nanotube Science: Synthesis, Properties and Applications. NewYork: Cambridge University Press, 2009, 179—199
[82] Keefer E W, Botterman B R, Romero M I, Rossi A F, Gross G W. Nat. Nanotechnol., 2008, 3: 434—439
[83] Cellot G, Cilia E, Cipollone S, Rancic V, Sucapane A, Giordani S, Gambazzi L, Markram H, Grandolfo M, Scaini D, Gelain F, Casalis L, Prato M, Giugliano M, Ballerini L. Nat. Nanotechnol., 2009, 4: 126—133
[84] Wang K, Fishman H A, Dai H J. Nano Letters, 2006, 6: 2043—2048
[85] Bottini M, Rosato N, Bottini N. Biomacromolecules, 2011, 12: 3381—3393
[86] Roman J A, Niedzielko T L, Haddon R C, Parpura V, Floyd C L. J. Neurotrauma, 2011, 28: 2349—2362
[87] Nunes A, Al-Jamal K, Nakajima T, Hariz M, Kostarelos K. Arch. Toxicol., 2012, 86: 1009—1020
[88] Muller J, Huaux F, Moreau N, Misson P, Heilier J F, Delos M, Arras M, Fonseca A, Nagy J B, Lison D. Toxicol. Appl. Pharmacol., 2005, 207: 221—231
[89] He L, Lin D M, Wang Y P, Xiao Y H, Che J F. Colloid Sur. B: Biointerface, 2011, 87: 273—279
[90] Gabriel G, Gomez R, Bongard M, Benito N, Fernndez E, Villa R. Biosens. Bioelectron., 2009, 24, 1942—1948
[91] Fuchsberger K, LeGoff A, Gambazzi L, Toma F M, Goldoni A, Giugliano M, Stelzle M, Prato M. Small, 2011, 7: 524—530
[92] Castagnola E, Ansaldo A, Fadiga L, Ricci D. Phys. Status Solidi B, 2010, 247: 2703—2707
[93] Ansaldo A, Castagnola E, Maggiolini E, Fadiga L, Ricci D. Nano, 2011, 5: 2206—2214
[94] Gabay T, Ben-David M, Kalifa I, Sorkin R, Abrams Z R, Ben-Jacob E, Hanein Y. Nanotechnology, 2007, 18: art. no. 035201
[95] Fletcher B L, Retterer S T, Fowlkes J D, Simpson M L, Doktycz M J. ACS Nano, 2008, 2: 247—254
[96] Yu Z, McKnight T E, Ericson M N, Melechko A V. Nano Letters, 2007, 7: 2188—2195
[97] Liu Z F, Shen Z Y, Zhu T, Hou S F, Ying L Z, Shi Z J, Gu Z N. Langmuir, 2000, 16, 3569—3573
[98] Lin C M, Lee Y T, Yehc S R, Fang W. Biosensors and Bioelectronics, 2009, 24: 2791—2797
[99] Hsu H L, Teng I J, Chen Y C, Hsu W L, Lee Y T, Yen S J, Su H C, Yeh S R, Yew T R. Adv. Mater., 2010, 22: 2177—2181
[100] Chen Y C, Hsu H L, Lee Y T, Su H C, Yen S J, Chen C H, Hsu W L, Yew T R, Yeh S R, Yao D J, Chang Y C, Chen H. J. Neural Eng., 2011, 8: art. no. 034001
[101] Hanein Y. Phys. Status Solidi B, 2010, 247: 2635—2640
[102] Bareket-Keren L, Hanein Y. Frontiers Neural Circuits, 2013, 6: 1—16
[103] Luo X L, Weaver C L, Zhou D D, Greenberg R, Cui X Y T. Biomaterials, 2011, 32: 5551—5557
[104] Xiao Y H, Ye X X, He L, Che J F. Polymer International, 2012, 61: 190—196
[105] Baranauskas G, Maggiolini E, Castagnola E, Ansaldo A, Mazzoni A, Angotzi G N, Vato A, Ricci D, Panzeri S, Fadiga L. J. Neural Eng., 2011, 8: art. no. 066013
[106] Chen H L, Guo L H, Ferhan A R, Kim D H. J. Phys. Chem. C, 2011, 115: 5492—5499

[1] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[2] 王龙, 周庆萍, 吴钊峰, 张延铭, 叶小我, 陈长鑫. 基于碳纳米管的光伏电池[J]. 化学进展, 2023, 35(3): 421-432.
[3] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[4] 仲宣树, 刘宗建, 耿雪, 叶霖, 冯增国, 席家宁. 材料表面性质调控细胞黏附[J]. 化学进展, 2022, 34(5): 1153-1165.
[5] 吴磊, 刘利会, 陈淑芬. 基于碳基透明电极的柔性有机电致发光二极管[J]. 化学进展, 2021, 33(5): 802-817.
[6] 秦苗, 徐梦洁, 黄棣, 魏延, 孟延锋, 陈维毅. 氧化铁纳米颗粒在磁共振成像中的应用[J]. 化学进展, 2020, 32(9): 1264-1273.
[7] 孙皓, 宋程威, 庞越鹏, 郑时有. 锂硫电池隔膜功能化设计[J]. 化学进展, 2020, 32(9): 1402-1411.
[8] 秦瑞轩, 邓果诚, 郑南峰. 金属纳米材料表面配体聚集效应[J]. 化学进展, 2020, 32(8): 1140-1157.
[9] 鲁志远, 刘燕妮, 廖世军. 锂离子电池富锂锰基层状正极材料的稳定性[J]. 化学进展, 2020, 32(10): 1504-1514.
[10] 王兆翔, 马君, 高玉瑞, 刘帅, 冯欣, 陈立泉. 稳定富锂层状氧化物正极材料的结构与性能[J]. 化学进展, 2019, 31(11): 1591-1614.
[11] 刘萍, 汪璟, 郝鸿业, 薛云帆, 黄俊杰, 计剑. 光化学反应在生物材料表面修饰中的应用[J]. 化学进展, 2019, 31(10): 1425-1439.
[12] 周启峰, 江波*, 杨海波*. 可作为碳纳米管片段的共轭芳烃大环的设计合成[J]. 化学进展, 2018, 30(5): 628-638.
[13] 胡传波, 厉英, 孔亚州, 丁玉石. 改性聚苯胺及其衍生物涂层的防腐性能[J]. 化学进展, 2016, 28(8): 1238-1250.
[14] 王亚立, 李贞, 刘志洪. 上转换荧光纳米材料的水溶性修饰[J]. 化学进展, 2016, 28(5): 617-627.
[15] 杨彩云, 曹长乾, 蔡垚, 张同伟, 潘永信. 铁蛋白表面修饰及其应用[J]. 化学进展, 2016, 28(1): 91-102.