English
新闻公告
More
化学进展 2013, Vol. 25 Issue (11): 1867-1875 DOI: 10.7536/PC130310 前一篇   后一篇

• 综述与评论 •

含单质硫正极复合材料

苗力孝1,2, 王维坤2, 王梦佳2,3, 段博超2, 杨裕生1,2, 王安邦2*   

  1. 1. 北京理工大学化工与环境学院 北京 100081;
    2. 防化研究院军用化学电源研究与 发展中心 北京 100191;
    3. 北京化工大学材料科学与工程学院 北京 100029
  • 收稿日期:2013-03-01 修回日期:2013-04-01 出版日期:2013-11-15 发布日期:2013-09-12
  • 通讯作者: 王安邦 E-mail:wabmlx@163.com
  • 基金资助:

    国家高技术发展计划(863)项目(No.2011AA11A256,2012AA052202)资助

Sulfur Composite Cathode for Lithium-Sulfur Batteries

Miao lixiao1,2, Wang Weikun2, Wang Mengjia2,3, Duan Bochao2, Yang Yusheng1,2, Wang Anbang2*   

  1. 1. School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing 100081, China;
    2. Military Power Sources Research and Development Center, Research Institute of Chemical Defense, Beijing 100191, China;
    3. School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
  • Received:2013-03-01 Revised:2013-04-01 Online:2013-11-15 Published:2013-09-12

单质硫作为二次锂-硫电池正极时具有很高的理论比容量(1675 mAh/g),此外硫原料廉价、储量丰富、对环境友好,被认为是最具发展潜力的新一代高比能化学电源的正极材料之一。但由于单质硫存在导电性差以及充放电过程中体积膨胀,放电过程中产生的多硫离子会溶解发生扩散迁移,从而制约了锂-硫电池的进一步发展应用。本文首先分析了锂-硫电池的放电机理,以及导致电池容量衰减的两个主要原因:多硫离子的穿梭效应和放电产物硫化锂(Li2S,Li2S2)差的电化学性能;其次综述了近年来国内外报道的各种含硫复合材料,将其分为碳/硫复合材料、导电聚合物/硫复合材料、氧化物/硫复合材料三大类,并进行了讨论;最后总结了目前硫正极复合材料的特点,展望了含单质硫复合正极材料未来的研究发展趋势。

Elemental sulfur, as a cathode material of the rechargeable Li-S battery, has a high theoretical gravimetric energy density of 1675 mAh/g, moreover, it is inexpensive, abundant on earth, and environmentally benign. So it is considered to be the most promising cathode materials for the next generation batteries. However, Li-S is facing many problems that constrain its widespread application. The main obstacles are its poor conductivity, volume expanding.Moreover,sulfur can be reduced the polysulfide ions and dissolved into electrolyze in the discharge process and therefore causes the loss of active materials. In this review,the charge-discharge mechanism and two capacity fading reasons of Li-S battery are summarized.One is the dissolution of polysulfide ions, which is the so called"redox shuttle" between the sulfur cathode and Li anode.The other is the formation of insoluble lithium sulfide(Li2S) and lithium disulfide(Li2S2) which can cause the sluggish electrochemical reaction during charge and discharge processes.After that,we introduce some recent progress of novel sulfur composites as cathode materials for lithium sulfur battery. These composites can be divided into three categories(such as sulfur/carbon, sulfur/polymer and sulfur/oxide composite materials) and are discussed. In the end, we have concluded the characters of those sulfur composites, and analyzed the prospect of Li-S battery in the future.

Contents
1 Introduction
2 Charge-discharge mechanism and capacity fading of the Li/S battery
3 Development of sulfur cathodes
3.1 Sulfur/carbon composites materials
3.2 Sulfur/polymer composites materials
3.3 Sulfur/oxide composites materials
4 Conclusion and outlook

中图分类号: 

()

[1] Cheng F Y, Liang J, Tao Z L, Chen J. Adv. Mater., 2011, 23: 1695—1715
[2] Scrosati B, Hassoun J, Sun Y K. Energy Environ. Sci., 2011, 4: 3287—3295
[3] Ji X L, Lee K T, Nazar L F. Nat. Mater., 2009, 8: 500—506
[4] Ji X, Nazar L F. J. Mater. Chem., 2010, 20: 9821—9826
[5] Nelson J, Misra S, Yang Y, Jackson A, Liu Y J, Wang H L, Dai H J, Andrews J C, Cui Y, Toney M F. J. Am. Chem. Soc., 2012, 134 (14): 6337—6343
[6] 王维坤(Wang W K), 余仲宝(Yu Z B), 苑克国(Yuan K G), 王安邦(Wang A B), 杨裕生(Yang Y S). 化学进展(Progress in Chemistry), 2011, 23 (2/3): 540—547
[7] 董全峰(Dong Q F), 王翀(Wang C), 郑明森(Zheng M S). 化学进展(Progress in Chemistry), 2011, 23 (2/3): 533—539
[8] 赖超(Lai C), 李国春(Li G C), 叶世海(Ye S H), 高学平(Gao X P). 化学进展(Progress in Chemistry), 2011, 23 (2/3): 527—532
[9] 梁宵(Liang X), 温兆银(Wen Z Y), 刘宇(Liu Y). 化学进展(Progress in Chemistry), 2011, 23 (2/3): 520—526
[10] Song M S, Han S C, Kim H S. J. Electrochem. Soc., 2004, 151: 791—795
[11] Marmorstein D, Yu T H, Striebel K A, McLarnon F R, Hou J, Cairns E J. J. Power Sources, 2000, 89: 219—226
[12] Cheona S E, Koa K S, Choa J H, Kimb S W, Chinc E Y, Kim H T. J. Electrochem. Soc., 2003, 150(6): 796—799
[13] Mikhaylik Y V, Akridge J R. J. Electrochem. Soc., 2004, 151(11): 1969—1976
[14] Shim J, Striebel K, Cairns E. J. Electrochem. Soc., 2002, 149: 1321—1325
[15] Dominko R, Rezan D C, Morcrette M, Tarascon J M. Electrochem. Commun., 2011, 13: 117—120
[16] Barchasz C, Molton F, Duboc C, Leprêtre J C, Patoux S, Alloin F. Anal. Chem., 2012, 84 (9): 3973—3980
[17] Yeon J T, Jang J Y, Han J G, Cho J, Lee K T, Choi N S. J. Electrochem. Soc., 2012, 159 (8): 1308—1314
[18] Xiong S Z, Xie K, Diao Y, Hong X B. Ionics, 2012, 18: 867—872
[19] Liang C D, Dudney N J, Howe J Y. Chem. Mater., 2009, 21(19): 4724—4730
[20] Choi Y J, Chung Y D, Baek C Y, Kim K W, Ahn H J. J. Power Sources, 2008, 184(2): 548—552
[21] Wang C, Chen J J, Shi Y N, Zheng M S, Dong Q F. Electrochim. Acta, 2010, 55(23): 7010—7015
[22] Zhang B, Lai C, Zhou Z, Gao X P. Electrochim. Acta, 2009, 54: 3708—3713
[23] Hagen M, Drfler S, Althues H, Tübke J, Hoffmann, Kaskel M J, Pinkwart K. J. Power Sources, 2012, 213: 239—248
[24] Xu G Y, Ding B, Nie P, Shen L F, Wang J, Zhang X G. Chem Eur. J., 2013, DOI: 10.1002/chem.201301352
[25] Chen J J, Zhang Q, Shi Y N, Qin L L, Cao Y, Zheng M S, Dong Q F. Phys. Chem. Chem. Phys., 2012, 14(16): 5376—5382
[26] Wei W, Wang J L, Zhou L J, Jun Y, Schumann B, Yana N L. Electrochem. Commun., 2011, 13(5): 399—402
[27] Ahn W, Kim K B, Jung K N, Shin K H, Jin C S. J. Power Sources, 2012, 202: 394—399
[28] Yuan L X, Yuan H P, Qiu X P, Chen L Q, Zhu W T. J. Power Sources, 2009, 189(2): 1141—1146
[29] He M, Yuan L X, Zhang W X, Huang Y H. J. Solid State Electrochem., 2013, DOI 10.1007/s10008-013-2023-5
[30] RaoM M, Li W S, Cairns E J. Electrochem. Commun., 2012, 17: 1—5
[31] Lai C, Gao X P, Zhang B, Yan T Y, Zhou Z. J. Phys. Chem. C, 2009, 113: 4712—4716
[32] Zhang B, Qin X, Li G R, GaoX P. Energy Environ. Sci., 2010, 3(10): 1531—1537
[33] Liang X, Wen Z Y, Liu Y, Zhang H, Huang L Z, Jin J. J. Power Sources, 2011, 196(7): 3655—3658
[34] Schuster J, He G, Mandlmeier B, Yim T, Lee K T, Bein T, Nazar L F. Angew. Chem. Int. Ed., 2012, 51: 3591 —3595
[35] He G, Ji X L, Nazar L F. Energy Environ. Sci., 2011, 4: 2878—2883
[36] Li X L, Cao Y L, Qi W, Saraf L V, Xiao J, Nie Z, Mietek J, Zhang J G, Schwenzer B, Liu J. J. Mater. Chem., 2011, 21(41): 16603—16610
[37] Ding B, Yuan C Z, Shen L F, Xu G Y, Nie P, Zhang X G. Chem. Eur. J., 2013, 19: 1013—1019
[38] Zheng G Y, Yang Y, Cha J J, Hong S S, Cui Y. Nano Lett., 2011, 11(10): 4462—4467
[39] Zu C X, Fu Y Z, Manthiram A. J. Mater. Chem. A, 2013, 1: 10362—10367
[40] Rao M M, Song X Y, Liao H G, Cairns E J. Electrochim. Acta, 2012, 65: 228—233
[41] Rao M M, Song X Y, Liao H G, Cairns E J. J. Power Sources, 2012, 205: 474—478
[42] Elazari R, Salitra G, Garsuch A, Panchenko A, Aurbach D. Adv. Mater., 2011, 23(47): 5641—5644
[43] Ji L W, Rao M M, Aloni S, Wang L, Cairns E J, Zhang Y G. Energy Environ. Sci., 2011, 4(12): 5053—5059
[44] Jayaprakash N, Shen J, Moganty S S, Corona A, Archer L A. Angew. Chem. Int. Ed., 2011, 50: 5904—5908
[45] Zhang G Y, Yang Y, Cha J J, Hong S S, Cui Y. Nano Lett., 2011, 11(10): 4462—4467
[46] Guo J, Xu Y, Wang C. Nano Lett., 2011, 11(10): 4288—4294
[47] Drfler S, Hagen M, Althues H, Tübke J, Hoffmannd S K M J. Chem. Commun., 2012, 48: 4097—4099
[48] Wang J Z, Lu L, Choucair M, Stride J A, Xu X, Liu H K. J. Power Sources, 2011, 196: 7030—7034
[49] Wang H L, Yang Y, Liang Y Y, Robinson J T, Li Y G, Jackson A, Cui Y. Nano Lett., 2011, 11: 2644—2647
[50] Li N W, Zhang M B, Lu H L, Hu Z B, Shen C F, Chang X F, Ji G B, Cao J M, Shi Y. Chem. Commun., 2012, 48: 4106—4108
[51] Evers S, Nazar L F. Chem. Commun., 2012, 48: 1233—1235
[52] Ji L R, Zheng M, Zhang H, Li L, Duan Y, Guo W J, Cairns E J, Zhang Y. J. Am. Chem. Soc., 2011, 133(46): 18522—18525
[53] Park M S, Kima K J, Jeong G J, Kima J H, Jo Y N, Hwang U, Kang S, Woo T, Kim Y J. Phys. Chem. Chem. Phys., 2012, 14: 6796—6804
[54] Lu L Q, Lu L J, Wang Y. J. Mater. Chem. A, 2013, 1: 9173—9181
[55] Wang B, Li K F, Su D W, AhnH J, Wang G X. J. Chem Asian, 2012, 7(7): 1637—1643
[56] Cao Y L, Li X L, Aksay I A, Lemmon J, Nie Z, Yang Z G, Liu J. Phys. Chem. Chem. Phys., 2011, 13: 7660—7665
[57] Zhang F F, Zhang X B, Dong Y H, Wang L M. J. Mater. Chem., 2012, 22: 11452—11454
[58] Liang X, Wen Z Y, Liu Y, Wang X Y, Zhang H, Wu M F, Huang L Z. Solid State Ionics, 2011, 192(1): 347—350
[59] Zhang S C, Zhang L, Y J H. J. Power Sources, 2011, 196(23): 10263—10266
[60] Zhang Y H, Bakenov Z, Zhao Y, Konarov A, Doan T N L, Malik M, Paron T, Chen P. J. Power Sources, 2012, 208: 1—8
[61] Fu Y Z, Su Y S, Manthiram A. J. Electrochem. Soc., 2012, 159 (9): 1420—1424
[62] Fu Y Z, Manthiram A. RSC Adv., 2012, 2: 5927—5929
[63] Fu Y Z, Manthiram A, Chem. Mater., 2012, 24: 3081—3087
[64] Liang X, Wen Z Y, Liu Y, Zhang H, Jin J, Wu M F, Wu X W. J. Power Sources, 2012, 206: 409—413
[65] Fu Y Z, Manthiram A. J. Phy. Chem. C, 2012, 116: 8910—8915
[66] Wang C, Wan W, Chen J T, Zhou H H, Zhang X X, Yuan L X, Huang Y H. J. Mater. Chem. A, 2013, 1: 1716 —1723
[67] Wu F, Chen J Z, Li L, Zhao T, Chen R J. J. Phys. Chem. C, 2011, 115(49): 24411—24417
[68] Li G C, Li G R, Ye S H, Gao X P. Adv. Energy Mater., 2012, 2(10): 1238—1245
[69] Xiao L F, Cao Y L, Xiao J, Schwenzer B, Engelhard M H, Saraf L V, Nie Z M, Exarhos G J, Liu J. Adv. Mater., 2012, 24(9): 1176—1181
[70] Wu F, Chen J Z, Chen R J, Wu S X, Li L, Chen S, Zhao T. J. Phy. Chem. C, 2011, 115(13): 6057—6063
[71] Yuan Y, Yu G H, Cha J J, Wu H, VosgueritchianM, Yao Y, Bao Z N, Cui Y. ACS Nano, 2011, 11: 9187—9193
[72] Song M S, Han S C, Kim H S, Kim J H, Kim K T, Kang Y M, Ahn H J, Dou S X, Lee J Y. J. Electrochem. Soc., 2004, 151: 791—795.
[73] Choi Y J, Jung B S, Lee D J, Jeong J H, Kim K W, Ahn H J, Cho K K, Gu H B. Phys. Scr., 2007, 62: 129
[74] Zhang Y, Wu X B, Feng H, Wang L Z, Zhang A Q, Xia T C, Dong H C. International Association for Hydrogen Energy, 2009, 34(3): 1556—1559
[75] Zhang Y, Wang L Z, Zhang A Q, Song Y H, Li X F, Feng H, Wu X B, Du P P. Solid State Ionics, 2010, 181: 835—838
[76] Ji X, Evers S, Black R, Nazar L F. Nat. Commun., 2011, 2: 325—329
[77] Lee K T, Black R, Yim T, Ji X L, Nazar L F. Adv. Energy Mater., 2012, 2(12): 1490—1496
[78] Seh Z W, Li W Y, Cha J J, Zheng G Y, Yang Y, McDowell M T, Hsu P C, Cui Y. Nat. Commun., DOI: 10.1038/ncomms2327
[79] Miao L X, Wang W K, Wang A B, Yuan K G, Yang Y S. J. Mater. Chem. A, 2013, DOI: 10.1039/c3ta12079a
[80] Wang M, Wang W, Wang A B, Yuan K G, Miao L X, Zhang X L, Huang Y Q, Yu Z B, Qiu J Y. Chem. Commun., 2013, DOI: 10.1039/C3CC45412F

[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 赵秉国, 刘亚迪, 胡浩然, 张扬军, 曾泽智. 制备固体氧化物燃料电池中电解质薄膜的电泳沉积法[J]. 化学进展, 2023, 35(5): 794-806.
[3] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[4] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[5] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[6] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[7] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[8] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[9] 杨世迎, 范丹阳, 保晓娟, 傅培瑶. 碳材料修饰零价铝的作用机制[J]. 化学进展, 2022, 34(5): 1203-1217.
[10] 吴飞, 任伟, 程成, 王艳, 林恒, 张晖. 基于生物炭的高级氧化技术降解水中有机污染物[J]. 化学进展, 2022, 34(4): 992-1010.
[11] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[12] 张旸, 张敏, 赵海雷. 双钙钛矿型固体氧化物燃料电池阳极材料[J]. 化学进展, 2022, 34(2): 272-284.
[13] 张巍, 谢康, 汤云灏, 秦川, 成珊, 马英. 过渡金属基MOF材料在选择性催化还原氮氧化物中的应用[J]. 化学进展, 2022, 34(12): 2638-2650.
[14] 陈向娟, 王欢, 安伟佳, 刘利, 崔文权. 有机碳材料在光电催化系统中的作用[J]. 化学进展, 2022, 34(11): 2361-2372.
[15] 朱本占, 张静, 唐苗, 黄春华, 邵杰. 致癌性卤代醌类消毒副产物造成 DNA 损伤的分子机理研究[J]. 化学进展, 2022, 34(1): 227-236.
阅读次数
全文


摘要

含单质硫正极复合材料