English
新闻公告
More
化学进展 2011, Vol. 23 Issue (0203): 509-519 前一篇   后一篇

• 综述与评论 •

直接甲醇燃料电池关键材料与技术

王新东1*, 谢晓峰2, 王萌1, 刘桂成1, 苗睿瑛1,3, 王一拓1, 阎群4   

  1. 1. 北京科技大学物理化学系 北京 100083;
    2. 清华大学核能与新能源研究院 北京 100084;
    3. 北京科技大学材料学院无机非金属系 北京 100083;
    4. 北京科技大学机器人研究所 北京 100083
  • 收稿日期:2010-10-01 修回日期:2010-12-01 出版日期:2011-03-24 发布日期:2011-01-26
  • 通讯作者: e-mail:echem@ustb.edu.cn E-mail:echem@ustb.edu.cn
  • 基金资助:

    国家高技术发展计划(863)项目(No.2007AA05Z150)和国家自然科学基金项目(No. 50874008, 91010002)资助

Critical Materials and Technology in Direct Methanol Fuel Cells

Wang Xindong1*, Xie Xiaofeng2, Wang Meng1, Liu Guicheng1, Miao Ruiying1,3, Wang Yituo1, Yan Qun4   

  1. 1. Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China;
    2. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China;
    3. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China;
    4. Robot Research Institute, University of Science and Technology Beijing, Beijing 100083, China
  • Received:2010-10-01 Revised:2010-12-01 Online:2011-03-24 Published:2011-01-26

作为绿色能源,直接甲醇燃料电池(DMFC)发展潜力无限,有着独特优势,且已有商业化萌芽。本文以DMFC中关键组件膜电极(MEA)为基础,主要介绍了制备高催化性能的电催化剂、高阻醇性能的质子交换膜(PEM)和高性能的MEA工艺,阐述了高效多层次活化、MEA性能再生等研究概念以及CO2分电流的测试技术,还对催化剂成核机理、PEM传质机理、甲醇的有益渗透理论和北京科技大学关于利用高分子成型理论将催化剂浆料直接喷涂在PEM上形成立体三维网格结构实现梯度催化的催化层制备思路进行了探讨。最后,本文还介绍了流场设计,性能测试和系统控制等方面的研究现状。

Direct methanol fuel cells (DMFCs) are known as the most promising green power source, have acknowledged special superiorities and already obtained primary effects on commercialization. In this article, based on membrane electrode assembly (MEA), which is the key component of a DMFC, the preparation and optimization progress of catalyst, proton exchange membrane (PEM), the preparation of MEA, as well as the current reseach situation of activation technology for MEA are detailed combined with our experimental work. The process of multi-step activation, the method of MEA regeneration and the test technology of the current fraction of CO2 are presented and the catalyst nucleation mechanism, PEM mass transfer mechanism and the benefit of methanol penetrating are discussed, as well. Moreover, future work is forecasted. Based on the macromolecule polymer molding theory, a new thought is proposed in this paper that the catalyst slurry is directly sprayed on PEM to form the three-dimensional network structure, which will realize the gradient catalysis functionality and improve the preparation of catalyst layer of MEA. Finally, this article also describes the flow field design, performance testing and system control and other aspects of research status.

中图分类号: 

()

[1] 衣宝廉(Yi B L). 燃料电池--原理 ·技术 ·应用(Fuel Cell--Principle, Technology and Application). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2003
[2] Wee J H. J. Power Sources, 2007, 173(1): 424-436
[3] 陈维民(Chen W M), 辛勤(Xin Q). 高等学校化学学报 (Chemical Journal of Chinese Universities), 2009, 7: 1259-1267
[4] 李晶晶(Li J J). 北京科技大学硕士论文(Master Dissertation of University of Science and Technology Beijing), 2008
[5] 方勇(Fang Y). 北京科技大学博士论文(Doctoral Dissertation of University of Science and Technology Beijing), 2010
[6] 林才顺(Lin C S). 北京科技大学博士论文(Doctoral Dissertation of University of Science and Technology Beijing), 2008
[7] 王同涛(Wang T T). 北京科技大学博士论文(Doctoral Dissertation of University of Science and Technology Beijing), 2010
[8] Liu G C, Xu J Y, Wang T T, Zhao T T, Wang M, Wang Y T, Li J L, Wang X D. International Journal of Hydrogen Energy, 2010, 108: 1016-1020
[9] 曹殿学(Cao D X), 王贵领(Wang G L), 吕艳卓(Lü Y Z). 燃料电池系统(Fuel Cell Systems). 北京:北京航空航天大学出版社(Beijing: Beihang University Press), 2009. 62-77
[10] Ye F, Wang T T, Li J L, Wang Y L, Li J L, Wang X D. J. Electrochem. Soc., 2009, 156(8): B981-B985
[11] Moises G S, Severna P, James M M, Ellicott C, James R G. US 3830756, 1974
[12] 陈玲(Chen L), 郭敏(Guo M), 王新东(Wang X D). 物理化学学报(Acta Physico-Chimica Sinica), 2006, 22(2): 141-145
[13] Chen L, Guo M, Zhang H F, Wang X D. Electrochim. Acta, 2006, 52: 1191-1198
[14] Dinh H N, Ren X M, Garzon H F, Zelenay P, Gottesfeld S. J. Electroanal. Chem., 2000, 491: 222-233
[15] 曹洁明(Cao J M), 吴伟(Wu W), 陈煜(Chen Y), 刘劲松(Liu J S), 曹喻霖(Cao Y L), 何建平(He J P), 唐亚文(Tang Y W), 杨春(Yang C), 陆天虹(Lu T H). 化学学报 (Acta Chimica Sinica), 2007, 65(12): 1117-1122
[16] 陈玲(Chen L), 李晶晶(Li J J), 栾晓东(Luan X D), 叶峰(Ye F), 王新东(Wang X D). 北京科技大学学报(Journal of University of Science and Technology Beijing), 2007, 29(10): 1019-1022
[17] Nakada M, Ishihara A, Mitsushima S, Kamiya N, Ota K I. Electrochem. Solid-State Lett., 2007, 10(1): F1-F4
[18] Ye F, Li J L, Wang T T, Wei H J, Li J L, Wang X D. J. Phys. Chem. C, 2008, 112(33): 12894-12898
[19] Neburchilov V, Martin J, Wang H J, Zhang J J. J. Power Sources, 2007, 169: 221-238
[20] 王新东(Wang X D), 李建玲(Li J L), 朱中正(Zhu Z Z), 苗睿瑛(Miao R Y), 王同涛(Wang T T), 李庆峰(Li Q F). 电源技术(Chinese J. Power Sources), 2007, 31(6): 435-438
[21] Hejze T, Gollas B R, Sauerbrey R K, Schmied M, Hofer F, Besenhard J O. J. Power Sources, 2005, 140: 21-27
[22] Argun A A, Ashcraft J N, Hammond P T. Advanced Materials, 2008, 20: 1539-1543
[23] Moon G Y, Rhim J W. Macromol. Res., 2008, 16: 524-531
[24] Ahmad H, Kamarudin S K, Hasran U A, Daud W R W. International Journal of Hydrogen Energy, 2010, 35: 2160-2175
[25] Wang J T, Wainright J S, Savinell R F, Litt M. J. Appl. Electrochem., 1996, 26: 751-756
[26] Rikukawa M, Sanui K. Prog. Polym. Sci., 2000, 25: 1463-1502
[27] Li Q F, Jensena J O, Robert F, Savinell R F, Bjerruma N J. Progress in Polymer Science, 2009, 34(5): 449-477
[28] Fernicola A, Panero S, Scrosati B. J. Power Sources, 2008, 178(2): 591-595
[29] 苗睿瑛(Miao R Y). 北京科技大学博士论文(Doctoral Dissertation of University of Science and Technology Beijing), 2008
[30] 林才顺(Lin C S), 王新东(Wang X D), 张红飞(Zhang H F), 王淑燕(Wang S Y). 化工新型材料(New Chemical Materials), 2006,(12): 44-47
[31] Yuan T, Zou Z Q, Chen M, Li Z L, Xia B J, Yang H. J. Power Sources, 2009, 192(2): 423-428
[32] Wang T T, Lin C S, Wang X D. Electrochimica Acta, 2008, 54: 781-785
[33] Antolini E, Passos R R, Ticianelli E A. J. Power Sources, 2002, 109: 477-482
[34] 刘桂成(Liu G C), 王同涛(Wang T T), 侯淼淼(Hou M M), 魏浩杰(Wei H J), 王新东(Wang X D). 第15次全国电化学会议(The 15th National Conference on Electrochemistry). 2009, 2160
[35] Kong C S, Kim D Y, Lee H K. J Power Sources, 2002, 108(1/2): 185-191
[36] Lin C S, Wang T T, Ye F, Fang Y, Wang X D. Electrochemistry Communications, 2008, 10: 255-258
[37] 王同涛(Wang T T), 林才顺(Lin C S),王新东(Wang X D). 电源技术(Chinese J. Power Sources), 2008, (32): 249-250
[38] 林才顺(Lin C S), 王同涛(Wang T T), 王新东(Wang X D). 第14次全国电化学会议(The 14th National Conference on Electrochemistry). 2007, 1417-1418
[39] Middelman E. Fuel Cells Bulletin, 2002, 11: 9-12
[40] Wang T T, Lin C S, Wang X D. Electrochemistry Communications, 2008, 10: 1261-1263
[41] Cha S Y, Lee W M. J. Electrochem. Soc., 1999, 146: 4055-4060
[42] 朱科(Zhu K), 陈延禧(Chen Y X), 韩佐青(Han Z Q), 张继炎(Zhang J Y), 孙燕宝(Sun Y B). 电源技术(Chinese J. Power Sources), 2002, 26(4): 267-268
[43] 罗马吉(Luo M J), 罗志平(Luo Z P), 潘牧(Pan M). 武汉理工大学学报(Journal of Wuhan University of Technology), 2006, 28(SⅡ): 499-503
[44] 林才顺(Lin C S), 王新东(Wang X D), 张红飞(Zhang H F), 王淑燕(Wang S Y). 电源技术(Chinese J. Power Sources), 2007, (7): 554-556
[45] Inoue M, Iwasaki T, Sayama K, Minoru U. J. Power Sources, 2010, 195: 5986-5989
[46] QiZ G, Hollett M, He C Z, Attia A, Kaufman A. Electrochem. Solid State Lett., 2003, 6(2): A27-A29
[47] Zhang H F, Wang X D. J. Electroanal. Chem., 2006, 588: 161-168
[48] 曹鹏贞(Cao P Z), 王红星(Wang H X), 王宇新(Wang Y X). 电源技术(Chinese Journal of Power Sources), 2007, 31(4): 341-343
[49] Scholta J, Hussler F, Zhang W, et al. Journal of Power Sources, 2006, 155(1): 60-65
[50] Liu H C, Yan W M, Soong C Y, Chen F, Chu H S. Journal of Power Sources, 2006, 158(1): 78-87
[51] Eckl R, Grinzinger R, Lehnert W. Journal of Power Sources, 2006, 154(1): 171-179
[52] Chen R, Zhao T S, Yang W W, Xu C. Journal of Power Sources, 2008, 175(1): 276-287
[53] Jung G B, Tu C H, Chi P H, et al. Journal of Solid State Electrochem., 2009, 13(9): 1455-1465
[54] 王新东(Wang X D), 张超(Zhang C), 刘桂成(Liu G C). CN 201010194531. 0, 2010
[55] 张超(Zhang C). 北京科技大学硕士论文(Master Dissertation of University of Science and Technology Beijing), 2010
[56] Liu M, Wang J H, Wang S B, Xie X F, Zhou T, Mathur V K. Chinese Journal of Chemical Engineering, 2010, 18: 843-847
[57] 余达太(Yu D T), 马欣(Ma X). 电子技术应用(Application of Electronic Technique), 2009, (2): 68-70
[58] 余达太(Yu D T), 马欣(Ma X), 张涛(Zhang T). 天津大学学报(Journal of Tianjin University), 2010, 43(6): 511-514
[59] Gogel V, Frey T, Zhu Y S, Friedrich K A, Jrissen L, Garche J. J. Power Sources, 2004, 127: 172-180

[1] 张震, 赵爽, 陈国兵, 李昆锋, 费志方, 杨自春. 碳化硅块状气凝胶的制备及应用[J]. 化学进展, 2021, 33(9): 1511-1524.
[2] 闫业玲, 曹俊媚, 孟凡宁, 王宁, 高立国, 马廷丽. 大面积钙钛矿太阳能电池[J]. 化学进展, 2019, 31(7): 1031-1043.
[3] 姚东梅, 张玮琦, 徐谦, 徐丽, 李华明, 苏华能. 磷酸掺杂聚苯并咪唑高温膜燃料电池膜电极[J]. 化学进展, 2019, 31(2/3): 455-463.
[4] 叶跃坤, 池滨, 江世杰, 廖世军. 质子交换膜燃料电池膜电极耐久性的提升[J]. 化学进展, 2019, 31(12): 1637-1652.
[5] 池滨, 侯三英, 刘广智, 廖世军*. 高性能高功率密度质子交换膜燃料电池膜电极[J]. 化学进展, 2018, 30(2/3): 243-251.
[6] 赵响, 赵宗彦. 四元化合物半导体Cu2ZnSnS4:结构、制备、应用及前景[J]. 化学进展, 2015, 27(7): 913-934.
[7] 陈媛芝, 张乐, 黄存新, 章健, 唐定远, 沈德元. TM2+: Ⅱ-Ⅵ族中红外激光材料[J]. 化学进展, 2015, 27(5): 511-521.
[8] 刘锋, 王诚, 张剑波, 兰爱东, 李建秋, 欧阳明高. 质子交换膜燃料电池有序化膜电极[J]. 化学进展, 2014, 26(11): 1763-1771.
[9] 王奕寒, 脇坂港. 纳米纤维制备工艺进展及其对壳聚糖的适用性分析[J]. 化学进展, 2014, 26(11): 1821-1831.
[10] 刘一凡, 马玉玲, 徐琴琴, 银建中. 支撑型离子液体膜的制备、表征及稳定性评价[J]. 化学进展, 2013, 25(10): 1795-1804.
[11] 汪嘉澍, 潘国顺, 郭丹. 质子交换膜燃料电池膜电极组催化层结构[J]. 化学进展, 2012, (10): 1906-1914.
[12] 周永宁, 傅正文. 纳米薄膜锂离子电池电极材料[J]. 化学进展, 2011, 23(0203): 336-348.
[13] 林原, 王尚华, 付年庆, 张敬波, 周晓文, 肖绪瑞. 柔性染料敏化太阳电池的制备和性能研究[J]. 化学进展, 2011, 23(0203): 548-556.
[14] 樊博 郭玉国 万立骏. Pt基电催化材料*[J]. 化学进展, 2010, 22(05): 852-860.
[15] 李涛 钟贵明 杨勇. 直接甲醇燃料电池用阻醇全氟磺酸复合质子交换膜*[J]. 化学进展, 2010, 22(0203): 522-536.