English
新闻公告
More
化学进展 2014, Vol. 26 Issue (11): 1821-1831 DOI: 10.7536/PC140636 前一篇   后一篇

• 综述与评论 •

纳米纤维制备工艺进展及其对壳聚糖的适用性分析

王奕寒1,2, 脇坂港*2   

  1. 1. 扬州大学食品科学与工程学院 扬州 225127;
    2. 九州工業大学大学院生命体工学研究科 北九州 8080196
  • 收稿日期:2014-06-23 修回日期:2014-07-28 出版日期:2014-11-15 发布日期:2014-09-12
  • 通讯作者: 脇坂港 E-mail:wakisaka@life.kyutech.ac.jp

Nanofiber Fabrication Techniques and Its Applicability to Chitosan

Wang Yihan1,2, Wakisaka Minato*2   

  1. 1. School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China;
    2. Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu 8080196, Japan
  • Received:2014-06-23 Revised:2014-07-28 Online:2014-11-15 Published:2014-09-12

壳聚糖是一种性质独特、可生物降解及生物相容的海洋多糖,以其为原料制备的纳米纤维目前已经得到了广泛应用.传统的壳聚糖纳米纤维/纳米复合纤维制备方法主要采用湿法纺丝与静电纺丝,但是这些方法通常需要复杂的过程和挥发性有机溶剂的参与,安全性较低.为了探寻更简单、更安全的壳聚糖纳米纤维制备方法,本文综述了6种最新颖的纳米纤维制备过程,这些过程被分为"由小到大捆绑"与"从大到小粉碎"两大类."由小到大捆绑"包含各种纺丝(例如离心甩丝法、手纺法、溶液吹喷法)和两种冷冻铸造(直接冷冻干燥法和射流急速冷冻法),而"从大到小粉碎"则以星爆系统法为例.我们从纤维直径、纤维取向与对壳聚糖的适用性的角度对比讨论了它们各自的优缺点并融合了每种方法给予的灵感,提出了一种全新的"超声喷雾结合冷冻铸造"的壳聚糖纳米纤维制备理念.超声喷雾与冷冻铸造相结合的方法彻底摆脱了挥发溶剂的使用.以这种安全性较高的新方法制备出的壳聚糖纳米纤维在生物医学工程与食品科学工程领域具有广阔的应用潜能.

Chitosan is a biodegradable and biocompatible polymer with unique properties derived from marine resources, it is expected as important raw material for nanofibers with wide range of applications. Chitosan and its composite nanofibers have been fabricated by traditional spinning processes such like wet spinning or electrospinning, but these processes are complex, using harmful solvent or high voltage with lower safety. In search of more simple and safe nanofiber fabrication method applicable to chitosan, six kinds of novel nanofiber fabrication methods are reviewed, these methods are divided into two major categories of "small~large" approach and "large~small" approach. "Small~large" approach includes variety of spinning processes (such as rotary jet-spinning, handspinning and solution blowing) and two freeze casting processes (simple freeze-drying and jet-rapid freezing), while star burst system as an example of "large~small" approach. Both advantages and disadvantages of each method are compared from the viewpoint of fiber diameter, fiber orientation and the applicability to chitosan. A new innovative idea of combining ultrasonic atomization and freeze casting process for chitosan nanofibers is also provided in this review. Ultrasonic atomization combined with freeze casting method is simple and avoids usage of volatile solvents. Chitosan nanofibers obtained by this innovative method could be applicable to biomedical engineering and food engineering due to both chitosan's characteristics and the safety of fabrication process.

Contents
1 Introduction
2 Spinning nanofiber fabrication methods
2.1 Rotary jet-spinning
2.2 Handspinning
2.3 Solution blowing
3 Freeze casting nanofiber fabrication methods
3.1 Simple freeze-drying
3.2 Jet-rapid freezing
4 Star burst nanofiber fabrication method
5 Conclusion and outlook

中图分类号: 

()

[1] Kurita K. Mar. Biotechnol., 2006, 8: 203.
[2] Ma B, Xie J W, Jiang J, Shuler F D, Bartlett D E. Nanomedicine, 2013, 8: 1459.
[3] Ranjbar-Mohammadi M, Bahrami S H, Joghataei M T. Mater. Sci. Eng. C, 2013, 33: 4935.
[4] Barikani M, Oliaei E, Seddiqi H, Honarkar H. Iran. Polym. J., 2014, 23: 307.
[5] Watanabe K, Kim B S, Enomoto Y, Kim I S. Macromol. Mater. Eng., 2011, 296: 568.
[6] Liu R F, Xu X L, Zhuang X P, Cheng B W. Carbohydr. Polym., 2014,11: 1116.
[7] Ifuku S, Ikuta A, Egusa M, Kaminaka H, Izawa H, Morimoto M, Saimoto H. Carbohydr. Polym., 2013,98: 1198.
[8] Ifuku S, Shervani Z, Saimoto H. Nanotech. Nanomater., 2013,11: 85.
[9] Qin Y M. Tex. Hor., 1994, 14: 19.
[10] East G C, Qin Y M. J. Appl. Polym. Sci., 1993, 50: 1773.
[11] Liu C X, Bai R B. J. Membr. Sci., 2005, 267: 68.
[12] Shin S R, Park S J, Yoon S G, Lee C K, Shin K M, Gu B K, Shin M K, Kim M S, Kim Y J, Kim S J. Mater. Res. Soc. Symp. Proc., DOI:10.1557/PROC-0915-R01-05.
[13] Chen X. Master Dissertation of Beijing Institute of Clothing Technology, 2008.
[14] Ohkawa K, Yamamoto H. Text. Res. J., 2002, 72: 120.
[15] Li D, Ma J W. Adv. Tex. Tech., 2009, 3: 66.
[16] Shuakat M N, Lin T. J. Nanosci. Nanotechnol., 2014, 14: 1389.
[17] Min B M, Lee S W, Lim J N, You Y, Lee T S, Kang P H, Park W H. Polymer, 2004, 45: 7137.
[18] Duan B, Dong C H, Yuan X Y, Yao K D.J.Biomaterials Sci. Polym. Ed., 2004, 15: 797.DOI:10.1163/156856204774196171.
[19] Ohkawa K, Cha D, Kim H, Nishida A, Yamamoto H. Macromol. Rapid Commun., 2004, 25: 1600.
[20] Geng X Y, Kwon O H, Jang J H. Biomaterials, 2005,26: 5427.
[21] Park W H, Jeong L, Yoo D L, Hudsonc S. Polymer, 2004, 45: 7151.
[22] Thomas H, Heine E, Wollseifen R, Cimpeanu C, Mller M. Int. Nonwovens J., 2005,14: 12.
[23] Zhou Y S, Yang D Z, Nie J. J. Appl. Polym. Sci., 2006, 102: 5692.
[24] Li L, Hsieh Y L. Carbohydr. Res., 2006, 341: 374.
[25] Kim S H, Nam Y S, Lee T S, Park W H. Polym. J., 2003, 35: 185.
[26] Min B M, Lee G, Kim S H, Nam Y S, Lee T S, Park W H. Biomaterials, 2004, 25: 1289.
[27] Ignatova M, Starbova K, Markova N, Manolova N, Rashkov I. Carbohydr. Res., 2006, 341: 2098.
[28] Liao H H, Qi R L, Shen M W, Cao X Y, Guo R, Zhang Y Z, Shi X Y. Colloids Surf. B, 2011, 84: 528.
[29] Peesan M, Rujiravanit R, Supaphol P. J. Biomater. Sci. Polym. Ed., 2006, 17: 547.
[30] Seo H, Matsumoto H, Hara S, Minagawa M, Tanioka A, Yako H, Yamagata Y, Inoue K. Polym. J., 2005, 37: 391.
[31] Doshi J, Reneker D H. J. Electrost., 1995, 35: 151.
[32] Badrossamay M R, Mcllwee H A, Goss J A, Parker K K. Nano Lett., 2010, 10: 2257.
[33] Oliveira M S N, Yeh R, McKinley G H J. J. Non-Newtonian Fluid Mech., 2006, 137: 137.
[34] Badrossamay M R, Balachandran K, Capulli A K, Golecki H M, Agarwal A, Goss J A, Kim H, Shin K, Parker K K. Biomaterials, 2014, 35: 3188.
[35] Zhuang X P, Shi L, Jia K F, Cheng B W, Kang W M. J. Membr. Sci., 2013, 429: 66.
[36] Zhuang X P, Yang X C, Shi L, Cheng B W, Guan K T, Kang W M. Carbohydr. Polym., 2012, 90: 982.
[37] Zhang L F, Kopperstad P, West M, Hedin N, Fong H. J. Appl. Polym. Sci., 2009, 114: 3479.
[38] Zhuang X P, Jia K F, Cheng B W, Guan K T, Kang W M, Ren Y L. J. Eng. Fibers Fabr., 2013, 8: 88.
[39] Medeiros E S, Glenn G M, Klamczynski A P, Orts W J, Mattoso L H C. J. Appl. Polym. Sci., 2009, 113: 2322.
[40] Zhuang X P, Shi L, Zhang B, Cheng B W, Kang W M. Macromol. Res., 2013, 21:346.
[41] Sinha-Ray S, Zhang Y, Yarin A L, Davis S C, Pourdeyhimi B. Biomacromolecules, 2011, 12: 2357.
[42] Behrens A M, Casey B J, Sikorski M J, Wu K L, Tutak W, Sandler A D, Kofinas P. ACS Macro Lett., 2014, 3: 249.
[43] Lee D Y, Zhang C Y, Gao H F. Macromol. Chem. Phys., 2014, 215: 669.
[44] Shi Q, An Z, Tsung C K, Liang H, Zheng N, Hawker C J, Stucky G D. Adv. Mater., 2007, 19: 4539.
[45] Gutiérrez M C, Ferrer M L, del Monte F. Chem. Mater., 2008, 20: 634.
[46] Arndt E M, Gawryla M D, Schiraldi D A. J. Mater. Chem., 2007, 17: 3525.
[47] Gawryla M D, Berg O V D, Weder C, Schiraldi D A. J. Mater. Chem., 2009, 19: 2118.
[48] Somlai L S, Bandi S A, Schiraldi D A, Mathias J. AIChE J., 2006, 52: 1162.
[49] Madihally S V, Matthew H W T. Biomaterials, 1999, 20: 1133.
[50] Baker S C, Rohman G R, Southgate J, Cameron N R. Biomaterials, 2009, 30:1321.
[51] Wallace G G, Kane-Maguire L A P. Adv. Mater., 2002, 14: 953.
[52] Spender J, Demers A L, Xie X F, Cline A E, Earle M A, Ellis L D, Neivandt D J. Nano Lett., 2012, 12: 3857.
[53] Gutierrez M C, Ferrer M L, Monte F D. Chem. Mater., 2008, 20: 634.
[54] Thongprachan N, Nakagawa K, Sano N, Charinpanitkul T, Tanthapanichakoon W. Mater. Chem. Phys., 2008, 112:262.
[55] Whang K, Thomas C H, Healy K E. Polymer, 1995, 36: 837.
[56] Swetman L J, Moulton S E, Wallace G G. J. Mater. Chem., 2008, 18: 5417.
[57] Ma H, Gao Y, Li Y, Gong J, Li X, Fan B, Deng Y. J. Phys. Chem. C, 2009, 113: 9047.
[58] Qian L, Zhang H. Green Chem., 2010, 12:1207.
[59] Qian L, Willneff E, Zhang H. Chem. Commun., 2009, 26: 3946.
[60] Cai X, Luan Y, Dong Q, Shao W, Li Z, Zhao Z. Int. J. Pharm., 2011, 419: 240.
[61] Dutta A K, Kawamoto N, Sugino G, Izawa H, Morimoto M, Saimoto H, Ifuku S. Carbohydr. Polym., 2013, 97: 363.
[62] Dutta A K, Yamada K, Izawa H, Morimoto M, Saimoto H, Ifuku S. J. Chitin Chitosan Sci., 2013, 1: 59.DOI:10.1166/jcc.2013.1008
[63] Ifuku S, Yamada K, Morimoto M, Saimoto H. J. Nanomater., 2012, 2012: 1.
[64] Ifuku S, Saimoto H. Nanoscale, 2012, 4: 3308.

[1] 柳凤琦, 姜勇刚, 彭飞, 冯军宗, 李良军, 冯坚. 超轻纳米纤维气凝胶的制备及其应用[J]. 化学进展, 2022, 34(6): 1384-1401.
[2] 牛小连, 刘柯君, 廖子明, 徐慧伦, 陈维毅, 黄棣. 基于骨组织工程的静电纺纳米纤维[J]. 化学进展, 2022, 34(2): 342-355.
[3] 张震, 赵爽, 陈国兵, 李昆锋, 费志方, 杨自春. 碳化硅块状气凝胶的制备及应用[J]. 化学进展, 2021, 33(9): 1511-1524.
[4] 李祥业, 白天娇, 翁昕, 张冰, 王珍珍, 何铁石. 电纺纤维在超级电容器中的应用[J]. 化学进展, 2021, 33(7): 1159-1174.
[5] 朱蕾, 王嘉楠, 刘建伟, 王玲, 延卫. 静电纺丝一维纳米材料在气敏传感器的应用[J]. 化学进展, 2020, 32(2/3): 344-360.
[6] 马亮, 时学娟, 张笑笑, 李莉莉. 可控核/壳结构聚合物电纺纤维的制备与应用[J]. 化学进展, 2019, 31(9): 1213-1220.
[7] 闫业玲, 曹俊媚, 孟凡宁, 王宁, 高立国, 马廷丽. 大面积钙钛矿太阳能电池[J]. 化学进展, 2019, 31(7): 1031-1043.
[8] 郑勰, 周一凡, 陈思远, 刘晓云, 查刘生. 刺激响应性电纺纳米纤维[J]. 化学进展, 2018, 30(7): 958-975.
[9] 李勃天, 温幸, 唐黎明. 一维聚合物-无机纳米复合材料的制备[J]. 化学进展, 2018, 30(4): 338-348.
[10] 蒋敏, 王敏, 魏仕勇, 陈志宝, 木士春. 基于静电纺丝技术的取向纳米纤维[J]. 化学进展, 2016, 28(5): 711-726.
[11] 孟德芃, 吴俊涛. 静电纺丝法制备新型吸附分离材料[J]. 化学进展, 2016, 28(5): 657-664.
[12] 赵响, 赵宗彦. 四元化合物半导体Cu2ZnSnS4:结构、制备、应用及前景[J]. 化学进展, 2015, 27(7): 913-934.
[13] 陈媛芝, 张乐, 黄存新, 章健, 唐定远, 沈德元. TM2+: Ⅱ-Ⅵ族中红外激光材料[J]. 化学进展, 2015, 27(5): 511-521.
[14] 郭世伟, 苑春刚. 电纺含银纳米粒子复合纤维的制备及应用[J]. 化学进展, 2015, 27(12): 1841-1850.
[15] 龚雪, 杨金龙, 姜玉林, 木士春. 静电纺丝技术在锂离子动力电池中的应用[J]. 化学进展, 2014, 26(01): 41-47.