English
新闻公告
More
化学进展 2014, Vol. 26 Issue (11): 1763-1771 DOI: 10.7536/PC140643 前一篇   后一篇

• 综述与评论 •

质子交换膜燃料电池有序化膜电极

刘锋1,2, 王诚*2, 张剑波3, 兰爱东*1, 李建秋3, 欧阳明高3   

  1. 1. 太原理工大学材料科学与工程学院 太原 030024;
    2. 清华大学核能与新能源技术研究院 北京 100084;
    3. 清华大学汽车安全与节能国家重点实验室 北京 100084
  • 收稿日期:2014-06-01 修回日期:2014-07-01 出版日期:2014-11-15 发布日期:2014-09-12
  • 通讯作者: 兰爱东, 王诚 E-mail:1848072423@qq.com;wangcheng@tsinghua.edu.cn

Ordered Membrane Electrode Assembly of Proton Exchange Membrane Fuel Cell

Liu Feng1,2, Wang Cheng*2, Zhang Jianbo3, Lan Aidong*1, Li Jianqiu3, Ouyang Minggao3   

  1. 1. College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China;
    2. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China;
    3. State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
  • Received:2014-06-01 Revised:2014-07-01 Online:2014-11-15 Published:2014-09-12

质子交换膜燃料电池的核心部件——膜电极经历了两代传统制备方法后,已经进入第三代有序化膜电极发展阶段.有序化膜电极包括质子导体有序化膜电极和电子导体有序化膜电极两大类,而电子导体有序化膜电极包括催化剂材料有序化膜电极和催化剂载体材料有序化膜电极.有序化膜电极具有良好的电子、质子、水和气体等多相物质传输通道,从而可以大大降低膜电极中Pt载量、提升燃料电池的发电性能和延长燃料电池寿命.本文整理了近几年有关有序化膜电极的研究报道,梳理了有序化膜电极研究进展,归纳比较了各种有序化膜电极制备方法的优缺点,对未来高性能、低成本和长寿命的膜电极制备技术开发具有指导意义.

After two traditional manufacturing methods of key component——membrane electrode assemblies (MEA), the third generation ordered MEA has attracted great research interests in proton exchange membrane fuel cell. Ordered MEA could be divided into two kinds: MEA based on ordered proton transportation materials (e.g.nanowires, nanotubes, nanofibers of Nafion or other proton transportation materials) and MEA based on ordered electron transportation materials. However, ordered electron transportation MEA includes MEA based on ordered catalyst (e.g.Pt nanowires or other metal catalyst nanowires) and MEA based on ordered catalyst support such as carbon nanotube and carbon nanofibers. Electrode structure ordering is critical for decreasing Pt loading of the MEA, improving power performance and durability of fuel cell due to good multiphase mass transmission channels(e.g.proton, electron, gas and water transmission channels). Ordered MEAs and their manufacturing methods are reviwed in the paper based on the latest research literatures and patents recent years, and their characteristics and difference are analyzed in detail, which has guiding significance for high performance, low cost and longlife MEA.

Contents
1 Introduction
2 Previous attempts of the ordered MEA
2.1 Introduce of ordered catalyst support
2.2 Introduce of catalyst nanowire
2.3 Introduce of high proton transportation nanofiber
3 The third generation ordered MEA
3.1 MEA based on ordered catalyst support
3.2 MEA based on ordered catalyst
3.3 MEA based on ordered proton transportation materials
4 Conclusion and outlook

中图分类号: 

()

[1] 衣宝廉(Yi B L). 燃料电池——原理·技术·应用(Fuel Cell——Principle, Technology and Application). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2003.
[2] U. S. DRIVE Partnership. Fuel Cell Technical Team Roadmap, (2013-06).-06-01]. http://energy.gov/sites/prod/files/2014/02/f8/fctt_roadmap_june2013.pdf.
[3] 舒婷(Shu T). 华南理工大学博士论文(Doctoral Dissertation of South China University of Technology), 2013.
[4] Srinivasan S, Ticianelli E A, Derouin C R, Redondo A. J. Power Sources, 1988, 22(3/4): 359.
[5] Ticianelli E A, Derouin C R, Redondo A, Srinivasan S. J. Electrochem. Soc., 1988, 135(9): 2209.
[6] Ticianelli E, Derouin C, Srinivasan S. J. Electroanal. Chem. Interfacial Electrochem., 1988, 251(2): 275.
[7] Lindstrom R W. US 4647359, 1987.
[8] Sompalli B, Gasteiger H, Mathias M F, Scozzafava M. US 6524736-A, 2000.
[9] Fukuda K, Tani M, Kaji H, Inai S, Muro T, Watanabe S, Tada T, Inoue M. US 6847518-B2, 2005.
[10] Yan S G, Yan S. US 6933003, 2002.
[11] Yan SG, Doyle J C. US 7955758-B2, 2004.
[12] Zhou J, Zhou X. Journal of Applied Physics, 2013, 113(23): 234901.
[13] Mezalira D Z, Bron M. Journal of Power Sources, 2013, 231: 113.
[14] Wang C, Waje M, Wang X, Tang J M, Haddon R C, Yan Y S. Nano Lett., 2004, 4(2): 345.
[15] Lee S W, Kim B, Chen S, Shao-Horn Y, Hammond P T. J. Am. Chem. Soc., 2009, 131(2): 671.
[16] Wang Q, Wang X, Chai Z, Hu W. Chem. Soc. Rev., 2013, 42(23): 8821.
[17] Waje M M, Li W Z, Chen Z W, Yan Y S. ECS Transactions, 2006, 3 (1): 677.
[18] Waje M M, Li W Z, Chen Z W, Yan Y S. ECS Transactions, 2006, 3 (1): 285.
[19] Zhu W, Ku D, Zheng J P, Liang Z, Wang B, Zhang C, Walsh S, Au G, Plichta E J. Electrochimica Acta, 2010, 55(7): 2555.
[20] Zhu W, Zheng J P, Liang R, Wang B, Zhang C, Au G, Plichta E J. Journal of the Electrochemical Society, 2009, 156(9): B1099.
[21] Zhu W, Zeng C, Zheng J P, Liang R, Zhang C, Wang B. Electrochemical and Solid-State Letters, 2011, 14(8): B81.
[22] Kannan A M, Veedu V P, Munukutla L, Ghasemi-Nejhad M N. Electrochemical and Solid-State Letters, 2007, 10(3): B47.
[23] Zhang C, Yu H, Li Y, Gao Y, Zhao Y, Song W, Shao Z, Yi B. ChemSusChem, 2013, 6(4): 659.
[24] Wang R, Higgins D C, Hoque M A, Lee D, Hassan F, Chen Z. Scientific Reports, 2013, 3: 2431.
[25] Yao X, Su K, Sui S, Mao L, He A, Zhang J, Du S. International Journal of Hydrogen Energy, 2013, 38(28): 12374.
[26] Su K, Sui S, Yao X, Wei Z, Zhang J, Du S. International Journal of Hydrogen Energy, 2014, 39(7): 3397.
[27] Su K, Yao X, Sui S, Wei Z, Zhang J, Du S. International Journal of Hydrogen Energy, 2014, 39(7): 3219.
[28] Liang H, Cao X, Zhou F, Cui C, Zhang W, Yu S. Advanced Materials, 2011, 23(12): 1467.
[29] Kim H J, Kim Y S, Seo M H, Choi S M, Kim W B. Electrochemistry Communications, 2009, 11(2): 446.
[30] Shimizu W, Okada K, Fujita Y, Zhao S, Murakami Y. Journal of Power Sources, 2012, 205: 24.
[31] Alia S M, Jensen K, Contreras C, Garzon F, Pivovar B, Yan Y. ACS Catalysis, 2013, 3(3): 358.
[32] Alia S M, Jensen K O, Pivovar B S, Yan Y. ACS Catalysis, 2012, 2(5): 858.
[33] Yan Y, Chen Z, Wisan Y, Jungwei C. US 2009220835-A1, 2009.
[34] Alexandrovichserov A, Kwak C, Lee S, Alexey A, Lee S H, Alessandro V A, Guo C. US 2007212592-A1, 2007.
[35] Niu C, Bock L A, Chow C Y H, Empedocles S A, Parce J W, Bock L, Chow C, Empedocles S, Parce J, Bork L A, Empidochris S A, Joe C Y H, New C. US 2006188774-A1, 2008
[36] Choi J, Lee K M, Wycisk R, Pintauro P N, Mather P T. ECS Transactions, 2008, 16(2): 1433.
[37] Choi J, Lee K M, Wycisk R, Pintauro P N, Mather P T. Macromolecules, 2008, 41(13): 4569.
[38] Choi J, Lee K M, Wycisk R, Pintauro P N, Mather P T. Journal of Materials Chemistry, 2010, 20(30): 6282.
[39] Tamura T, Kawakami H. Nano Letters, 2010, 10(4): 1324.
[40] Nah C, Kwak S K, Kim N, Lyu M Y, Hwang B S, Akle B, Leo D J. Key Engineering Materials, 2007, 334/335: 1001.
[41] Chen H, Snyder J D, Elabd Y A. Macromolecules, 2008, 41(1): 128.
[42] Chen L, Tao H L, Li J R, Pan M. International Journal of Energy Research, 2013, 37(8): 879.
[43] Yamamoto D, Munakata H, Kanamura K. Journal of the Electrochemical Society, 2008, 155(3): B303.
[44] Li W, Wang X, Chen Z, Waje M, Yan Y. Langmuir, 2005, 21(21): 9386.
[45] Caillard A, Charles C, Boswell R, Brault P. Journal of Physics D: Applied Physics, 2008, 41(18): 185307.
[46] Middelman E. Fuel Cells Bulletin, 2002, 2002(11): 9.
[47] Hussain M M, Song D, Liu Z S, Xie Z. Journal of Power Sources, 2011, 196(10): 4533.
[48] Du C Y, Cheng X Q, Yang T, Yin G P, Shi P F. Electrochemistry Communications, 2005, 7(12): 1411.
[49] Du C Y, Yang T, Shi P F, Yin G P, Cheng X Q. Electrochimica Acta, 2006, 51(23): 4934.
[50] Chisaka M, Daiguji H. Electrochemistry Communications, 2006, 8(8): 1304.
[51] Hatanka T, Nakanishi H, Matsumoto S, Morimoto Y. ECS Transactions, 2006, 3 (1): 277.
[52] Tian Z Q, Lim S H, Poh C K, Tang Z, Xia Z, Luo Z, Shen P K, Chua D, Feng Y P, Shen Z, Lin J. Advanced Energy Materials, 2011, 1(6): 1205.
[53] Zhang W, Chen J, Minett A I, Swiegers G F, Too C O, Wallace G G. Chemical Communications, 2010, 46(26): 4824.
[54] Murata S, Imanishi M, Hasegawa S, Namba R. Journal of Power Sources, 2014, 253: 104.
[55] Zhang W, Minett A I, Gao M, Zhao J, Razal J M, Wallace G G, Romeo T, Chen J. Advanced Energy Materials, 2011, 1(4): 671.
[56] Zheng M, Li P, Fu G, Chen Y, Zhou Y, Tang Y, Lu T. Applied Catalysis B: Environmental, 2013, 129: 394.
[57] Yang J, Liu D. Carbon, 2007, 45(14): 2845.
[58] Rao S M, Xing Y. Journal of Power Sources, 2008, 185(2): 1094.
[59] Lv H, Ma J, Qiao J, Wang J, Yang D, Zhang C, Zheng J. CN 101515648, 2009.
[60] Meng Y, Jiang Z, Yu X. CN 102157741, 2011.
[61] Sun G. CN 102881925-A, 2013.
[62] Debe M K, Hendricks S M, Vernstrom G D, Meyers M, Brostrom M, Stephens M, Chan Q, Willey J, Hamden M, Mittelsteadt C K, Capuano C B, Ayers K E, Anderson E B. Journal of the Electrochemical Society, 2012, 159(6): K165.
[63] Debe M K, Atanasoski R T, Steinbach A J. The Electrochemical Society Transactions, 2011, 41 (1): 937.
[64] Ziegler R J, Thomas J H, Debe M K, Haugen G M, Steinbach A J, Debe K, Haugen M, Steinbach J, Thomas H, Ziegler J. US 5879827-A, 1999.
[65] Debe M K, Ziegler R J, Hendricks S M, Debe M, Ziegler R, Henfricks S. US 2008020923-A1, 2008.
[66] Debe M K, Schmoeckel A K, Vernstrom G D, Atanasoski R. Journal of Power Sources, 2006, 161(2): 1002.
[67] 张敏(Zhang M), 李经建(Li J J), 潘牧(Pan M), 徐东升(Xu D S). 物理化学学报(Acta Physico-Chimica Sinica), 2011, (7): 1685.
[68] Du S. Journal of Power Sources, 2010, 195(1): 289.
[69] Du S, Millington B, Pollet B G. International Journal of Hydrogen Energy, 2011, 36(7): 4386.
[70] Du S, Pollet B G. International Journal of Hydrogen Energy, 2012, 37(23): 17892.
[71] Pan C, Wu H, Wang C, Wang B, Zhang L, Cheng Z, Hu P, Pan W, Zhou Z, Yang X, Zhu J. Advanced Materials, 2008, 20(9): 1644.
[72] Lu Z, Pan C F, Jing Z. Chinese Physics Letters, 2008, 25(8): 3056.
[73] Pan C F, Zhang L, Zhu J, Luo J, Cheng Z D, Wang C. Nanotechnology, 2007, 18: 0153021.
[74] 潘曹峰(Pan C F). 清华大学博士论文(Doctoral Dissertation of Tsinghua University), 2010.
[75] Dong B, Gwee L, Salas-De La Cruz D, Winey K I, Elabd Y A. Nano Letters, 2010, 10(9): 3785.
[76] Debe M K. 3M, (2011-05-10).-06-01]. http://www.hydrogen.energy.gov/pdfs/review11/fc001_debe_2011_o.pdf.

[1] 王龙, 周庆萍, 吴钊峰, 张延铭, 叶小我, 陈长鑫. 基于碳纳米管的光伏电池[J]. 化学进展, 2023, 35(3): 421-432.
[2] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[3] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[4] 吴磊, 刘利会, 陈淑芬. 基于碳基透明电极的柔性有机电致发光二极管[J]. 化学进展, 2021, 33(5): 802-817.
[5] 黄振宇, 涂正凯. 质子交换膜燃料电池电流密度分布特性和研究展望[J]. 化学进展, 2020, 32(7): 943-949.
[6] 姚东梅, 张玮琦, 徐谦, 徐丽, 李华明, 苏华能. 磷酸掺杂聚苯并咪唑高温膜燃料电池膜电极[J]. 化学进展, 2019, 31(2/3): 455-463.
[7] 叶跃坤, 池滨, 江世杰, 廖世军. 质子交换膜燃料电池膜电极耐久性的提升[J]. 化学进展, 2019, 31(12): 1637-1652.
[8] 王睿, 台国安, 伍增辉, 邵伟, 候闯, 郝金钱. 硼纳米结构的理论和实验研究[J]. 化学进展, 2019, 31(12): 1696-1711.
[9] 周启峰, 江波*, 杨海波*. 可作为碳纳米管片段的共轭芳烃大环的设计合成[J]. 化学进展, 2018, 30(5): 628-638.
[10] 张华东, 李攻科*, 胡玉斐*. 埃洛石纳米管在分离富集中的应用[J]. 化学进展, 2018, 30(2/3): 198-205.
[11] 池滨, 侯三英, 刘广智, 廖世军*. 高性能高功率密度质子交换膜燃料电池膜电极[J]. 化学进展, 2018, 30(2/3): 243-251.
[12] 丁晨, 赵兵*, 祁宁. 基于银纳米线导电网络的电子纺织品[J]. 化学进展, 2017, 29(8): 892-901.
[13] 陈禹夫, 李祥高, 肖殷, 王世荣. 溶液法大面积制备有机小分子场效应晶体管[J]. 化学进展, 2017, 29(4): 359-372.
[14] 张贺, 张驰, 宋晔. 阳极氧化钛纳米管阵列膜可控制备[J]. 化学进展, 2016, 28(6): 773-783.
[15] 王晶, 范昊雯, 张贺, 陈群, 刘仪, 马卫华. 钛的阳极氧化过程与TiO2纳米管的形成机理[J]. 化学进展, 2016, 28(2/3): 284-295.