English
新闻公告
More
化学进展 2018, Vol. 30 Issue (2/3): 243-251 DOI: 10.7536/PC170818 前一篇   后一篇

• 综述 •

高性能高功率密度质子交换膜燃料电池膜电极

池滨, 侯三英, 刘广智, 廖世军*   

  1. 华南理工大学化学与化工学院 广州 510641
  • 收稿日期:2017-08-18 修回日期:2017-10-28 出版日期:2018-02-15 发布日期:2017-12-11
  • 通讯作者: 廖世军,chsjliao@scut.edu.cn E-mail:chsjliao@scut.edu.cn
  • 基金资助:
    国家重点研发计划项目(No.2016YFB0101201)、国家自然科学基金项目(No.21476088,51302091,U1301245)、广东省自然科学基金项目(No.2014A010105041,2015A030312007)、广东省科学技术厅(No.2015B010106012)、广东省教育委员会(No.2013CXZDA003)和广州市科技创新委员会(No.2016201604030012)资助

High Performance and High Power Density Membrane Electrode Assembly for Proton Exchange Membrane Fuel Cells

Bin Chi, Sanying Hou, Guangzhi Liu, Shijun Liao*   

  1. School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
  • Received:2017-08-18 Revised:2017-10-28 Online:2018-02-15 Published:2017-12-11
  • Supported by:
    The work was supported by the State's Key Project of Research and Development Plan of China(No. 2016YFB0101201), the National Natural Science Foundation of China(No. 21476088, 51302091, U1301245), the Natural Science Foundation of Guangdong Province(No. 2014A010105041, 2015A030312007), the Guangdong Provincial Department of Science and Technology(No. 2015B010106012), the Educational Commission of Guangdong Province(No.2013CXZDA003), and the Guangzhou Science Technology Innovation Committee(No. 2016201604030012).
膜电极是质子交换膜燃料电池最为重要的核心部件,其性能直接决定着燃料电池的性能。提高膜电极的性能和功率密度,对于推动燃料电池的商业化进程具有十分重要的意义。通常意义上的膜电极包括质子交换膜、阴极催化层、阳极催化层、阴极气体扩散层和阳极气体扩散层等5个基本单元(常常称之为五合一膜电极),气体扩散层又包括气体扩散材料层和微孔整平层;膜电极的性能取决于材料和制备技术两个方面,制备技术、膜电极的关键组成材料、铂载量都对膜电极的性能和功率密度具有重要影响。近年来,随着催化剂和质子交换膜等关键材料性能的提升,以及制备技术的进步,国内外膜电极的性能得到了大幅度的提升,丰田公司燃料电池的体积功率密度可高达3.2 kW/L。本文将主要从膜电极制备技术的角度(涉及催化剂层和气体扩散层的制备技术等)介绍近年来高性能高功率密度膜电极的研究发展情况,同时介绍国内外在降低膜电极铂载量和开发自增湿膜电极方面的研究进展。
Membrane electrode assembly(MEA) is the most important component of proton exchange membrance(PEM) fuel cell and it plays a crucial role for the performance of the fuel cell. High performance and high power density MEA is urgently desired for the commercialization of the fuel cell on a large scale. The conventional MEA is consist of proton exchange membrane, cathode/anode catalyst layer, cathode/anode gas diffusion layer(usually called five in one MEA), and the gas diffusion layer includes gas diffusion material and microporous layer. The performance of MEA depends on two aspects of materials and preparation technology. The preparation technology, the key component material of MEA and the platinum loading have an important influence on the performance and power density of MEA. In recent years, the performance of MEA has been greatly improved with the improvement of the key material(such as catalyst, proton exchange membrane) and the progress of preparation technology, and the volume power density of the Toyota Corporation can achieve as high as 3.2 kW/L. In this paper, the research progress of MEAs with high performance and high power density in recent years are introduced from the main views of MEA's preparation technology, involving the preparation technology of catalyst layer and gas diffusion layer. Meanwhile, the research progress are introduced in two aspects:reducing platinum loading and developing self-humidifying MEAs.
Contents
1 Introduction
2 Research and development of electrode preparation and assembly technology
3 Construction and research of proton exchange membrane and functional layers
3.1 The influence of proton exchange membrane on the performance of membrane electrode
3.2 Construction of catalyst layer
3.3 Construction of gas diffusion layer and microporous layer
4 Low platinum supported membrane electrode assembly with high performance
5 Self-humidifying membrane electrode assembly with high performance
6 Conclusion

中图分类号: 

()
[1] Rezaei Niya S M, Hoorfar M. J. Power Sources, 2013, 240:281.
[2] Kraytsberg A, Ein-Eli Y. Energy Fuels, 2014, 28:7303.
[3] Pei P C, Chen H C. Appl. Energy, 2014, 125:60.
[4] Long H T, Del Frari D, Martin A, Didierjean J, Ball V, Michel M, El Ahrach H I. J. Power Sources, 2016, 307:569.
[5] Oshima T, Yoshizawa-Fujita M, Takeoka Y, Rikukawa M. ACS Omega, 2016, 1:939.
[6] Yang S Y, Seo D J, Kim M R, Seo M H, Hwang S M, Jung Y M, Kim B J, Yoon Y G, Han B, Kim T Y. J. Power Sources, 2016, 328:75.
[7] Ferreira R B, Falcão D S, Oliveira V B, Pinto A. Electrochim. Acta, 2017, 224:337.
[8] Jeong G, Kim M, Han J, Kim H J, Shul Y G, Cho E. J. Power Sources, 2016, 323:142.
[9] Klingele M, Britton B, Breitwieser M, Vierrath S, Zengerle R, Holdcroft S, Thiele S. Electrochem. Commun., 2016, 70:65.
[10] Mehrpooya M, Nouri G, Eikani M H, Khandan N, Hajinezhad A. Int. J. Ambient Energy, 2015, 37:639.
[11] Sassin M B, Garsany Y, Gould B D, Swider-Lyons K E. Anal. Chem., 2017, 89:511.
[12] Zhiani M, Mohammadi I, Majidi S. Int. J. Hydrogen Energy, 2017, 42:4490.
[13] Su H N, Pasupathi S, Bladergroen B, Linkov V, Pollet B G. Int. J. Hydrogen Energy, 2013, 38:11370.
[14] Hezarjaribi M, Jahanshahi M, Rahimpour A, Yaldagard M. Appl. Surf. Sci., 2014, 295:144.
[15] Wilson M S, Gottesfeld S. J. Appl. Electrochem., 1992, 22:1.
[16] Yilmaztürk S, Gümüsoglu T, Ari G A, Öksüzömer F, Deligöz H. J. Power Sources, 2012, 201:88.
[17] Wang W T, Chen S Q, Li J J, Wang W. Int. J. Hydrogen Energy, 2015, 40:4649.
[18] Huang T H, Shen H L, Jao T C, Weng F B, Su A. Int. J. Hydrogen Energy, 2012, 37:13872.
[19] Tian Z Q, Lim S H, Poh C K, Tang Z, Xia Z, Luo Z Q, Shen P K, Chua D, Feng Y P, Shen Z X, Lin J Y. Adv. Energy Mater., 2011, 1:1205.
[20] Du S F, Pollet B G. Int. J. Hydrogen Energy, 2012, 37:17892.
[21] Kim O H, Cho Y H, Kang S H, Park H Y, Kim M, Lim J W, Chung D Y, Lee M J, Choe H, Sung Y E. Nat. Commun., 2013, 4:2473.
[22] Zhang C K, Yu H M, Li Y K, Gao Y, Zhao Y, Song W, Shao Z G, Yi B L. ChemSusChem, 2013, 6:659.
[23] Murata S, Imanishi M, Hasegawa S, Namba R. J. Power Sources, 2014, 253:104.
[24] Gashoul F, Parnian M J, Rowshanzamir S. Int. J. Hydrogen Energy, 2017, 42:590.
[25] Parnian M J, Rowshanzamir S, Gashoul F. Energy, 2017, 125:614.
[26] Peron J, Mani A, Zhao X, Edwards D, Adachi M, Soboleva T, Shi Z Q, Xie Z, Navessin T, Holdcroft S. J. Membr. Sci., 2010, 356:44.
[27] Peighambardoust S J, Rowshanzamir S, Amjadi M. Int. J. Hydrogen Energy, 2010, 35:9349.
[28] Wang R J, Zhang W J, He G H, Gao P. J. Mater. Chem. A, 2014, 2:16416.
[29] Klingele M, Breitwieser M, Zengerle R, Thiele S. J. Mater. Chem. A, 2015, 3:11239.
[30] Yu D M, Kim T H, Lee J Y, Yoon S, Hong Y T. Electrochim. Acta, 2015, 173:268.
[31] Wei M, Jiang M, Liu X B, Wang M, Mu S C. J. Power Sources, 2016, 327:384.
[32] Lai S, Park J, Cho S, Tsai M, Lim H, Chen K. Int. J. Hydrogen Energy, 2016, 41:9556.
[33] Gao Y A, Zhang X X. Electrochim. Acta, 2016, 218:101.
[34] Suzuki T, Tanaka H, Hayase M, Tsushima S, Hirai S. Int. J. Hydrogen Energy, 2016, 41:20326.
[35] Heydari A, Gharibi H. J. Power Sources, 2016, 325:808.
[36] Zeng Y C, Shao Z G, Zhang H J, Wang Z Q, Hong S J, Yu H M, Yi B L. Nano Energy, 2017, 34:344.
[37] Xie J, Xu F, Wood D L, More K L, Zawodzinski T A, Smith W H. Electrochim. Acta, 2010, 55:7404.
[38] Zeis R. Beilstein J. Nanotechnol., 2015, 6:68.
[39] Shahgaldi S, Alaefour I, Unsworth G, Li X G. Int. J. Hydrogen Energy, 2017, 42:11813.
[40] Su K H, Sui S, Yao X Y, Wei Z X, Zhang J L, Du S F. Int. J. Hydrogen Energy, 2014, 39:3397.
[41] Ahn S H, Lee B S, Choi I, Yoo S J, Kim H J, Cho E A, Henkensmeier D, Nam S W, Kim S K, Jang J H. Appl. Catal. B-Environ., 2014, 154:197.
[42] Park I S, Li W, Manthiram A. J. Power Sources, 2010, 195:7078.
[43] Cho D H, Lee S Y, Shin D W, Hwang D S, Lee Y M. J. Power Sources, 2014, 258:272.
[44] Liang X L, Pan G S, Xu L, Wang J S. Fuel, 2015, 139:393.
[45] Yen Y T, Fang T H, Lin Y C. Robot. Comput. Integr. Manuf., 2011, 27:531.
[46] Su H, Jao T C, Barron O, Pollet B G, Pasupathi S. J. Power Sources, 2014, 267:155.
[47] Cooper C D, Burk J J, Taylor C P, Buratto S K. J. Appl. Electrochem., 2017, 47:699.
[48] Sung C C, Liu C Y, Cheng C C J. Int. J. Hydrogen Energy, 2014, 39:11706.
[49] Wei Z X, Su K H, Sui S, He A, Du S F. Int. J. Hydrogen Energy, 2015, 40:3068.
[50] Fofana D, Natarajan S K, Hamelin J, Benard P. Energy, 2014, 64:398.
[51] Kim G H, Eom K S, Kim M J, Yoo S J, Jang J H, Kim H J, Cho E. ACS Appl. Mater. Interfaces, 2015, 7:27581.
[52] Shu T, Dang D, Xu D W, Chen R, Liao S J, Hsieh C T, Su A, Song H Y, Du L. Electrochim. Acta, 2015, 177:168.
[53] Deevanhxay P, Sasabe T, Tsushima S, Hirai S. J. Power Sources, 2013, 230:38.
[54] Owejan J P, Trabold T A, Mench M M. Int. J. Heat Mass Transfer, 2014, 71:585.
[55] Park J, Oh H, Ha T, Lee Y I, Min K. Appl. Energy, 2015, 155:866.
[56] Zenyuk I V, Parkinson D Y, Hwang G, Weber A Z. Electrochem. Commun., 2015, 53:24.
[57] Kitahara T, Nakajima H, Inamoto M, Morishita M. J. Power Sources, 2013, 234:129.
[58] Kitahara T, Nakajima H, Inamoto M, Shinto K. J. Power Sources, 2014, 248:1256.
[59] Ebenezer D, Neelima K, Jagannatham M, Haridoss P. Fuel Cells, 2016, 16:349.
[60] Najafabadi A T, Leeuwner M J, Wilkinson D P, Gyenge E L. ChemSusChem, 2016, 9:1689.
[61] Oh H, Park J, Min K, Lee E, Jyoung J Y. Appl. Energy, 2015, 149:186.
[62] Park J, Oh H, Lee Y I, Min K, Lee E, Jyoung J Y. Appl. Energy, 2016, 171:200.
[63] Chun J H, Park K T, Jo D H, Lee J Y, Kim S G, Lee E S, Jyoung J Y, Kim S H. Int. J. Hydrogen Energy, 2010, 35:11148.
[64] Xie Z Y, Chen G F, Yu X, Hou M, Shao Z G, Hong S J, Mu C. Int. J. Hydrogen Energy, 2015, 40:8958.
[65] Dang D, Zhang L, Zeng X Y, Tian X L, Qu C, Nan H X, Shu T, Hou S Y, Yang L J, Zeng J H, Liao S J. J. Power Sources, 2017, 355:83.
[66] Breitwieser M, Klingele M, Britton B, Holdcroft S, Zengerle R, Thiele S. Electrochem. Commun., 2015, 60:168.
[67] Shukla S, Domican K, Karan K, Bhattacharjee S, Secanell M. Electrochim. Acta, 2015, 156:289.
[68] Martin S, Martinez-Vazquez B, Garcia-Ybarra P L, Castillo J L. J. Power Sources, 2013, 229:179.
[69] Rowshanzamir S, Peighambardoust S J, Parnian M J, Amirkhanlou G R, Rahnavard A. Int. J. Hydrogen Energy, 2015, 40:549.
[70] Sayadi P, Rowshanzamir S, Parnian M J. Energy, 2016, 94:292.
[71] Park C H, Lee S Y, Hwang D S, Shin D W, Cho D H, Lee K H, Kim T W, Kim T W, Lee M, Kim D S, Doherty C M, Thornton A W, Hill A J, Guiver M D, Lee Y M. Nature, 2016, 532:480.
[72] Yang H N, Lee W H, Choi B S, Kim W J. J. Membr. Sci., 2016, 504:20.
[73] Lee D C, Yang H N, Park S H, Park K W, Kim W J. J. Membr. Sci., 2015, 474:254.
[74] Lo A Y, Huang C Y, Sung L Y, Louh R F. Electrochim. Acta, 2015, 180:610.
[75] Hou S Y, Liao S J, Xiong Z A, Zou H B, Dang D, Zheng R P, Shu T, Liang Z X, Li X H, Li Y W. J. Power Sources, 2015, 273:168.
[76] Yang H N, Lee W H, Choi B S, Ko Y D, Yi S C, Kim W J. Energy, 2017, 120:12.
[1] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[2] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[3] 白钰, 王拴紧, 肖敏, 孟跃中, 王成新. 燃料电池用高温质子交换膜[J]. 化学进展, 2021, 33(3): 426-441.
[4] 黄振宇, 涂正凯. 质子交换膜燃料电池电流密度分布特性和研究展望[J]. 化学进展, 2020, 32(7): 943-949.
[5] 姚东梅, 张玮琦, 徐谦, 徐丽, 李华明, 苏华能. 磷酸掺杂聚苯并咪唑高温膜燃料电池膜电极[J]. 化学进展, 2019, 31(2/3): 455-463.
[6] 叶跃坤, 池滨, 江世杰, 廖世军. 质子交换膜燃料电池膜电极耐久性的提升[J]. 化学进展, 2019, 31(12): 1637-1652.
[7] 梁茜, 王诚, 雷一杰, 刘亚迪, 赵波, 刘锋. 金属有机框架材料在质子交换膜燃料电池中的潜在应用[J]. 化学进展, 2018, 30(11): 1770-1783.
[8] 王诚, 王树博, 张剑波, 李建秋, 欧阳明高, 王建龙. 车用质子交换膜燃料电池材料部件[J]. 化学进展, 2015, 27(2/3): 310-320.
[9] 刘锋, 王诚, 张剑波, 兰爱东, 李建秋, 欧阳明高. 质子交换膜燃料电池有序化膜电极[J]. 化学进展, 2014, 26(11): 1763-1771.
[10] 漆志刚, 宫琛亮*, 梁宇, 李辉, 张树江, 李彦锋. 中温质子交换膜燃料电池高质子传导率磺化芳香族聚合物膜[J]. 化学进展, 2013, 25(12): 2103-2111.
[11] 陈旭, 何大平, 木士春. 掺氮石墨烯研究[J]. 化学进展, 2013, 25(08): 1292-1301.
[12] 汪嘉澍, 潘国顺, 郭丹. 质子交换膜燃料电池膜电极组催化层结构[J]. 化学进展, 2012, (10): 1906-1914.
[13] 赵瑞瑞, 朱利敏, 杨汉西. 自由基聚合物——一类新颖的高性能二次电池材料[J]. 化学进展, 2011, 23(0203): 302-309.
[14] 周永宁, 傅正文. 纳米薄膜锂离子电池电极材料[J]. 化学进展, 2011, 23(0203): 336-348.
[15] 刘志祥, 钱伟, 郭建伟, 张杰, 王诚, 毛宗强. 质子交换膜燃料电池材料[J]. 化学进展, 2011, 23(0203): 487-500.