English
新闻公告
More
化学进展 2015, Vol. 27 Issue (7): 913-934 DOI: 10.7536/PC141033 前一篇   后一篇

• 综述与评论 •

四元化合物半导体Cu2ZnSnS4:结构、制备、应用及前景

赵响, 赵宗彦*   

  1. 昆明理工大学材料科学与工程学院 昆明 650093
  • 收稿日期:2014-10-01 修回日期:2015-02-01 出版日期:2015-07-15 发布日期:2015-06-15
  • 通讯作者: 赵宗彦 E-mail:zzy@kmust.edu.cn
  • 基金资助:
    国家自然科学基金项目(No. 21263006)和云南省教育厅科学研究基金项目(No. 2012Y542)资助

Quaternary Compound Semiconductor Cu2 ZnSnS4: Structure, Preparation, Applications, and Perspective

Zhao Xiang, Zhao Zongyan*   

  1. Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
  • Received:2014-10-01 Revised:2015-02-01 Online:2015-07-15 Published:2015-06-15
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21263006) and the Science Research Foundation of Educational Commission of Yunnan Province of China (No. 2012Y542).
四元化合物半导体铜锌锡硫(Cu2 ZnSnS4,CZTS)由于其四种组成元素在地壳中丰度非常高且安全无毒,因而成本低廉。CZTS作为直接带隙半导体材料,其吸收光谱与太阳辐射光谱匹配性好、光吸收系数高,具有结构与性质可调可控、光电性能优异等优势,是发展绿色、低成本、高效率和稳定薄膜太阳电池的理想核心材料。近年来,国内外研究者对CZTS的结构与性质、制备工艺、应用尤其是通过结构、成分的调控提高其光电转换效率等方面进行了广泛的研究和探讨。本文对CZTS的结构演变、制备工艺、光电性质与应用等进行综述,重点分析了晶体结构、缺陷、表面与界面、合金化等因素对其光伏性能的影响。同时,对CZTS作为新型能量转换材料在光催化和热电等领域的应用进行了探讨。最后对CZTS目前存在的挑战和今后的研究重点进行总结并展望了将来可能的突破方向。
The compositions of quaternary compound semiconductor Cu2 ZnSnS4 (CZTS) not only are non-toxic, but also have high abundances in the earth crust, thus its raw materials cost is relative cheap. As a direct band-gap semiconductor, the absorption curve of CZTS is very well matching with solar radiation spectra, and has a large optical absorption coefficient. Besides, its crystal structure, composition, and properties can be easily adjusted and controlled. So, CZTS presents excellent optoelectric performance, and is considered as the ideal key materials for the development of green, low-cost, high-efficient, and stable thin film solar cells. Recently, the crystal structures, physical and chemical properties, preparation technology, and various applications of CZTS have been extensive investigated. Especially, the researches about adjust and control the structure or composition to improve the photoelectric conversion efficiency of CZTS-based thin film solar cells have been received extensive concerning. In this review, the progress of CZTS research (including crystal structure evolution, preparation technology, optoelectric properties, and applications) has been summarized, in which the relationship between intrinsic factors (such as crystal structures, defects, surface, interface, and alloy effects) and photovoltaic performance of CZTS has been emphasized. Meanwhile, as the novel energy conversion materials, the applications of CZTS in the fields of photocatalysis and thermoelectrics have been also discussed. Finally, current challenge and future hotspots of CZTS are point out, and the possible breakthrough direction is forecasted.

Contents
1 Introduction
2 Crystal structure evolution
3 Preparation technologies
3.1 Vapor phase methods
3.2 Liquid phase methods
3.3 Solid phase methods
4 Theoretical calculations
4.1 Crystal structure and basic physical properties
4.2 Aolly semiconductors
4.3 Defects
5 Applications
5.1 Photovoltaics
5.2 Photocatalysis
5.3 Thermoelectrics
6 Challenge and outlook

中图分类号: 

()
[1] Solar Energy's Path Towards Competitiveness. Nat. Mater., 2012, 11: 173.
[2] Conibeer G. Mater. Today, 2007, 10: 42.
[3] Taguchi M, Yano A, Tohoda S, Matsuyama K, Nakamura Y, Nishiwaki T, Fujita K, Maruyama E. IEEE J. Photovolt., 2013, 4: 96.
[4] Gloeckler M, Sankin I, Zhao Z. IEEE J.Photovolt., 2013, 3: 1389.
[5] Powalla M, Jackson P, Witte W, Hariskos D, Paetel S, Tschamber C, Wischmann W. Sol. Energy Mater. Sol. Cells, 2013, 119: 51.
[6] Wada T, Nakamura S, Maeda T. Prog. Photovolt. Res. App., 2012, 20: 520.
[7] Scragg J J, Dale P J, Peter L M, Zoppi G, Forbes I. Phys. Status Solidi (b), 2008, 245: 1772.
[8] Yoo H, Kim J. Sol. Energy Mater. Sol. Cells, 2011, 95: 239.
[9] Nitsche R, Sargent D, Wild P. J. Cryst. Growth, 1967, 1: 52.
[10] Ito K, Nakazawa T. Jpn. J. Appl. Phys., 1988, 27: 2094.
[11] Katagiri H, Sasaguchi N, Hando S, Hoshino S, Ohashi J, Yokota T. Sol. Energy Mater. Sol. Cells, 1997, 49: 407.
[12] Wang W, Winkler M T, Gunawan O, Gokmen T, Todorov T K, Zhu Y, Mitzi D B. Adv. Energy Mater., 2014, 4: 1.
[13] Fan F J, Wu L, Yu S H. Energy Environ. Sci., 2014, 7: 190.
[14] (a) Goodman C H L. J. Phys. Chem. Solids, 1958, 6: 305.; (b) Pamplin B R. Nature, 1960, 188: 136.
[15] Chen S, Gong X G, Walsh A, Wei S H. Phys. Rev. B, 2009, 79: 165211.
[16] 陈时友(Chen S Y), 龚新高(Gong X G), Walsh A, 魏苏淮(Wei S H). 物理 (Physics), 2011, 40: 248.
[17] Nakamura S, Maeda T, Wada T. Jpn. J. Appl. Phys., 2011, 50: 05FF01.
[18] Schorr S, Hoebler H J, Tovar M. Eur. J. Mineral., 2007, 19: 65.
[19] Chen S, Walsh A, Luo Y, Yang J H, Gong X, Wei S H. Phys. Rev. B, 2010, 82: 195203.
[20] Lu X, Zhuang Z, Peng Q, Li Y. Chem. Commun., 2011, 47: 3141.
[21] Jimbo K, Kimura R, Kamimura T, Yamada S, Maw W S, Araki H, Oishi K, Katagiri H. Thin Solid Films, 2007, 515: 5997.
[22] Katagiri H, Jimbo K, Yamada S, Kamimura T, Maw W S, Fukano T, Ito T, Motohiro T. Appl. Phys. Express, 2008, 1: 041201.
[23] Chawla V, Clemens B. Photovoltaic Specialists Conference (PVSC). Austin: IEEE, 3~8 June 2012. 002990.
[24] Zhang J, Shao L. Sci. China. E: Technol. Sci., 2009, 52: 269.
[25] Tanaka T, Kawasaki D, Nishio M, Guo Q, Ogawa H. Phys. Status Solidi (c), 2006, 3: 2844.
[26] Oishi K, Saito G, Ebina K, Nagahashi M, Jimbo K, Maw W S, Katagiri H, Yamazaki M, Araki H, Takeuchi A. Thin Solid Films, 2008, 517: 1449.
[27] Wang K, Gunawan O, Todorov T, Shin B, Chey S, Bojarczuk N, Mitzi D, Guha S. Appl. Phys. Lett., 2010, 97: 143508.
[28] Weber A, Schmidt S, Abou-Ras D, Schubert-Bischoff P, Denks I, Mainz R, Schock H W. Appl. Phys. Lett., 2009, 95: 041904.
[29] Katagiri H. Thin Solid Films, 2005, 480: 426.
[30] Sekiguchi K, Tanaka K, Moriya K,Uchiki H. Phys. Status Solidi (c), 2006, 3: 2618.
[31] Moholkar A, Shinde S, Babar A, Sim K U, Kwon Y b, Rajpure K, Patil P, Bhosale C, Kim J. Sol. Energy Mater. Sol. Cells, 2011, 85: 1354.
[32] Thimsen E, Riha S C, Baryshev S V, Martinson A B, Elam J W, Pellin M J. Chem. Mater., 2012, 24: 3188.
[33] Washio T, Shinji T, Tajima S, Fukano T, Motohiro T, Jimbo K, Katagiri H. J. Mater. Chem., 2012, 22: 4021.
[34] Kamoun N, Bouzouita H, Rezig B. Thin Solid Films, 2007, 515: 5949.
[35] Levcenko S, Tezlevan V E, Arushanov E, Schorr S, Unold T. Phys. Rev. B, 2012, 86: 045206.
[36] Shinde N, Lokhande C, Kim J, Moon J. J. Photoch. Photobio. A, 2012, 235: 14.
[37] Ennaoui A, Lux-Steiner M, Weber A, Abou-Ras D, Kötschau I, Schock H W, Schurr R, Hölzing A, Jost S, Hock R. Thin Solid Films, 2009, 517: 2511.
[38] Scragg J J, Berg D M, Dale P J. J. Electroanal. Chem., 2010, 646: 52.
[39] Guo Q, Ford G M, Yang W C, Walker B C, Stach E A, Hillhouse H W, Agrawal R. J. Am. Chem. Soc., 2010, 132: 17384.
[40] Shi C, Shi G, Chen Z, Sun R, Xia M. J. Chin. Ceramic. Soc., 2011, 39: 1108.
[41] Chen L J, Chuang Y J. Mater. Lett., 2013, 91: 372.
[42] Sarswat P K, Free M L. J. Cryst. Growth, 2013, 372: 87.
[43] Tanaka K, Fukui Y, Moritake N, Uchiki H. Sol. Energy Mater. Sol. Cells, 2011, 95: 838.
[44] Mali S S, Patil B M, Betty C A, Bhosale P N, Oh Y W, Jadkar S R, Devan R S, Ma Y R, Patil P S. Electrochim. Acta, 2012, 66: 216.
[45] Luo P, Zhao L X, Xu J. Int J. Inorg. Mater., 2012, 1: 79.
[46] Chane-Ching J Y, Gillorin A, Zaberca O, Balocchi A. Marie X. Chem. Commun., 2011, 47: 5229.
[47] Wibowo R A, Jung W H, Kim K H. J. Phys. Chem. Solids, 2010, 71: 1702.
[48] Wang Y, Gong H. J. Alloys Compd., 2011, 509: 9627.
[49] Zhou Z, Wang Y, Xu D, Zhang Y. Sol. Energy Mater. Sol. Cells, 2010, 94: 2042.
[50] Scragg J J, Kubart T, Wätjen J T, Ericson T, Linnarsson M K, Platzer-Björkman C. Chem. Mater., 2013, 25: 3162.
[51] Sugimoto H, Hiroi H, Sakai N, Muraoka S, Katou T. Photovoltaic Specialists Conference (PVSC). Austin: IEEE, 3~8 June 2012. 002997.
[52] Repins I, Beall C, Vora N, DeHart C, Kuciauskas D, Dippo P, To B, Mann J, Hsu W C, Goodrich A. Sol. Energy Mater. Sol. Cells, 2012, 101: 154.
[53] Nandur A, White B. Thin film Photovoltaic Absorber Material. State University of New York at Binghamton: APS, 2013.
[54] Ahmed S, Reuter K B, Gunawan O, Guo L, Romankiw L T, Deligianni H. Adv. Energy Mater., 2012, 2: 253.
[55] Timmo K, Altosaar M, Raudoja J, Muska K, Pilvet M, Kauk M, Varema T, Danilson M, Volobujeva O, Mellikov E. Sol. Energy Mater. Sol. Cells, 2010, 94: 1889.
[56] Reshak A, Nouneh K, Kityk I, Bila J, Auluck S, Kamarudin H, Sekkat Z. Int. J. Electrochem. Sci., 2014, 9: 955.
[57] Chen S, Gong X, Walsh A, Wei S H. Appl. Phys. Lett., 2009, 94: 041903.
[58] Maeda T, Nakamura S, Wada T. Jpn. J. Appl. Phys., 2011, 50: 04DP07.
[59] Wang C, Chen S, Yang J H, Lang L, Xiang H, Gong X, Walsh A, Wei S H. Chem. Mater., 2014, 26: 3411.
[60] Chen S, Walsh A, Gong X G, Su H W. Adv. Mater., 2013, 25: 1522.
[61] Zhao H, Persson C. Thin Solid Films, 2011, 519: 7508.
[62] Shen S, Wang Q. Chem. Mater., 2013, 25: 1166.
[63] Fairbrother A, Fontané X, Izquierdo-Roca V, Espíndola-Rodríguez M, López-Marino S, Placidi M, Calvo-Barrio L, Pérez-Rodríguez A, Saucedo E. Sol. Energy Mater. Sol. Cells, 2013, 112: 97.
[64] Jaffe J E, Zunger A. Phys. Rev. B, 2001, 64: 241304.
[65] Xu P, Chen S, Huang B, Xiang H J, Gong X G, Wei S H. Phys. Rev. B, 2013, 88: 045427.
[66] Paris M, Choubrac L, Lafond A, Guillot-Deudon C, Jobic S. Inorg. Chem., 2014, 53: 8646.
[67] He J, Sun L, Chen S, Chen Y, Yang P, Chu J. J. Alloys Compd., 2012, 511: 129.
[68] Chen S, Gong X G, Walsh A, Wei S H. MRS Pro., Cambridge University Press, 2011, 1370: 55.
[69] Erslev P T, Young M R, Li J V, Siah S C, Chakraborty R, Du H, Lad R J, Buonassisi T, Teeter G. Sol. Energy Mater. Sol. Cells, 2014, 129: 124.
[70] Zhang X, Shi X, Ye W, Ma C, Wang C. Appl. Phys. A, 2009, 94: 381.
[71] Chen S, Gong X G, Walsh A, Wei S H. Appl. Phys. Lett., 2010, 96: 021902.
[72] Chen S, Yang J H, Gong X G, Walsh A, Wei S H. Phys. Rev.B, 2010, 81: 245204.
[73] Tablero C. J. Phys. Chem. C, 2012, 116: 23224.
[74] Maeda T, Nakamura S, Wada T. Jpn. J. Appl. Phys., 2012, 51: 10NC11.
[75] Miles R, Zoppi G, Forbes I. Mater. Today, 2007, 10: 20.
[76] Todorov T K, Reuter K B, Mitzi D B. Adv. Mater., 2010, 22: E156.
[77] Barkhouse D A R, Gunawan O, Gokmen T, Todorov T K, Mitzi D B. Prog. Photovoltaics: Res. App., 2012, 20: 6.
[78] Todorov T K, Tang J, Bag S, Gunawan O, Gokmen T, Zhu Y, Mitzi D B. Adv. Energy Mater., 2013, 3: 34.
[79] Fan F J, Wu L, Gong M, Liu G, Wang Y X, Yu S H, Chen S, Wang L W, Gong X G. ACS Nano, 2013, 7: 1454.
[80] Cao Y, Xiao Y, Jung J Y, Um H D, Jee S W, Choi H M, Bang J H, Lee J H. ACS Appl. Mater. Intertaces, 2013, 5: 479.
[81] He J, Lee L T L, Yang S, Li Q, Xiao X, Chen T. ACS Appl. Mater. Interfaces, 2014, 6: 2224.
[82] Dai P, Zhang G, Chen Y, Jiang H, Feng Z, Lin Z, Zhan J. Chem. Commun., 2012, 48: 3006.
[83] Xin X, He M, Han W, Jung J, Lin Z. Angew. Chem. Int. Ed., 2011, 50: 11739.
[84] Wang L, Wang W, Sun S. J. Mater. Chem., 2012, 22: 6553.
[85] Rovelli L, Tilley S D, Sivula K. ACS Appl. Mater. Interfaces, 2013, 5: 8018.
[86] 李玲(Li L), 郑柳萍(Zheng L), 颜桂炀(Yan G), 潘青山(Pan Q), 化学发展前沿(Scientific Journal of Frontier Chemical Development), 2012, 2: 59.
[87] Chang Z X, Zhou W H, Kou D X, Zhou Z J, Wu S X.Chem. Commun., 2014, 50: 12726.
[88] Liu M L, Huang F Q, Chen L D, Chen I W. Appl. Phys. Lett., 2009, 94: 02103.
[89] Yang H, Jauregui L A, Zhang G, Chen Y P, Wu Y. Nano Lett., 2012, 12: 540.
[90] Fan F J, Wu L, Yu S H. Energ Environ. Sci., 2014, 7: 190.
[91] Parasyuk O, Piskach L, Romanyuk Y, Olekseyuk I, Zaremba V, Pekhnyo V. J. Alloys Compd., 2005, 397: 85.
[92] Fries T, Shapira Y, Palacio F, Morón M C, McIntyre G J, Kershaw R, Wold A, McNiff E. Phys. Rev. B, 1997, 56: 5424.
[1] 张震, 赵爽, 陈国兵, 李昆锋, 费志方, 杨自春. 碳化硅块状气凝胶的制备及应用[J]. 化学进展, 2021, 33(9): 1511-1524.
[2] 闫业玲, 曹俊媚, 孟凡宁, 王宁, 高立国, 马廷丽. 大面积钙钛矿太阳能电池[J]. 化学进展, 2019, 31(7): 1031-1043.
[3] 陈媛芝, 张乐, 黄存新, 章健, 唐定远, 沈德元. TM2+: Ⅱ-Ⅵ族中红外激光材料[J]. 化学进展, 2015, 27(5): 511-521.
[4] 王奕寒, 脇坂港. 纳米纤维制备工艺进展及其对壳聚糖的适用性分析[J]. 化学进展, 2014, 26(11): 1821-1831.
[5] 田宇, 朱才镇, 龚静华, 马敬红, 杨曙光, 徐坚. 纤维结构形态的原位同步辐射X射线散射及衍射研究[J]. 化学进展, 2013, 25(10): 1751-1762.
[6] 刘一凡, 马玉玲, 徐琴琴, 银建中. 支撑型离子液体膜的制备、表征及稳定性评价[J]. 化学进展, 2013, 25(10): 1795-1804.
[7] 刘莉, 曹阳, 贺军辉*, 杨巧文. 硅纳米线阵列的制备及其光电应用[J]. 化学进展, 2013, 25(0203): 248-259.
[8] 王新东, 谢晓峰, 王萌, 刘桂成, 苗睿瑛, 王一拓, 阎群. 直接甲醇燃料电池关键材料与技术[J]. 化学进展, 2011, 23(0203): 509-519.
[9] 高鹏,韩家军,朱永明,张翠芬,李宁. 金属锂二次电池锂负极改性[J]. 化学进展, 2009, 21(0708): 1678-1686.
[10] 罗民,高积强,乔冠军,金志浩. 生物模板法制备木材陶瓷*[J]. 化学进展, 2008, 20(06): 989-1000.