English
新闻公告
More
化学进展 2013, Vol. 25 Issue (10): 1795-1804 DOI: 10.7536/PC130201 前一篇   

• 综述与评论 •

支撑型离子液体膜的制备、表征及稳定性评价

刘一凡, 马玉玲, 徐琴琴, 银建中   

  1. 大连理工大学化工机械学院 大连116024
  • 收稿日期:2013-02-01 修回日期:2013-04-01 出版日期:2013-11-12 发布日期:2013-07-18
  • 通讯作者: 银建中 E-mail:jzyin@dlut.edu.cn

Supported Ionic Liquid Membrane: Preparation, Characterization and Stability

Liu Yifan, Ma Yuling, Xu Qinqin, Yin Jianzhong   

  1. School of Chemical Machinery, Dalian University of Technology, Dalian 116024, China
  • Received:2013-02-01 Revised:2013-04-01 Online:2013-11-12 Published:2013-07-18

支撑型离子液体膜是将离子液体负载于基膜孔道内形成的复合型液体膜。它同时具备了离子液体优良的溶剂特性以及膜分离高效率的优势,加之分离过程简单、经济性好,成为研究CO2捕捉的热点课题。将这种膜分离技术用于天然气和烟道气脱硫脱碳,关键取决于膜的稳定性和质量。优质基膜、功能化离子液体以及科学的制备方法是保证支撑型离子液体膜性能的重要因素。首先,本文总结了已发展的各种制备支撑型离子液体膜的方法、主要表征手段,分析比较了其优缺点。其次,对于影响其稳定性和使用寿命的主要因素进行了分析评价。在此基础上,指出了控制膜质量需要重视的关键科学问题和今后应该重点发展的研究方向,旨在推动该技术的应用基础研究和工业化开发。

Supported ionic liquid membrane(SILM) is a kind of composite membrane, which is prepared by immobilizing ionic liquids(ILs) into the porous membrane. It combines the excellent solvent properties of ILs and high efficiency of membrane separation, and also has the advantages of simplified separation processes and economical operating cost, which all make SILM become one of the academic focal points of CO2 capture. It depends on the stability and quality of SILM for applying this kind of membrane separation in desulfuration and decarbonization of natural gases and flue gases. High-quality porous membranes, task-specific ILs and scientific preparation methods are of importance in guaranteeing the performances of SILMs. Preparation methods and typical characterization methods of SILMs are summarized in this work, So are the relative merits of different preparation methods. In addition, the factors affecting the stability and life time of SILM are analyzed and evaluated. On the basis of the comments above, the key scientific problems of SILM-quality control and future research direction for further development are proposed, for the purpose of promoting the basic studies of SILM technologies to guide industrialized applications and development.

Contents
1 Introduction
2 Preparation methods of SILM and their features
2.1 Conventional preparation methods of SILM
2.2 Preparation of SILM by reducing viscosity
2.3 Novel ionic liquid membrane and their preparation
3 Characterization methods of SILM
4 Stability and uniformity of SILM
4.1 Stability
4.2 Uniformity
5 Conclusion and outlook

 

中图分类号: 

()
[1] 袁权(Yuan Q), 郑领英(Zhen L Y). 水处理技术(Technology of Water Treatment), 1995, 21(3): 125—131
[2] 王志(Wang Z), 袁芳(Yuan F), 王明(Wang M), 王纪孝(Wang J X), 王世昌(Wang S C). 膜科学与技术(Membrane Science and Technology), 2011, 31(3): 11—17
[3] 王志(Wang Z), 吕强(Lv Q), 李保安(Li B A), 王世昌(Wang S C). 高分子材料科学与工程(Polymer Materials Science & Engineering), 2000, 16(6): 5—6
[4] Bloch R, Finkelstein A, Kedem O, Vofsi D. I&EC Process Design and Development, 1967, 6: 231—237
[5] Ward R W J, Robb W L. Science, 1967, 156: 1481—1483
[6] Li N N. US 3410794, 1968
[7] 顾忠茂(Gu Z M). 膜科学与技术(Membrane Science and Technology), 2003, 23(4): 214—223
[8] 丁少杰(Ding S J), 郭亚红(Guo Y H), 滕一万(Teng Y W), 金凯洪(Jin K H), 樊文玲(Fan W L), 李磊(Li L), 吴有庭(Wu Y T). 膜科学与技术(Membrane Science and Technology), 2010, 30(6): 101—105
[9] Scovazzo P, Visser A E, Davis J H, Rogers R D, Koval C A, Dubois D L, Noble R D. Supported Ionic Liquid Membranes and Facilitated Ionic Liquid Membranes. (Eds. Robin D R, Kenneth R S). Washington: ACS Publications, 2002. 69—89
[10] Scovazzo P, Kieft J, Finan D A, Koval C, Dubois D, Noble R. J. Membrane Sci., 2004, 238: 57—63
[11] Gan Q, Rooney D, Xue M L, Thompson G, Zou Y R. J. Membrane Sci., 2006, 280: 948—956
[12] Jiang Y Y, Zhou Z, Jiao Z, Li L, Wu Y T, Zhang Z B. J. Phys. Chem. B, 2007, 111: 5058—5061
[13] Hanioka S, Maruyama T, Sotani T, Teramoto M, Matsuyama H, Nakashima K, Hanaki M, Kubota F, Goto M. J. Membrane Sci., 2008, 314: 1—4
[14] Scovazzo P. J. Membrane Sci., 2010, 355: 7—17
[15] Luis P, Neves L A, Afonso C, Coelhoso I M, Crespo J G, Garea A, Irabien A. Desalination, 2009, 245: 485—493
[16] Baltus R E, Counce R M, Culbertson B H, Luo H M, Depaoli D W, Dai S, Duckworth D C. Sep. Sci. Technol., 2005, 40: 525—541
[17] Yamanouchi N, Duan S, Ito A. Transactions Materials Research Society of Japan, 2004, 29: 3299—3302
[18] Bara J E, Gabriel C J, Carlisle T K, Camper D E, Finotello A, Gin D L, Noble R D. Chem. Eng. J., 2009, 147: 43—50
[19] 段永超(Duan Y C), 伍艳辉(Wu Y H), 于世昆(Yu S K), 李佟茗(Li T M). 化学进展(Progress in Chemistry), 2012, 24(7): 1405—1412
[20] Zhao W, He G H, Zhang L L, Ju J, Dou H, Nie F, Li C N, Liu H J. J. Membrane Sci., 2010, 350: 279—285
[21] Ilconich J, Myers C, Pennline H, Luebke D. J. Membrane Sci., 2007, 298: 41—47
[22] Branco L I S C, Crespo J A O G, Afonso C A. Angewandte Chemie, 2002, 114: 2895—2897
[23] Fortunato R, Afonso C A M, Reis M, Crespo J G. J. Membrane Sci., 2004, 242: 197—209
[24] Hernández-Fernández F J, de Los Ríos A P, Tomás-Alonso F, Gómez D, Rubio M, Víllora G. Chemical Engineering and Processing: Process Intensification, 2007, 46: 818—824
[25] Fortunato R, Afonso C A M, Benavente J, Rodriguez-Castellón E, Crespo J G. J. Membrane Sci., 2005, 256: 216—223
[26] Ríos A P D L, Hernández-Fernández F J, Tomás-Alonso F, Palacios J M, Gómez D, Rubio M, Víllora G. J. Membrane Sci., 2007, 300: 88—94
[27] De Losrios A P, Hernandez-Fernandez F J, Tomas-Alonso F, Palacios J M, Villora G. Desalination, 2009, 245: 776—782
[28] Hernandez-Fernandez F J, de Los Rios A P, Tomas-Alonso F, Palacios J M, Villora G. J. Membrane Sci., 2009, 341: 172—177
[29] 沈江南(Sheng J N), 阮慧敏(Ruan H M), 吴东柱(Wu D Z), 章杰(Zhang J). 化工进展(Chemical Industry and Engineering Progress), 2009, 28(12): 2092—2098
[30] 姚茹(Yao R). 浙江大学硕士论文(Master Dissertation of Zhejiang University), 2011
[31] Kim D, Baek I, Hong S, Lee H. J. Membrane Sci., 2011, 372: 346—354
[32] Iarikov D D, Hacarlioglu P, Oyama S T. Chem. Eng. J., 2011, 166: 401—406
[33] 马玉玲(Ma Y L), 徐琴琴(Xu Q Q), 徐刚(Xu G), 银建中(Yin J Z). 当代化工(Contemporary Chemical Industry), 2012, 41(7): 720—724
[34] 银建中(Yin J Z), 马玉玲(Ma Y L), 徐刚(Xu G), 徐琴琴(Xu Q Q), 喻文(Yu W). CN 102430345A, 2012
[35] Hu X, Tang J, Blasig A, Shen Y, Radosz M. J. Membrane Sci., 2006, 281: 130—138
[36] Bara J E, Hatakeyama E S, Gin D L, Noble R D. Polym. Advan. Technol., 2008, 19: 1415—1420
[37] Tomé L C, Mecerreyes D, Freire C S R, Rebelo L P N, Marrucho I M. J. Membrane Sci., 2013, 428: 260—266
[38] 张正敏(Zhang Z M), 吴林波(Wu L B), 朱世平(Zhu S P), 李伯耿(Li B G). 科技通报(Bulletin of Science and Technology), 2009, 25(3): 305—310
[39] Neouze M A, Le Bideau J, Gaveau P, Bellayer S, Vioux A. Chem. Mater., 2006, 18: 3931—3936
[40] Voss B A, Bara J E, Gin D L, Noble R D. Chem. Mater., 2009, 21: 3027—3029
[41] Vangeli O C, Romanos G E, Beltsios K G, Fokas D, Athanasekou C P, Kanellopoulos N K. J. Membrane Sci., 2010, 365: 366—377
[42] Baltus R E, Culbertson B H, Dai S, Luo H, Depaoli D W. J. Phys. Chem. B, 2004, 108: 721—727
[43] Krull F F, Hechinger M, Kloeckner W, Verhuelsdonk M, Buchbender F, Giese H, Melin T. Colloids and Surfaces A, 2009, 345: 182—190
[44] Krull F F, Medved M, Melin T. Chem. Eng. Sci., 2007, 62: 5579—5585
[45] Hernandez-Fernandez F J, de Los Rios A P, Tomas-Alonso F, Gomez D, Villora G. J. Membrane Sci., 2008, 314: 238—246
[46] 吴锋(Wu F), 王保国(Wang B G). 膜科学与技术(Membrane Science and Technology), 2008, 28(5): 68—70
[47] 韩超(Han C). 北京化工大学硕士论文(Master Dissertation of Beijing University of Chemical Technology), 2010
[48] Blanchard L A, Hancu D, Beckman E J, Brennecke J F. Nature, 1999, 399: 28—29
[49] 王伟彬(Wang W B), 银建中(Yin J Z), 孙丽华(Sun L H), 冯恩民(Feng E M). 物理化学学报(Acta Physico-Chimica Sinica), 2009, 25(11): 2291—2295
[50] Kreiter R, Overbeek J P, Correia L A, Vente J F. J. Membrane Sci., 2011, 370: 175—178
[51] Lozano L J, Godinez C, de Los Rios A P, Hernandez-Fernandez F J, Sanchez-Segado S, Alguacil F J. J. Membrane Sci., 2011, 376: 1—14
[1] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[2] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[3] 张慧迪, 李子杰, 石伟群. 共价有机框架稳定性提高及其在放射性核素分离中的应用[J]. 化学进展, 2023, 35(3): 475-495.
[4] 姬超, 李拓, 邹晓峰, 张璐, 梁春军. 二维钙钛矿光伏器件[J]. 化学进展, 2022, 34(9): 2063-2080.
[5] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[6] 杨世迎, 范丹阳, 保晓娟, 傅培瑶. 碳材料修饰零价铝的作用机制[J]. 化学进展, 2022, 34(5): 1203-1217.
[7] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[8] 张巍, 谢康, 汤云灏, 秦川, 成珊, 马英. 过渡金属基MOF材料在选择性催化还原氮氧化物中的应用[J]. 化学进展, 2022, 34(12): 2638-2650.
[9] 张震, 赵爽, 陈国兵, 李昆锋, 费志方, 杨自春. 碳化硅块状气凝胶的制备及应用[J]. 化学进展, 2021, 33(9): 1511-1524.
[10] 唐向春, 陈家祥, 刘利娜, 廖世军. 具有三维特殊形貌/纳米结构的Pt基电催化剂[J]. 化学进展, 2021, 33(7): 1238-1248.
[11] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[12] 颜高杰, 吴琼, 谈玲华. 富氮唑类金属配合物的设计合成及应用[J]. 化学进展, 2021, 33(4): 689-712.
[13] 杨琪, 邓南平, 程博闻, 康卫民. 锂电池中的凝胶聚合物电解质[J]. 化学进展, 2021, 33(12): 2270-2282.
[14] 彭会荣, 蔡墨朗, 马爽, 时小强, 刘雪朋, 戴松元. 全无机钙钛矿太阳电池的制备及稳定性[J]. 化学进展, 2021, 33(1): 136-150.
[15] 康美荣, 金福祥, 李臻, 宋河远, 陈静. 离子液体固载化及应用研究[J]. 化学进展, 2020, 32(9): 1274-1293.