English
新闻公告
More
化学进展 2010, Vol. 22 Issue (04): 593-602 前一篇   后一篇

• 综述与评论 •

氧化铁磁性纳米粒子固定化酶*

辛宝娟;邢国文**   

  1. (北京师范大学化学学院 北京 100875)
  • 收稿日期:2009-06-01 修回日期:2009-07-14 出版日期:2010-04-24 发布日期:2010-03-30
  • 通讯作者: 邢国文 E-mail:gwxing@bnu.edu.cn
  • 基金资助:

    国家自然科学基金

Magnetic Iron Oxide Nanoparticles Immobilized Enzymes

Xin Baojuan; Xing Guowen**   

  1. (College of Chemistry, Beijing Normal University, Beijing 100875, China)
  • Received:2009-06-01 Revised:2009-07-14 Online:2010-04-24 Published:2010-03-30
  • Contact: Xing Guowen E-mail:gwxing@bnu.edu.cn
  • Supported by:

    National Natural Science Foundation of China

纳米粒子作为酶固定化的载体,当其具有磁性时,制备的固定化酶易于从反应体系中分离和回收,操作简便;并且利用外部磁场可以控制磁性材料固定化酶的运动方式和方向,替代传统的机械搅拌方式,提高固定化酶的催化效率。在众多纳米材料中,氧化铁因其在磁性、催化等多方面的良好特性而倍受瞩目。本文对近年来各种氧化铁磁性纳米粒子固定化酶,尤其是固定化脂肪酶和蛋白酶的制备方法及其应用做了较为详细的阐述,对这些氧化铁磁性纳米粒子固定化酶的优缺点和发展前景进行了讨论。

Nanoparticles can be used as the carriers of immobilized enzymes,and the magnetic nanoparticle immobilized enzymes are easy to operate, separate and recover from the reaction system. Moreover, utilizing an external magnetic field the movement manner and direction of the immobilized enzyme can be controlled to improve their catalytic efficiency, compared with the traditional mechanical stirring ways. Among many nano-materials, iron oxide has received considerable attention because of its magnetic, catalytic, and other good characteristics of high-profile. In this paper, a variety of magnetic iron oxide nanoparticles immobilized enzymes, especially the preparation and application of immobilized lipase and protease are reviewed. The advantages and shortcomings of the magnetic iron oxide nanoparticles immobilized enzymes and the future developing prospects are also discussed.

Contents
1 Introduction
2 Magnetic iron oxide nanoparticles immobilized lipase
2.1 Magnetic polymer microsphere immobilized lipase
2.2 Magnetic nanoparticles directly immobilized lipase
2.3 Magnetic siliceous mesocellular foam immobilized lipase
3 Magnetic iron oxide nanoparticles immobilized protease
3.1 Immobilized α-chymotrypsin
3.2 Immobilized papain
3.3 Immobilized trypsin
4 Other magnetic iron oxide nanoparticles immobilized enzymes
5 Conclusion and outlook

中图分类号: 

()

[1 ] Lu A H,Salabas E L,Schuth F. Angew. Chem. Int. Ed. ,2007,46: 1222—1244
[2 ] Cao L Q. Curr. Opin. Chem. Biol. ,2005,9: 217—226
[3 ] Liao M H,Chen D H. Biotechnol. Lett. ,2001,23: 1723—1727
[4 ] Rossi L M,Quach A D,Rosenzweig Z. Anal. Bioanal. Chem. ,2004,380: 606—613
[5 ] Horst F,Rueda E H,Ferreira M L. Enzyme Microb. Technol. ,2006,38: 1005—1012
[6 ] Kim J,Grate J W,Wang P. Trends Biotechnol. ,2008,26:639—646
[7 ] 杨勇(Yang Y) ,李彦锋( Li Y F) ,拜永孝( Bai Y X) 等. 化学通报( Chemistry) ,2007,(4) : 257—263
[8 ] Cao L Q. 载体固定化酶———原理、应用和设计( Carrierboundimmobilized enzymes: principles, applications and design) ( 杨晟,袁中一译) ( Trans. Yang S,Yuan Z Y) . 北京: 化学工业出版社( Beijing: Chemical Industry Press) ,2008
[9 ] 邹海平( Zou H P) ,邱祖民( Qiu Z M ) ,邱俊明( Qiu J M )等. 化工科技( Science and Technology in Chemical Industry) ,2006,14: 54—59
[10] 赵紫来( Zhao Z L) ,卞征云( Bian Z Y) ,陈朗星( Chen L X)等. 化学进展( Progress in Chemistry) ,2006,18: 1288—1297
[11] 赵红丽( Zhao H L) ,琚行松( Ju X S) ,芮玉兰( Rui Y L) 等.唐山师范学院学报( Journal of Tangshan Teachers College ) ,2005,27: 1—5
[12] 张玉( Zhang Y) ,张卫民( Zhang W M ) ,孙中溪( Sun Z X) .化学进展( Progress in Chemistry) ,2007,19: 1503—1509
[13] Ghanem A,Aboul-Enein H Y. Chirality,2005,17: 1—15
[14] Gandhi N N,Patil N S,Sawant S B,et al. Cat. Rev. Sci.Eng. ,2000,42: 439—480
[15] Hasan F,Shah A A,Hameed A. Enzyme Microb. Technol. ,2006,39: 235—251
[16] Gross R,Kalra B,Kumar A. Chem. Rev. ,2001,101: 2097—2124
[17] Yuan D Z,Zhang Q Y,Zhuang H P,et al. J. Mater. Sci.Eng. ,2006,24: 306—310
[18] Yang Y,Bai Y X,Li Y F,et al. Process Biochem. ,2008,43:1179—1185
[19] Yang Y,Bai Y X,Li Y F,et al. J. Magn. Magn. Mater. ,2008,320: 2350—2355
[20] Lei L,Bai Y X,Li Y F,et al. J. Magn. Magn. Mater. ,2009,321: 252—258
[21] 杨勇( Yang Y) . 兰州大学硕士论文( Mastes Dissertation of Lanzhou University) ,2008
[22] Zeng L,Luo K K,Gong Y F. J. Mol. Catal. B-Enzym. ,2006,38: 24—30
[23] Guo Z,Bai S,Sun Y. Enzyme Microb. Technol. ,2003,32:776—782
[24] Mahmood I,Guo C,Xia H S,et al. Ind. Eng. Chem. Res. ,2008,47: 6379—6385
[25] Reetz M T,Zonta A,Vijayakrishnan V,et al. J. Mol. Catal.A-Chem. ,1998,134: 251—258
[26 ] Chen J P,Lin W S. Enzyme Microb. Technol. ,2003,32:801—811
[27] Huang S H,Liao M H,Chen D H. Biotechnol. Prog. ,2003,19: 1095—1100
[28] Bai S,Guo Z,Liu W,et al. Food Chem. ,2006,96: 1—7
[29] Dyal A,Loos K,Noto M,et al. J. Am. Chem. Soc. ,2003,125: 1684—1685
[30] 张艳梅( Zhang Y M) . 中国科学院大连化学物理研究所博士论文( Doctoral Dissertation of Dalian Institute of Chemical Physics,Chinese Academy of Sciences) ,2008
[31] Yang Q H,Liu J,Zhang L,et al. J. Mater. Chem. ,2009,19:1945—1955
[32] Zhang Y M,Zhao L F,Li J,et al. Biochem. Biophys. Res.Commun. ,2008,372: 650—655
[33] Zhang Y M,Li J,Han D F,et al. Biochem. Biophys. Res.Commun. ,2008,365: 609—613
[34] Otto H H,Schirmeister T. Chem. Rev. ,1997,97: 133—171
[35] Kim J,Lee J,Na H B,et al. Small,2005,1: 1203—1207
[36] 洪军(Hong J) ,徐冬梅(Xu D M) ,孙汉文( Sun H W) 等. 高等学校化学学报( Chemical Journal of Chinese Universities) ,2007,28: 177—182
[37] Hong J,Xu D M,Gong P J,et al. J. Mol. Catal. B-Enzym. ,2007,45: 84—90
[38] Hong J,Gong P J,Xu D M,et al. J. Biotechnol. ,2007,128:597—605
[39] Hong J,Gong P J,Yu J H,et al. J. Mol. Catal. B-Enzym. ,2006,42: 99—105
[40] Hong J,Xu D M,Gong P J,et al. J. Chromatogr. B,2007,850: 499—506
[41] Hong J,Gong P J,Xu D M,et al. J. Appl. Polym. Sci. ,2007,105: 1882—1887
[42] Liang Y Y,Zhang L M. Biomacromolecules,2007,8: 1480—1486
[43] Nishimura K,Hasegawa M,Ogura Y,et al. J. Appl. Phys. ,2002,91: 8555—8556
[44] Li Y,Xu X Q,Deng C H,et al. J. Proteome Res. ,2007,6:3849—3855
[45] Wang S,Bao H M,Yang P Y,et al. Anal. Chim. Acta,2008,612: 182—189
[46] Lu Y,Yin Y,Mayers B T,et al. Nano Lett. ,2002,2: 183—186
[47] Deng Y H,Wang C C,Hu J H, et al. Colloid Surf. APhysicochem.Eng. Asp. ,2005,262: 87—93
[48] Deng Y H,Qi D W,Zhao D Y,et al. J. Am. Chem. Soc. ,2008,130: 28—29
[49] Deng Y H,Deng C H,Zhao D Y,et al. Adv. Mater. ,2009,21: 1377—1382
[50] Liu J,Deng Y H,Zhao D Y,et al. J. Colloid Interface Sci. ,2009,333: 329—334
[51] Xu C J,Xu K M,Gu H W,et al. J. Am. Chem. Soc. ,2004,126: 3392—3393
[52] Xu C J,Xu K M,Gu H W,et al. J. Am. Chem. Soc. ,2004,126: 9938—9939
[53] 孙黎明( Sun L M) ,曹旭鹏( Cao X P) ,虞星炬( Yu X J) 等.动物学报(Acta Zoologica Sinica) ,2006,52: 780—787
[54] Shukoor M I,Natalio F,Therese H A,et al. Chem. Mater. ,2008,20: 3567—3573
[55] Herdt A R,Kim B S,Taton T A. Bioconjugte Chem. ,2007,18: 183—189
[56] Koh I,Wang X,Varughese B,English D S,et al. J. Phys.Chem. B,2006,110: 1553—1558
[57] Wang L,Bao J,Wang L,et al. Chem. Eur. J. ,2006,12:6341—6347
[58] Lin H A,Liu C H,Huang W C,et al. Chem. Mater. ,2008,20: 6617—6622
[59] Johnson A K,Zawadzka A M,Deobald L A,et al. J. Nanopart.Res. ,2008,10: 1009—1025
[60] Liu X Q,Ma Z Y,Xing J M,et al. J. Magn. Magn. Mater. ,2004,270: 1—6
[61] Yu C C,Lin P C,Lin C C. Chem. Commun. ,2008,1308—1310
[62] Xing G W,Li X W,Tian G L,et al. Tetrahedron,2000,56:3517—3522
[63] Xing G W,Liu D J,Ye Y H,et al. Tetrahedron Lett. ,1999,40: 1971—1974
[64] Xin B J, Xing G W. The Symposium of CCS 6th National Organic Chemistry Conference,Xi’an,2009,227

[1] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[2] 杨冬, 高可奕, 杨百勤, 雷蕾, 王丽霞, 薛朝华. 微流控合成体系的装置分类及其用于纳米粒子的制备[J]. 化学进展, 2021, 33(3): 368-379.
[3] 秦苗, 徐梦洁, 黄棣, 魏延, 孟延锋, 陈维毅. 氧化铁纳米颗粒在磁共振成像中的应用[J]. 化学进展, 2020, 32(9): 1264-1273.
[4] 侯晨, 陈文强, 付琳慧, 张素风, 梁辰. 共价有机框架材料在固定化酶及模拟酶领域的应用[J]. 化学进展, 2020, 32(7): 895-905.
[5] 郭华, 张蕾, 董旭, 申刚义, 尹俊发. 固定化多酶级联反应器[J]. 化学进展, 2020, 32(4): 392-405.
[6] 刘一寰, 胡欣, 朱宁, 郭凯. 基于微流控技术制备微/纳米粒子材料[J]. 化学进展, 2018, 30(8): 1133-1142.
[7] 张咚咚, 刘敬民, 刘瑶瑶, 党梦, 方国臻, 王硕. 纳米粒子在药物传递中的应用[J]. 化学进展, 2018, 30(12): 1908-1919.
[8] 喻志超, 汤淳, 姚丽, 高庆, 徐祖顺, 杨婷婷. 聚合物基模板制备中空介孔材料[J]. 化学进展, 2018, 30(12): 1899-1907.
[9] 毕洪梅, 韩晓军. 磁应答型药物递送载体的设计与构建[J]. 化学进展, 2018, 30(12): 1920-1929.
[10] 李平, 董阿力德尔图, 孙梓嘉, 高歌. N-卤胺类高分子与纳米抗菌材料的制备及应用[J]. 化学进展, 2017, 29(2/3): 318-328.
[11] 陈璐扬, 赵瑾, 龙丽霞, 侯信, 原续波*. 肿瘤免疫治疗中的生物医用载体[J]. 化学进展, 2017, 29(10): 1195-1205.
[12] 杜鑫, 赵彩霞, 黄洪伟, 温永强, 张学记. 树枝状多孔二氧化硅纳米粒子的制备及其在先进载体中的应用[J]. 化学进展, 2016, 28(8): 1131-1147.
[13] 郝锐, 张丛筠, 卢亚, 张东杰, 郝耀武, 刘亚青. 氧化石墨烯/金银纳米粒子复合材料的制备及其SERS效应研究[J]. 化学进展, 2016, 28(8): 1186-1195.
[14] 邱健豪, 何明, 贾明民, 姚建峰. 金属有机骨架材料制备双金属或多金属催化材料及其应用[J]. 化学进展, 2016, 28(7): 1016-1028.
[15] 王昀, 冯岸超, 袁金颖. 刺激响应聚合物在金纳米粒子催化体系中的应用[J]. 化学进展, 2016, 28(7): 1054-1061.
阅读次数
全文


摘要

氧化铁磁性纳米粒子固定化酶*