中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (2): 370-383 DOI: 10.7536/PC210107 Previous Articles   Next Articles

• Review •

Construction of 3D Copper-Based Collector and Its Application in Lithium Metal Batteries

Chi Guo1, Wang Zhang1, Ji Tu1, Shengrui Chen1, Jiyuan Liang1(), Xiangke Guo2()   

  1. 1 Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University,Wuhan 430056, China
    2 Key Laboratory of Mesoscopic Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
  • Received: Revised: Online: Published:
  • Contact: Jiyuan Liang, Xiangke Guo
  • Supported by:
    National Natural Science Foundation of China(51802122)
Richhtml ( 70 ) PDF ( 686 ) Cited
Export

EndNote

Ris

BibTeX

Lithium metal is considered as an ideal anode for next generation high energy density secondary batteries due to its high specific capacity (3860 mAh·g-1) and low redox potential (-3.04 V vs standard hydrogen electrode). However, the "hostless" lithium metal is plated/stripped at the metal/electrolyte interface layer, inevitably growing dendrites and resulting in uneven distribution of current on the surface of lithium metal, which may puncture the battery separator and cause short circuit of the battery. In practical applications, by constructing three-dimensional current collector/lithium metal composite anode, the lithium deposition behavior can be effectively regulated and the dendrite can be suppressed, which further enhances the Coulombic efficiency, cycling life and rate performance. The research on this aspect has become a hot topic in recent years. In this review, firstly, the related principles and models of the suppression of lithium dendrite based on 3D current collector are summarized. Secondly, for the copper-based current collector, the preparation methods of 3D current collectors and their application in the protection of lithium metal anode are systematically summarized according to the dimension of substrate units. Finally, we summarize and outlook on the composite lithium anode constructed by 3D current collectors.

Contents

1 Introduction

2 Mechanisms of regulating action of 3D collector on inhibition of lithium dendrite

2.1 Surface nucleation growth model

2.2 Classical nucleation theory

2.3 Heterogeneous nucleation model

2.4 Space charge model

2.5 Deposition-dissolution model

2.6 Phase field model

3 Preparation of 3D current collector based on copper powder (0D)

4 Preparation of 3D current collector based on copper nanowire (1D)

5 Preparation of 3D current collector based on copper foil (2D)

5.1 Construction of a porous copper-based collector by alloying/dealloying

5.2 Modification of copper foil by metal/metal compounds

5.3 Modification of copper foil by inorganic nonmetallic materials

6 Modification of 3D current collector based on copper foam and copper mesh

6.1 Modification of copper foam and copper mesh by metal/metal compounds

6.2 Modification of copper foam and copper mesh by inorganic nonmetallic materials

7 Conclusion and outlook

Fig. 1 Dendrite growth and several major problems of lithium metal anodes[20]. Copyright©2017, American Chemical Society
Fig. 2 Fundamentals of lithium nucleation and growth. (a) Nucleation size and density of lithium under different overpotential[26]; Copyright©2017, American Chemical Society. (b) Free energy schematic showing the effects of increasing overpotential on the nucleation energy barrier[26]; Copyright©2017, American Chemical Society. (c) Schematic diagram of interface contact angle of spherical lithium nucleus[29]
Fig. 3 (a) Illustration of the fabrication process of 3D Cu skeleton; (b) Coulombic efficiency results under different test conditions[33]. Copyright©2018, American Chemical Society
Fig. 4 Schematic of Li-ion reaction flux modeled using COMSOL Multiphysics for the plating of Li during the lithiation process on (a) Cu foil, (b) Cu mesh, and (c) the CG host[38]. Copyright©2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig. 5 (a) Schematic diagram of dealloying process; (b~e) SEM cross-sectional and upper surface images of CuZn sheets before and after dealloying at 0, 2, 4 and 8 h. The distance between green dotted lines represents dealloyed thicknesses. (f~h) EDX cross-sectional images at 2, 4 and 8 h; (i~l) Li deposition diagram depicting different current collectors at 0, 2, 4 and 8 h[43]. Copyright©2020, American Chemical Society.
Table 1 Methods and performance parameters of modifying copper foil by metal compounds
Fig. 6 (a) Schematic diagram of lithium deposition for copper foil and carbon nanotube modified copper foil[64]; Copyright©2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim; (b) Schematic diagram of 3D double-sided copper foil preparation[66]. Copyright©2020 Wiley-VCH GmbH & Co. KGaA, Weinheim
Fig. 7 (a) Digital photo of Li metal and its SEM; (b) Digital photo of copper mesh and its SEM; (c) Digital photo of Li-metal/3D copper mesh composite and its SEM[70], Copyright©2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim; (d)Schematic illustration of the fabrication of vertically oriented Li-Cu-Li arrays[73], Copyright©2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fig. 8 (a) Preparation process of ZnO@CF/Li electrode and its SEM image[87]. Copyright©2018, American Chemical Society. (b,c) Lithium melting process of foam-copper and copper nitride[79]. Copyright©2020 Elsevier B.V
Table 2 Methods and performance parameters of modifying copper foam by metal compounds
[1]
Zhang R, Chen X R, Chen X, Cheng X B, Zhang X Q, Yan C, Zhang Q. Angew. Chem. Int. Ed., 2017, 56(27): 7764.

doi: 10.1002/anie.201702099
[2]
Liu Y Y, Lin D C, Liang Z, Zhao J, Yan K, Cui Y. Nat. Commun., 2016, 7(1): 1.
[3]
Shang C Q, Wei B B, Zhang X Z, Shui L L, Wang X, Zhou G F. Mater. Lett., 2019, 236: 240.

doi: 10.1016/j.matlet.2018.10.106
[4]
Sun X W, Zhang X Y, Ma Q T, Guan X Z, Wang W, Luo J Y. Angew. Chem. Int. Ed., 2020, 59(17): 6665.

doi: 10.1002/anie.v59.17
[5]
Hwang J Y, Park S J, Yoon C S, Sun Y K. Energy Environ. Sci., 2019, 12(7): 2174.

doi: 10.1039/C9EE00716D
[6]
Jia W S, Wang Y, Qu S J, Yao Z Y, Liu Y C, Li C, Wang Z H, Li J Z. J. Materiomics, 2019, 5(2): 176.

doi: 10.1016/j.jmat.2019.02.008
[7]
Huang G X, Chen S R, Guo P M, Tao R M, Jie K C, Liu B, Zhang X F, Liang J Y, Cao Y C. Chem. Eng. J., 2020, 395: 125122.

doi: 10.1016/j.cej.2020.125122
[8]
Wang L, Zhou Z Y, Yan X, Hou F, Wen L, Luo W B, Liang J, Dou S X. Energy Storage Mater., 2018, 14: 22.
[9]
Wang S H, Yue J P, Dong W, Zuo T T, Li J Y, Liu X L, Zhang X D, Liu L, Shi J L, Yin Y X, Guo Y G. Nat. Commun., 2019, 10(1): 1.

doi: 10.1038/s41467-018-07882-8
[10]
Wu F, Yuan Y X, Cheng X B, Bai Y, Li Y, Wu C, Zhang Q. Energy Storage Mater., 2018, 15: 148.
[11]
Ding F, Xu W, Graff G L, Zhang J, Sushko M L, Chen X L, Shao Y Y, Engelhard M H, Nie Z M, Xiao J, Liu X J, Sushko P V, Liu J, Zhang J G. J. Am. Chem. Soc., 2013, 135(11): 4450.

doi: 10.1021/ja312241y pmid: 23448508
[12]
Liu Y M, Qin X Y, Zhang S Q, Zhang L H, Kang F Y, Chen G H, Duan X F, Li B H. J. Mater. Chem. A, 2019, 7(21): 13225.

doi: 10.1039/C9TA01929D
[13]
Cheng X B, Hou T Z, Zhang R, Peng H J, Zhao C Z, Huang J Q, Zhang Q. Adv. Mater., 2016, 28(15): 2888.

doi: 10.1002/adma.201506124
[14]
Huang G X, Guo P M, Wang J, Chen S R, Liang J Y, Tao R M, Tang S, Zhang X F, Cheng S J, Cao Y C, Dai S. Chem. Eng. J., 2020, 384: 123313.

doi: 10.1016/j.cej.2019.123313
[15]
Tan D H S, Banerjee A, Chen Z, Meng Y S. Nat. Nanotechnol., 2020, 15(3): 170.

doi: 10.1038/s41565-020-0657-x
[16]
Lu W Y, Wu C, Wei W F, Ma J M, Chen L B, Chen Y J. J. Mater. Chem. A, 2019, 7(42): 24262.

doi: 10.1039/C9TA09396F
[17]
Huang G X, Lou P, Xu G H, Zhang X F, Liang J Y, Liu H H, Liu C, Tang S, Cao Y C, Cheng S J. J. Alloys Compd., 2020, 817: 152753.

doi: 10.1016/j.jallcom.2019.152753
[18]
Ye M H, Jin X T, Nan X X, Gao J, Qu L T. Energy Storage Mater., 2020, 24: 153.
[19]
Tang W, Yin X S, Kang S J, Chen Z X, Tian B B, Teo S L, Wang X W, Chi X, Loh K P, Lee H W, Zheng G W. Adv. Mater., 2018, 30(34): 1801745.

doi: 10.1002/adma.v30.34
[20]
Cheng X B, Zhang R, Zhao C Z, Zhang Q. Chem. Rev., 2017, 117(15): 10403.

doi: 10.1021/acs.chemrev.7b00115
[21]
Yang Y, Yuan W, Zhang X Q, Ke Y Z, Qiu Z Q, Luo J, Tang Y, Wang C, Yuan Y H, Huang Y. Appl. Energy, 2020, 276: 115464.

doi: 10.1016/j.apenergy.2020.115464
[22]
Jäckle M, Groß A. J. Chem. Phys., 2014, 141(17): 174710.

doi: 10.1063/1.4901055
[23]
Ling C, Banerjee D, Matsui M. Electrochimica Acta, 2012, 76: 270.

doi: 10.1016/j.electacta.2012.05.001
[24]
Matsui M. J. Power Sources, 2011, 196(16): 7048.

doi: 10.1016/j.jpowsour.2010.11.141
[25]
Liu F F, Zhang Z W, Ye S F, Yao Y, Yu Y. Acta Physico-Chimica Sinica, 2020, 2006021.
( 刘凡凡, 张志文, 叶淑芬, 姚雨, 余彦. 物理化学学报, 2020, 2006021.).
[26]
Pei A, Zheng G Y, Shi F F, Li Y Z, Cui Y. Nano Lett., 2017, 17(2): 1132.

doi: 10.1021/acs.nanolett.6b04755
[27]
Rosso M, Brissot C, Teyssot A, DollÉ M, Sannier L, Tarascon J M, Bouchet R, Lascaud S. Electrochimica Acta, 2006, 51(25): 5334.

doi: 10.1016/j.electacta.2006.02.004
[28]
Xu W, Wang J L, Ding F, Chen X L, Nasybulin E, Zhang Y H, Zhang J G. Energy Environ. Sci., 2014, 7(2): 513.

doi: 10.1039/C3EE40795K
[29]
Qiu X G, Liu W, Liu J D, Li J Z, Zhang K, Cheng F Y. Acta Physico-Chimica Sinica, 2020, 2009012.
( 邱晓光, 刘威, 刘九鼎, 李俊志, 张凯, 程方益. 物理化学学报, 2020, 2009012.).
[30]
Thirumalraj B, Hagos T T, Huang C J, Teshager M A, Cheng J H, Su W N, Hwang B J. J. Am. Chem. Soc., 2019, 141(46): 18612.

doi: 10.1021/jacs.9b10195
[31]
Chazalviel J N. Phys. Rev. A, 1990, 42(12): 7355.

doi: 10.1103/PhysRevA.42.7355
[32]
Zhang R, Shen X, Cheng X B, Zhang Q. Energy Storage Mater., 2019, 23: 556.
[33]
Wang Y Y, Wang Z J, Lei D N, Lv W, Zhao Q, Ni B, Liu Y, Li B H, Kang F Y, He Y B. ACS Appl. Mater. Interfaces, 2018, 10(24): 20244.

doi: 10.1021/acsami.8b04881
[34]
Jackson E D, Prieto A L. ACS Appl. Mater. Interfaces, 2016, 8(44): 30379.

doi: 10.1021/acsami.6b08033
[35]
Lee D, Sun S, Kwon J, Park H, Jang M, Park E, Son B, Jung Y, Song T, Paik U. Adv. Mater., 2020, 32(7): 1905573.

doi: 10.1002/adma.v32.7
[36]
Lu L L, Ge J, Yang J N, Chen S M, Yao H B, Zhou F, Yu S H. Nano Lett., 2016, 16(7): 4431.

doi: 10.1021/acs.nanolett.6b01581
[37]
Yan K, Sun B, Munroe P, Wang G X. Energy Storage Mater., 2018, 11: 127.
[38]
Hong S H, Jung D H, Kim J H, Lee Y H, Cho S J, Joo S H, Lee H W, Lee K S, Lee S Y. Adv. Funct. Mater., 2020, 30(14): 2070088.

doi: 10.1002/adfm.v30.14
[39]
Chu H C, Tuan H Y. J. Power Sources, 2017, 346: 40.

doi: 10.1016/j.jpowsour.2017.02.041
[40]
Jia W S, Liu Y C, Wang Z H, Qing F Z, Li J Z, Wang Y, Xiao R J, Zhou A J, Li G B, Yu X Q, Hu Y S, Li H, Wang Z X, Huang X J, Chen L Q. Sci. Bull., 2020, 65(22): 1907.

doi: 10.1016/j.scib.2020.07.012
[41]
An Y L, Fei H F, Zeng G F, Xu X Y, Ci L J, Xi B J, Xiong S L, Feng J K, Qian Y T. Nano Energy, 2018, 47: 503.

doi: 10.1016/j.nanoen.2018.03.036
[42]
Zhao H, Lei D N, He Y B, Yuan Y F, Yun Q B, Ni B, Lv W, Li B H, Yang Q H, Kang F Y, Lu J. Adv. Energy Mater., 2018, 8(19): 1800266.

doi: 10.1002/aenm.v8.19
[43]
Zhang D, Dai A, Wu M, Shen K, Xiao T, Hou G Y, Lu J, Tang Y P. ACS Energy Lett., 2020, 5(1): 180.

doi: 10.1021/acsenergylett.9b01987
[44]
Yun Q B, He Y B, Lv W, Zhao Y, Li B H, Kang F Y, Yang Q H. Adv. Mater., 2016, 28(32): 6932.

doi: 10.1002/adma.201601409
[45]
Park C M, Kim J H, Kim H, Sohn H J. Chem. Soc. Rev., 2010, 39(8): 3115.

doi: 10.1039/b919877f
[46]
Liang X, Pang Q, Kochetkov I R, Sempere M S, Huang H, Sun X Q, Nazar L F. Nat. Energy, 2017, 2(9): 1.

doi: 10.1038/ng0992-1
[47]
Li F, Tan Y H, Yin Y C, Zhang T W, Lu L L, Song Y H, Tian T, Shen B, Zhu Z X, Yao H B. Chem. Sci., 2019, 10(42): 9735.

doi: 10.1039/C9SC01845J
[48]
Ren F H, Li Z D, Zhu Y, Huguet P, Deabate S, Wang D Y, Peng Z. Nano Energy, 2020, 73: 104746.

doi: 10.1016/j.nanoen.2020.104746
[49]
Ye H, Zheng Z J, Yao H R, Liu S C, Zuo T T, Wu X W, Yin Y X, Li N W, Gu J J, Cao F F, Guo Y G. Angew. Chem. Int. Ed., 2019, 58(4): 1094.

doi: 10.1002/anie.v58.4
[50]
Fan H L, Gao C H, Dong Q Y, Hong B, Fang Z, Hu M Y, Lai Y Q. J. Electroanal. Chem., 2018, 824: 175.

doi: 10.1016/j.jelechem.2018.07.056
[51]
Song R S, Wang B, Xie Y, Ruan T T, Wang F, Yuan Y, Wang D L, Dou S X. J. Mater. Chem. A, 2018, 6(37): 17967.

doi: 10.1039/C8TA06775A
[52]
Yin D M, Huang G, Na Z L, Wang X X, Li Q, Wang L M. ACS Energy Lett., 2017, 2(7): 1564.

doi: 10.1021/acsenergylett.7b00215
[53]
Park S, Jin H J, Yun Y S. Adv. Mater., 2020, 32(51): 2070386.

doi: 10.1002/adma.v32.51
[54]
Yang C P, Yin Y X, Zhang S F, Li N W, Guo Y G. Nat. Commun., 2015, 6(1): 1.
[55]
Wang L M, Tang Z F, Lin J, He X D, Chen C S, Chen C H. J. Mater. Chem. A, 2019, 7(29): 17376.

doi: 10.1039/c9ta05357c
[56]
Zhang C, Lv W, Zhou G M, Huang Z J, Zhang Y B, Lyu R Y, Wu H L, Yun Q B, Kang F Y, Yang Q H. Adv. Energy Mater., 2018, 8(21): 1703404.

doi: 10.1002/aenm.v8.21
[57]
Wang G, Xiong X H, Zou P J, Fu X X, Lin Z H, Li Y P, Liu Y Z, Yang C H, Liu M L. Chem. Eng. J., 2019, 378: 122243.

doi: 10.1016/j.cej.2019.122243
[58]
Wang M Q, Peng Z, Lin H, Li Z D, Liu J, Ren Z M, He H Y, Wang D Y. Acta Physico-Chimica Sinica, 2020, 2007016.
( 王木钦, 彭哲, 林欢, 李振东, 刘健, 任重民, 何海勇, 王德宇. 物理化学学报, 2020, 2007016.).
[59]
Chang X S, Liu H, Yang H, Di J, Tang W H, Fu H D, Li M Y, Liu R P. J. Materiomics, 2020, 6(1): 54.

doi: 10.1016/j.jmat.2019.11.007
[60]
Zhang C, Lyu R Y, Lv W, Li H, Jiang W, Li J, Gu S C, Zhou G M, Huang Z J, Zhang Y B, Wu J Q, Yang Q H, Kang F Y. Adv. Mater., 2019, 31(48): 1970336.

doi: 10.1002/adma.v31.48
[61]
Lu S T, Wang Z D, Yan H, Wang R, Lu K, Cheng Y W, Qin W, Wu X H. J. Energy Chem., 2020, 41: 87.

doi: 10.1016/j.jechem.2019.04.024
[62]
Hu M F, Yuan Y, Guo M, Pan Y K, Long D H. J. Mater. Chem. A, 2018, 6(30): 14910.

doi: 10.1039/C8TA04343D
[63]
Zhang Q, Luan J Y, Tang Y G, Ji X B, Wang S Y, Wang H Y. J. Mater. Chem. A, 2018, 6(38): 18444.

doi: 10.1039/C8TA07612J
[64]
Chen Y Z, Elangovan A, Zeng D L, Zhang Y F, Ke H Z, Li J, Sun Y B, Cheng H S. Adv. Funct. Mater., 2020, 30(4): 1906444.

doi: 10.1002/adfm.v30.4
[65]
Ren Y B, He X W, Sui W B, Zhang L C, Zhang H, Xia Y Q, Shi T S, Song M Y, Wang K P, Li G C. J. Mater. Res. Technol., 2020, 9(4): 8081.

doi: 10.1016/j.jmrt.2020.05.086
[66]
Lin K, Li T, Chiang S W, Liu M, Qin X Y, Xu X F, Zhang L H, Kang F Y, Chen G H, Li B H. Small, 2020, 16(37): 2001784.

doi: 10.1002/smll.v16.37
[67]
Ke X, Cheng Y F, Liu J, Liu L Y, Wang N G, Liu J P, Zhi C Y, Shi Z C, Guo Z P. ACS Appl. Mater. Interfaces, 2018, 10(16): 13552.

doi: 10.1021/acsami.8b01978
[68]
Yan K, Lee H W, Gao T, Zheng G Y, Yao H B, Wang H T, Lu Z D, Zhou Y, Liang Z, Liu Z F, Chu S, Cui Y. Nano Lett., 2014, 14(10): 6016.

doi: 10.1021/nl503125u
[69]
Li Q, Zhu S P, Lu Y Y. Adv. Funct. Mater., 2017, 27(18): 1606422.

doi: 10.1002/adfm.201606422
[70]
Jin S, Jiang Y, Ji H X, Yu Y. Adv. Mater., 2018, 30(48): 1802014.

doi: 10.1002/adma.v30.48
[71]
Huang Z J, Zhang C, Lv W, Zhou G M, Zhang Y B, Deng Y Q, Wu H L, Kang F Y, Yang Q H. J. Mater. Chem. A, 2019, 7(2): 727.

doi: 10.1039/C8TA10341K
[72]
Zhao Y, Ren L, Wang A, Luo J. Acta Phys. Chimica Sin., 2020, 36(12): 122.
[73]
Cao Z J, Li B, Yang S B. Adv. Mater., 2019, 31(29): 1901310.

doi: 10.1002/adma.v31.29
[74]
Zhang X Y, Wang A X, Lv R, Luo J Y. Energy Storage Mater., 2019, 18: 199.
[75]
Yin Y C, Yu Z L, Ma Z Y, Zhang T W, Lu Y Y, Ma T, Zhou F, Yao H B, Yu S H. Natl. Sci. Rev., 2019, 6(2): 247.

doi: 10.1093/nsr/nwy148
[76]
Yang C P, Fu K, Zhang Y, Hitz E, Hu L B. Adv. Mater., 2017, 29(36): 1701169.

doi: 10.1002/adma.v29.36
[77]
Liu X, Huang J Q, Zhang Q, Mai L. Adv. Mater., 2017, 29.
[78]
Adair K R, Iqbal M, Wang C H, Zhao Y, Banis M N, Li R Y, Zhang L, Yang R, Lu S G, Sun X L. Nano Energy, 2018, 54: 375.

doi: 10.1016/j.nanoen.2018.10.002
[79]
Park H, Kwon J, Song T, Paik U. J. Power Sources, 2020, 477: 228776.

doi: 10.1016/j.jpowsour.2020.228776
[80]
Ye Y, Liu Y T, Wu J L, Yang Y F. J. Power Sources, 2020, 472: 228520.

doi: 10.1016/j.jpowsour.2020.228520
[81]
Luan J Y, Zhang Q, Yuan H Y, Peng Z G, Tang Y G, Wu S G, Wang H Y. Chem. Eng. J., 2020, 395: 124922.

doi: 10.1016/j.cej.2020.124922
[82]
Yue X Y, Wang W W, Wang Q C, Meng J K, Wang X X, Song Y, Fu Z W, Wu X J, Zhou Y N. Energy Storage Mater., 2019, 21: 180.
[83]
Ma Y, Gu Y T, Yao Y Z, Jin H D, Zhao X H, Yuan X T, Lian Y B, Qi P W, Shah R, Peng Y, Deng Z. J. Mater. Chem. A, 2019, 7(36): 20926.

doi: 10.1039/C9TA08687K
[84]
Li J, Tang H L, Wang Y, Huang Z Y, Zhong J X. J. Mater. Sci.: Mater. Electron., 2017, 28(3): 2353.

doi: 10.1007/BF01151665
[85]
Jiang Y P, Wang B, Liu A M, Song R S, Bao C Y, Ning Y, Wang F, Ruan T T, Wang D L, Zhou Y. Electrochimica Acta, 2020, 339: 135941.

doi: 10.1016/j.electacta.2020.135941
[86]
Li R, Wang J X, Lin L D, Wang H, Wang C M, Zhang C H, Song C H, Tian F, Yang J, Qian Y T. Mater. Today Energy, 2020, 15: 100367.
[87]
Qin L G, Xu H, Wang D, Zhu J F, Chen J, Zhang W, Zhang P G, Zhang Y, Tian W B, Sun Z M. ACS Appl. Mater. Interfaces, 2018, 10(33): 27764.

doi: 10.1021/acsami.8b07362
[88]
Tan L, Li X H, Cheng M, Liu T C, Wang Z X, Guo H J, Yan G C, Li L J, Liu Y, Wang J X. J. Power Sources, 2020, 463: 228178.

doi: 10.1016/j.jpowsour.2020.228178
[89]
Lin K, Xu X F, Qin X Y, Zhang G Q, Liu M, Lv F, Xia Y, Kang F Y, Chen G H, Li B H. Energy Storage Mater., 2020, 26: 250.
[90]
Xu P, Lin X D, Hu X Y, Cui X Y, Fan X X, Sun C, Xu X M, Chang J K, Fan J M, Yuan R M, Mao B W, Dong Q F, Zheng M S. Energy Storage Mater., 2020, 28: 188.
[91]
Lei M N, Wang J G, Ren L B, Nan D, Shen C, Xie K Y, Liu X R. ACS Appl. Mater. Interfaces, 2019, 11(34): 30992.

doi: 10.1021/acsami.9b09975
[92]
Lei M N, You Z Y, Ren L B, Liu X R, Wang J G. J. Power Sources, 2020, 463: 228191.

doi: 10.1016/j.jpowsour.2020.228191
[93]
Peng Z, Ren F H, Yang S S, Wang M Q, Sun J, Wang D Y, Xu W, Zhang J G. Nano Energy, 2019, 59: 110.

doi: 10.1016/j.nanoen.2019.02.033
[94]
Ren F H, Peng Z, Wang M Q, Xie Y, Li Z D, Wan H, Lin H, Wang D Y. Energy Storage Mater., 2019, 16: 364.
[95]
Zhang R, Wen S W, Wang N, Qin K Q, Liu E Z, Shi C S, Zhao N Q. Adv. Energy Mater., 2018, 8(23): 1800914.

doi: 10.1002/aenm.v8.23
[96]
Zhou Y, Zhao K, Han Y, Sun Z H, Zhang H T, Xu L Q, Ma Y F, Chen Y S. J. Mater. Chem. A, 2019, 7(10): 5712.

doi: 10.1039/C8TA12064A
[97]
Lin D C, Liu Y Y, Liang Z, Lee H W, Sun J, Wang H T, Yan K, Xie J, Cui Y. Nat. Nanotechnol., 2016, 11(7): 626.

doi: 10.1038/nnano.2016.32
[98]
Yu J, Dang Y Y, Bai M H, Peng J X, Zheng D D, Zhao J K, Li L B, Fang Z. Front. Chem., 2019, 7: 748.

doi: 10.3389/fchem.2019.00748
[99]
Liang Z, Lin D, Zhao J, Lu Z, Liu Y, Liu C, Lu Y, Wang H, Yan K, Tao X, Cui Y. Proc. Natl. Acad. Sci. U. S. A., 2016, 113: 2862.

doi: 10.1073/pnas.1518188113
[1] Xinyang Yue, Jian Bao, Cui Ma, Xiaojing Wu, Yongning Zhou. Three-Dimension Skeleton Supported Lithium Metal Composite Anodes through Thermal Infusing Strategy [J]. Progress in Chemistry, 2022, 34(3): 683-695.
[2] Long Chen, Shaobo Huang, Jingyi Qiu, Hao Zhang, Gaoping Cao. Polymer Electrolyte/Anode Interface in Solid-State Lithium Battery [J]. Progress in Chemistry, 2021, 33(8): 1378-1389.
[3] Xianwen Wu, Fengni Long, Yanhong Xiang, Jianbo Jiang, Jianhua Wu, Lizhi Xiong, Qiaobao Zhang. Research Progress of Anode Materials for Zinc-Based Aqueous Battery in a Neutral or Weak Acid System [J]. Progress in Chemistry, 2021, 33(11): 1983-2001.
[4] Qiuyan Liu, Xuefeng Wang, Zhaoxiang Wang, Liquan Chen. Composite Solid Electrolytes with High Contents of Ceramics [J]. Progress in Chemistry, 2021, 33(1): 124-135.
[5] Xinbing Cheng, Qiang Zhang*. Growth Mechanisms and Suppression Strategies of Lithium Metal Dendrites [J]. Progress in Chemistry, 2018, 30(1): 51-72.
[6] Wu Chengren, Zhao Changchun, Wang Zhaoxiang, Chen Liquan. Li-Rich Layer-Structured Cathode Materials for Li-Ion Batteries [J]. Progress in Chemistry, 2011, 23(10): 2038-2044.
[7] Liu Hongfang Zheng Bijuan. Microbial Fuel Cells [J]. Progress in Chemistry, 2009, 21(6): 1349-1355.
[8] Gao Peng Han Jiajun Zhu Yongming Zhang Cuifen Li Ning. Surface Treatment on Lithium Electrode in Rechargeable Lithium Metal Batteries [J]. Progress in Chemistry, 2009, 21(0708): 1678-1686.
[9] Li Wang Xiangming He Weihua Pu Changyin Jiang Chunrong Wan . Progress in Rechargeable Lithium Metal Batteries [J]. Progress in Chemistry, 2006, 18(05): 641-647.