中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (2): 384-396 DOI: 10.7536/PC201226 Previous Articles   Next Articles

• Review •

Replica Exchange Molecular Dynamics

Cheng Peng1,2, Leyun Wu1,2, Zhijian Xu1,2(), Weiliang Zhu1,2()   

  1. 1 Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences,Shanghai 201203, China
    2 University of Chinese Academy of Sciences, Beijing 100049, China
  • Received: Revised: Online: Published:
  • Contact: Zhijian Xu, Weiliang Zhu
  • Supported by:
    National Key Research and Development Program(2016YFA0502301); National Science & Technology Major Project“Key New Drug Creation and Manufacturing Program”, China(2018ZX09711002)
Richhtml ( 118 ) PDF ( 825 ) Cited
Export

EndNote

Ris

BibTeX

Replica exchange molecular dynamics (REMD) is a kind of enhanced sampling algorithm that has been widely used in the study of protein conformation changes with their free energy landscape. Due to its rigorous principle and high sampling efficiency, researches on the optimization and development of the conventional REMD method have also sprung up, and have been in the ascendant recently, which greatly enhances its sampling efficiency and expands its application. However, those REMD variations usually have specific application, making it difficult to choose suitable REMD variations in practical application. Therefore, it is of great significance to summarize the REMD variations for understanding their advantages and disadvantages and for choosing suitable REMD variations. Here, we review recent development of the REMD variations from the perspective of their principle, and classify them into six types of methods: I) improving the approach and swapping rate of replica exchange, II) reducing the potential energy on exchange attempts to reduce the number of replica, III) Hamiltonians replica exchange molecular dynamics, IV) adjusting simulation process to improve sampling efficiency, V) changing the sampling methods, VI) adapting to heterogeneous and distributed computing environment. We hope that this review may be helpful in the understanding, application, and further improvement of the various REMD variations.

Contents

1 Introduction

2 Temperature replica exchange molecular dynamics

3 Improve the approach and swapping rate of replica exchange

4 Reduce the potential energy on exchange attempts to reduce the number of replica

4.1 Deal with the explicit solvent

4.2 Reduce the freedom of solute

5 Hamiltonians replica exchange molecular dynamics

5.1 Adjust the formula of potential energy

5.2 Adopted into other enhanced sampling algorithms

5.3 Multidimensional replica exchange molecular dynamics

5.4 Introducing physical parameters in simulations

6 Adjust simulation process to improve sampling efficiency

6.1 The way of temperature control

6.2 The parameters in parallel replicas

6.3 Multilayer simulation in parallel replicas

6.4 Adjust initial structures

7 Sampling methods

8 Heterogeneous and distributed computing environment

9 Conclusion and outlook

Table 1 The list of multidimensional REMD.
Fig. 1 The diagrams of representative REMD variations. T1-T4 refer to four parallel replicas, and different temperatures were colored specifically. The frozen replicas in the Modified REMD method were colored in gray. The TIGER simulation has three simulation cycles.
Table 2 The summary of methods to improve the sampling efficiency of REMD
[1]
Alaei L, Moosavi-Movahedi A A. Prog. Biophys. Mol. Biol., 2020, 150: 145.

doi: 10.1016/j.pbiomolbio.2019.08.008
[2]
Orellana L. Front. Mol. Biosci., 2019, 6: 117.

doi: 10.3389/fmolb.2019.00117 pmid: 31750315
[3]
Yeung W, Ruan Z, Kannan N. IUBMB Life, 2020, 72(6): 1189.

doi: 10.1002/iub.v72.6
[4]
Yang J, Talibov V O, Peintner S, Rhee C, Poongavanam V, Geitmann M, Sebastiano M R, Simon B, Hennig J, Dobritzsch D, Danielson U H, Kihlberg J. ACS Omega, 2020, 5(8): 3979.

doi: 10.1021/acsomega.9b03493 pmid: 32149225
[5]
Chen J, Yang J, Wei Q Y, Weng L, Wu F, Shi Y, Cheng X L, Cai X T, Hu C P, Cao P. Cell Commun. Signal., 2020, 18(1): 1.

doi: 10.1186/s12964-019-0473-9
[6]
Zou Y, Ewalt J, Ng H L. Int. J. Mol. Sci., 2019, 20.
[7]
Calebiro D, Grimes J. Annu. Rev. Pharmacol. Toxicol., 2020, 60(1): 73.

doi: 10.1146/pharmtox.2020.60.issue-1
[8]
Ali A M, Atmaj J, van Oosterwijk N, Groves M R, Dömling A. Comput. Struct. Biotechnol. J., 2019, 17: 263.

doi: 10.1016/j.csbj.2019.01.012
[9]
Moldovean S N, Chiş V. ACS Chem. Neurosci., 2020, 11(2): 105.

doi: 10.1021/acschemneuro.9b00561 pmid: 31841621
[10]
Harpole T J, Delemotte L. Biochim. Et Biophys. Acta BBA Biomembr., 2018, 1860(4): 909.
[11]
Wang J N, Peng C, Yu Y Q, Chen Z Q, Xu Z J, Cai T T, Shao Q, Shi J Y, Zhu W L. Biophys. J., 2020, 118(5): 1009.

doi: 10.1016/j.bpj.2020.01.001
[12]
Ngo S T, Nguyen P H, Derreumaux P. J. Phys. Chem. B, 2020, 124(7): 1175.

doi: 10.1021/acs.jpcb.9b11881
[13]
Mitsutake A, Sugita Y, Okamoto Y. Biopolymers, 2001, 60(2): 96.

doi: 10.1002/1097-0282(2001)60:2【-逻*辑*与-】lt;96::AID-BIP1007【-逻*辑*与-】gt;3.0.CO;2-F pmid: 11455545
[14]
Peng C, Atilaw Y, Wang J N, Xu Z J, Poongavanam V, Shi J Y, Kihlberg J, Zhu W L, ErdÉlyi M. ACS Omega, 2019, 4(26): 22245.

doi: 10.1021/acsomega.9b03797
[15]
Singh G, Brovchenko I, Oleinikova A, Winter R. J. Phys. Chem. B, 2009, 113(29): 9863.

doi: 10.1021/jp901144v
[16]
Lee J, Chang I, Yu W. Sci. Rep., 2019, 9: 19144.

doi: 10.1038/s41598-019-55661-2
[17]
Qi R X, Wei G H, Ma B Y, Nussinov R. Methods in Molecular Biology. New York: Springer, 2018. 101.
[18]
Stelzl L S, Hummer G. J. Chem. Theory Comput., 2017, 13(8): 3927.

doi: 10.1021/acs.jctc.7b00372 pmid: 28657736
[19]
Sugita Y, Kamiya M, Oshima H, Replica-Exchange Methods for Biomolecular Simulations. In: BonomiM., CamilloniC..(eds) 2019, 2022.
[20]
Pitera J W, Swope W. Proc. Natl. Acad. Sci. U. S. A. 2003, 100: 7587.

pmid: 12808142
[21]
Peng C, Zhu Z D, Shi Y L, Wang X Y, Mu K J, Yang Y Q, Zhang X B, Xu Z J, Zhu W L. J. Phys. Chem. Lett., 2020, 11(24): 10482.

doi: 10.1021/acs.jpclett.0c02958
[22]
Xin L, Sun H. Acta Physico-Chimica Sinica, 2018, 34: 1179.

doi: 10.3866/PKU.WHXB201803161
[23]
Wallace A F, Hedges L O, Fernandez-Martinez A, Raiteri P, Gale J D, Waychunas G A, Whitelam S, Banfield J F, Yoreo J J D. Science, 2013, 341: 885.

doi: 10.1126/science.1230915 pmid: 23970697
[24]
Sugita Y, Kitao A, Okamoto Y. J. Chem. Phys., 2000, 113(15): 6042.

doi: 10.1063/1.1308516
[25]
Ostermeir K, Zacharias M. Biochim. Biophys. Acta., 2013, 1834: 847.

doi: 10.1016/j.bbapap.2012.12.016 pmid: 23298543
[26]
Bernardi R C, Melo M C R, Schulten K. Biochim. Et Biophys. Acta BBA Gen. Subj., 2015, 1850(5): 872.
[27]
Massimiliano B, Carlo C. Biomolecular Simulations. New York: Spring Street, 2019. 155.
[28]
Kouza M, Hansmann U H E. J. Chem. Phys., 2011, 134(4): 044124.

doi: 10.1063/1.3533236
[29]
Itoh S G, Okumura H. J. Chem. Theory Comput., 2013, 9(1): 570.

doi: 10.1021/ct3007919
[30]
Itoh S G, Okumura H. Mol. Simul., 2015, 41(10/12): 1021.

doi: 10.1080/08927022.2014.923576
[31]
Itoh S G, Okumura H. J. Phys. Chem. B, 2016, 120(27): 6555.

doi: 10.1021/acs.jpcb.6b03828
[32]
Yamauchi M, Okumura H. J. Comput. Chem., 2019, 40(31): 2694.

doi: 10.1002/jcc.v40.31
[33]
Zhang B W, Dai W, Gallicchio E, He P, Xia J C, Tan Z Q, Levy R M. J. Phys. Chem. B, 2016, 120(33): 8289.

doi: 10.1021/acs.jpcb.6b02015
[34]
Chodera J D, Shirts M R. J. Chem. Phys., 2011, 135(19): 194110.

doi: 10.1063/1.3660669
[35]
Vogel T, Perez D. Phys. Procedia, 2015, 68: 125.

doi: 10.1016/j.phpro.2015.07.121
[36]
Brenner P, Sweet C R, Von Handorf D, Izaguirre J A. J. Chem. Phys., 2007, 126(7): 074103.

doi: 10.1063/1.2436872
[37]
Yua T Q, Lub J, Abramse. C F, Vanden-Eijnden E. Proc. Natl. Acad. Sci. U. S. A., 2016, 113: 11744.

doi: 10.1073/pnas.1605089113
[38]
Plattner N, Doll J D, Dupuis P, Wang H, Liu Y F, Gubernatis J E. J. Chem. Phys., 2011, 135: 1.
[39]
Lu J F, Vanden-Eijnden E. J. Chem. Phys., 2013, 138(8): 084105.

doi: 10.1063/1.4790706
[40]
Urano R, Okamoto Y. Comput. Phys. Commun., 2015, 196: 380.

doi: 10.1016/j.cpc.2015.07.007
[41]
Mu Y G, Yang Y, Xu W X. J. Theor. Comput. Chem., 2008, 7(2): 177.

doi: 10.1142/S0219633608003769
[42]
Mu Y G, Yang Y, Xu W X. J. Chem. Phys., 2007, 127(8): 084119.

doi: 10.1063/1.2772264
[43]
Chaudhury S, Olson M A, Tawa G, Wallqvist A, Lee M S. J. Chem. Theory Comput., 2012, 8(2): 677.
[44]
Xu W X, Yang Y, Mu Y, Nordenskiold L. Mol. Simulat., 2008, 34: 575.

doi: 10.1080/08927020801947020
[45]
Okur A, Wickstrom L, Layten M, Hornak V, Simmerling C, Song K. J. Chem. Theory Comput., 2006, 2: 420.

doi: 10.1021/ct050196z
[46]
Wang J N, Zhu W L, Li G H, Hansmann U H E. J. Chem. Phys., 2011, 135(8): 084115.

doi: 10.1063/1.3624401
[47]
Yu Y Q, Wang J N, Shao Q, Shi J Y, Zhu W L. J. Chem. Phys., 2015, 142(12): 125105.

doi: 10.1063/1.4916118
[48]
Cheng X L, Cui G L, Hornak V, Simmerling C. J. Phys. Chem. B, 2005, 109(16): 8220.

doi: 10.1021/jp045437y
[49]
Fukunishi H, Watanabe O, Takada S. J. Chem. Phys., 2002, 116(20): 9058.
[50]
Itoh S G, Okumura H, Okamoto Y. J. Chem. Phys., 2010, 132(13): 134105.

doi: 10.1063/1.3372767
[51]
Itoh S G, Okumura H. J. Comput. Chem., 2013, 34(8): 622.

doi: 10.1002/jcc.23167
[52]
Itoh S G, Okumura H. J. Phys. Chem. B, 2014, 118(39): 11428.

doi: 10.1021/jp505984e
[53]
Rathinavelan T, Im W. J. Comput. Chem., 2008, 29(10): 1640.

doi: 10.1002/jcc.v29:10
[54]
Chen J H, Im W, Brooks C L III. J. Comput. Chem., 2005, 26(15): 1565.

doi: 10.1002/jcc.v26:15
[55]
Okumura H, Itoh S G. Phys. Chem. Chem. Phys., 2013, 15(33): 13852.

doi: 10.1039/c3cp44443k
[56]
Jang S, Shin S, Pak Y. Phys. Rev. Lett., 2003, 91(5): 058305.

doi: 10.1103/PhysRevLett.91.058305
[57]
Liu P, Kim B, Friesner R A, Berne B J. Proc. Natl. Acad. Sci. U. S. A., 2005, 102: 13749.

doi: 10.1073/pnas.0506346102 pmid: 16172406
[58]
Moors S L C, Michielssens S, Ceulemans A. J. Chem. Theory Comput., 2011, 7(1): 231.

doi: 10.1021/ct100493v
[59]
Kamiya M, Sugita Y. J. Chem. Phys., 2018, 149(7): 072304.

doi: 10.1063/1.5016222
[60]
Suzuki M, Okuda H. Mol. Simul., 2008, 34(3): 267.

doi: 10.1080/08927020701810583
[61]
Lyman E, Zuckerman D M. J. Chem. Theory Comput., 2006, 2(3): 656.

doi: 10.1021/ct050337x
[62]
Piana S, Laio A. J. Phys. Chem. B, 2007, 111(17): 4553.

doi: 10.1021/jp067873l
[63]
Kubitzki M B, de Groot B L. Biophys. J., 2007, 92(12): 4262.

pmid: 17384062
[64]
Berg B A, Neuhaus T. Phys. Lett. B, 1991, 267(2): 249.

doi: 10.1016/0370-2693(91)91256-U
[65]
Berg B A, Neuhaus T. Phys. Rev. Lett., 1992, 68(1): 9.

pmid: 10045099
[66]
Sugita Y, Okamoto Y. Chem. Phys. Lett., 2000, 329(3/4): 261.

doi: 10.1016/S0009-2614(00)00999-4
[67]
Hayashi T, Okamoto Y. Phys. Rev. E, 2019, 100(4): 043304.

doi: 10.1103/PhysRevE.100.043304
[68]
Fajer M, Hamelberg D, McCammon J A. J. Chem. Theory Comput., 2008, 4(10): 1565.

doi: 10.1021/ct800250m
[69]
Huang Y M M, McCammon J A, Miao Y L. J. Chem. Theory Comput., 2018, 14(4): 1853.

doi: 10.1021/acs.jctc.7b01226
[70]
Oshima H, Re S Y, Sugita Y. J. Chem. Theory Comput., 2019, 15(10): 5199.

doi: 10.1021/acs.jctc.9b00761
[71]
Sidler D, Schwaninger A, Riniker S. J. Chem. Phys., 2016, 145(15): 154114.

doi: 10.1063/1.4964781
[72]
Armacost K A, Goh G B, Brooks C L III. J. Chem. Theory Comput., 2015, 11(3): 1267.

doi: 10.1021/ct500894k pmid: 26579773
[73]
Galvelis R, Re S Y, Sugita Y. J. Chem. Theory Comput., 2017, 13(5): 1934.

doi: 10.1021/acs.jctc.7b00079
[74]
Galvelis R, Sugita Y. J. Comput. Chem., 2015, 36(19): 1446.

doi: 10.1002/jcc.v36.19
[75]
Bussi G, Gervasio F L, Laio A, Parrinello M. J. Am. Chem. Soc., 2006, 128: 13435.

doi: 10.1021/ja062463w
[76]
Bonomi M, Parrinello M. Phys. Rev. Lett., 2010, 104(19): 190601.

doi: 10.1103/PhysRevLett.104.190601
[77]
Jiang W, Roux B. J. Chem. Theory Comput., 2010, 6(9): 2559.

pmid: 21857813
[78]
Zheng J, Alsamarah A, LaCuran A E, Oelschlaeger P, Hao J, Luo Y. Plos One, 2015, 10: e0132221.

doi: 10.1371/journal.pone.0132221
[79]
Peng C, Wang J N, Shi Y L, Xu Z J, Zhu W L. J. Chem. Theory Comput., 2021, 17(1): 13.

doi: 10.1021/acs.jctc.0c00592
[80]
Bergonzo C, Henriksen N M, Roe D R, Cheatham T E III. RNA, 2015, 21(9): 1578.

doi: 10.1261/rna.051102.115
[81]
Roe D R, Bergonzo C, Cheatham T E III. J. Phys. Chem. B, 2014, 118(13): 3543.

doi: 10.1021/jp4125099
[82]
Arrar M, de Oliveira C A F, Fajer M, Sinko W, McCammon J A. J. Chem. Theory Comput., 2013, 9(1): 18.

doi: 10.1021/ct300896h
[83]
Okamoto Y, Kokubo H, Tanaka T. J. Chem. Theory Comput., 2014, 10(8): 3563.

doi: 10.1021/ct500539u pmid: 26588319
[84]
Kokubo H, Tanaka T, Okamoto Y. J. Comput. Chem., 2013, 34(30): 2601.

doi: 10.1002/jcc.v34.30
[85]
Ebrahimi P, Kaur S, Baronti L, Petzold K, Chen A A. Methods, 2019, 162/163: 96.

doi: 10.1016/j.ymeth.2019.05.001
[86]
Babin V, Karpusenka V, Moradi M, Roland C, Sagui C. Int. J. Quantum Chem., 2009, 109(15): 3666.

doi: 10.1002/qua.v109:15
[87]
Lee J, Miller B T, Damjanović A, Brooks B R. J. Chem. Theory Comput., 2015, 11(6): 2560.

doi: 10.1021/ct501101f
[88]
Lee J, Miller B T, Brooks B R. Protein Sci., 2016, 25(1): 231.

doi: 10.1002/pro.2755
[89]
Wang L L, Deng Y Q, Knight J L, Wu Y J, Kim B, Sherman W, Shelley J C, Lin T, Abel R. J. Chem. Theory Comput., 2013, 9(2): 1282.

doi: 10.1021/ct300911a
[90]
Wang L, Berne B J, Friesner R A. Proc. Natl. Acad. Sci. U. S. A., 2012, 109: 1937.

doi: 10.1073/pnas.1114017109
[91]
Jiang W, Thirman J, Jo S, Roux B. J. Phys. Chem. B, 2018, 122(41): 9435.

doi: 10.1021/acs.jpcb.8b03277
[92]
Lee M, Yoon J, Jang S, Shin S. Phys. Chem. Chem. Phys., 2017, 19(7): 5454.

doi: 10.1039/C6CP05322J
[93]
Cruzeiro V W D, Roitberg A E. J. Chem. Theory Comput., 2019, 15(2): 871.

doi: 10.1021/acs.jctc.8b00935
[94]
Nguyen P H. J. Chem. Phys., 2010, 132(14): 144109.

doi: 10.1063/1.3369626
[95]
Mori T, Jung J, Sugita Y. J. Chem. Theory Comput., 2013, 9(12): 5629.

doi: 10.1021/ct400445k
[96]
Nagai T, Takahashi T. J. Chem. Phys., 2014, 141(11): 114111.

doi: 10.1063/1.4895510
[97]
Liu L C, Kuo J L. Comput. Phys. Commun., 2015, 189: 119.

doi: 10.1016/j.cpc.2014.11.021
[98]
Li X F, O’Brien C P, Collier G, Vellore N A, Wang F, Latour R A, Bruce D A, Stuart S J. J. Chem. Phys., 2007, 127(16): 164116.

doi: 10.1063/1.2780152
[99]
Li X F, Latour R A, Stuart S J. J. Chem. Phys., 2009, 130(17): 174106.

doi: 10.1063/1.3129342
[100]
Li X F, Snyder J A, Stuart S J, Latour R A. J. Chem. Phys., 2015, 143(14): 144105.

doi: 10.1063/1.4932341
[101]
Kulke M, Geist N, Möller D, Langel W. J. Phys. Chem. B, 2018, 122(29): 7295.

doi: 10.1021/acs.jpcb.8b05178
[102]
Geist N, Kulke M, Schulig L, Link A, Langel W. J. Phys. Chem. B, 2019, 123(28): 5995.

doi: 10.1021/acs.jpcb.9b03134
[103]
Li X F, Murthy N S, Latour R A. Macromolecules, 2011, 44(13): 5452.

doi: 10.1021/ma200128c
[104]
Zhang W H, Chen J H. J. Chem. Theory Comput., 2013, 9(6): 2849.

doi: 10.1021/ct400191b
[105]
Trebst S, Troyer M, Hansmann U H E. J. Chem. Phys., 2006, 124(17): 174903.

doi: 10.1063/1.2186639
[106]
Kim J, Straub J E, Keyes T. J. Phys. Chem. B, 2012, 116(29): 8646.

doi: 10.1021/jp300366j
[107]
Chen C J, Xiao Y, Huang Y Z. Phys. Rev. E, 2015, 91(5): 052708.

doi: 10.1103/PhysRevE.91.052708
[108]
Chen C J, Huang Y Z. J. Comput. Chem., 2016, 37(17): 1565.

doi: 10.1002/jcc.24371
[109]
Okur A, Roe D R, Cui G L, Hornak V, Simmerling C. J. Chem. Theory Comput., 2007, 3: 557.

doi: 10.1021/ct600263e
[110]
Henriksen N M, Roe D R, Cheatham T E III. J. Phys. Chem. B, 2013, 117(15): 4014.

doi: 10.1021/jp400530e
[111]
Li H Z, Li G H, Berg B A, Yang W. J. Chem. Phys., 2006, 125(14): 144902.

doi: 10.1063/1.2354157
[112]
Rick S W. J. Chem. Phys., 2007, 126(5): 054102.

doi: 10.1063/1.2431807
[113]
Shell M S. Mol. Simul., 2010, 36(7/8): 505.

doi: 10.1080/08927021003720546
[114]
Yamamori Y, Kitao A. J. Chem. Phys., 2013, 139(14): 145105.

doi: 10.1063/1.4823743
[115]
Rhee Y M, Pande V S. Biophys. J., 2003, 84(2): 775.

doi: 10.1016/S0006-3495(03)74897-8
[116]
Jang S, Kim E, Pak Y. J. Chem. Phys., 2008, 128(22): 229901.

doi: 10.1063/1.2929842
[117]
Wang J N, Shao Q, Xu Z J, Liu Y T, Yang Z, Cossins B P, Jiang H L, Chen K X, Shi J Y, Zhu W L. J. Phys. Chem. B, 2014, 118(1): 134.

doi: 10.1021/jp4105129
[118]
Chen J, Peng C, Wang J, Zhu W. Proteins, 2018, 86: 1294.

doi: 10.1002/prot.v86.12
[119]
Fujisaki H, Shiga M, Kidera A. J. Chem. Phys., 2010, 132(13): 134101.

doi: 10.1063/1.3372802
[120]
Kima J, Straub J E. J. Chem. Phys., 2009, 130: 1.
[121]
Wu X W, Hodoscek M, Brooks B R. J. Chem. Phys., 2012, 137(4): 044106.

doi: 10.1063/1.4737094
[122]
Olson M A, Legler P M, Goldman E R. J. Phys. Chem. B, 2016, 120(9): 2234.

doi: 10.1021/acs.jpcb.6b00233
[123]
Fedorov D G, Sugita Y, Choi C H. J. Phys. Chem. B, 2013, 117: 7996.

doi: 10.1021/jp4029529
[124]
Moqadam M, Riccardi E, Trinh T T, Lervik A, van Erp T S. Phys. Chem. Chem. Phys., 2017, 19(20): 13361.

doi: 10.1039/C7CP01268C
[125]
Lin W, Paesani F. J. Phys. Chem. A, 2013, 117(32): 7131.

doi: 10.1021/jp400629t
[126]
Bulo R E, van Schoot H, Rohr D, Michel C. Int. J. Quantum Chem., 2010, 110(12): 2299.

doi: 10.1002/qua.22554
[127]
Zhou R. J. Mol. Graph. Model., 2003, 22: 451.

doi: 10.1016/j.jmgm.2003.12.011
[128]
Suh D, Radak B K, Chipot C, Roux B. J. Chem. Phys., 2018, 148(1): 014101.

doi: 10.1063/1.5004154
[129]
Kandel S, Salomon-Ferrer R, Larsen A B, Jain A, Vaidehi N. J. Chem. Phys., 2016, 144(4): 044112.

doi: 10.1063/1.4939532
[130]
Kamberaj H. J. Chem. Phys., 2015, 143(12): 124105.

doi: 10.1063/1.4931599
[131]
Kamberaj H. J. Mol. Graph. Model., 2018, 81: 32.

doi: S1093-3263(17)30654-X pmid: 29501958
[132]
Lockhart C, O’Connor J, Armentrout S, Klimov D K. J. Mol. Modeling, 2015, 21(9): 1.

doi: 10.1007/s00894-014-2561-5
[133]
Platania R, Shams S, Chiu C H, Kim N, Kim J, Park S J. Concurrency Computat.: Pract. Exper., 2017, 29(4): e3878.
[134]
Xia J C, Flynn W F, Gallicchio E, Zhang B W, He P, Tan Z Q, Levy R M. J. Comput. Chem., 2015, 36(23): 1772.

doi: 10.1002/jcc.v36.23
[1] Zhang Xiaohui, Ai Changjun, Ma Jinghong, Xu Jian. Schizophrenic Micellization of Block Copolymers [J]. Progress in Chemistry, 2011, 23(4): 781-790.
[2] Liu Wenjian**. New Advances in Relativistic Quantum Chemistry [J]. Progress in Chemistry, 2007, 19(06): 833-851.
[3] Dou Hongjing*,Sun Kang. Double-Hydrophilic Block Copolymers and Their Self-Assembly [J]. Progress in Chemistry, 2005, 17(05): 854-859.
Viewed
Full text


Abstract

Replica Exchange Molecular Dynamics