中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (3): 683-695 DOI: 10.7536/PC210343 Previous Articles   Next Articles

• Review •

Three-Dimension Skeleton Supported Lithium Metal Composite Anodes through Thermal Infusing Strategy

Xinyang Yue, Jian Bao, Cui Ma, Xiaojing Wu, Yongning Zhou()   

  1. Departmant of Materials Science, Fudan University, Shanghai 200344, China
  • Received: Revised: Online: Published:
  • Contact: Yongning Zhou
  • Supported by:
    National Natural Science Foundation of China(52071085)
Richhtml ( 22 ) PDF ( 480 ) Cited
Export

EndNote

Ris

BibTeX

Lithium metal is regarded as the most promising anode material for the next-generation lithium batteries due to its high theoretical specific capacity (3860 mAh/g) and lowest electrochemical potential (-3.04 V vs SHE). However, dendrite growth and volume changes in Li metal anodes during battery cycles hinder the industrialization of Li metal anodes severely. Recent research progress has shown that introducing 3D host in Li metal can not only suppress dendrite growth, but also relieve volume changes of Li anode, thus improving cycle performance and safety of lithium metal batteries. Therefore, designing 3D host/Li metal composite anodes is regarded as an emerging strategy that can solve the problem of Li metal anodes effectively. This review summaries the recent progress on 3D host/Li metal composite anodes prepared by thermal infusion strategy. We firstly discuss prelithiation methods of 3D host and analyze influencing factors of host lithiophilicity in thermal molten infusing. Afterwards, different 3D host framework and their features are discussed followed by the improved strategies. Finally, we summarize existing problems of 3D host/Li metal composite anodes and give their future prospects.

Contents

1 Introduction

2 Thermal infusion method for preparing Li composite anodes

2.1 The impact factors of Li wettability of 3D frameworks

2.2 Metal- and carbon-based 3D frameworks

2.3 Strategies of improving Li wettability

2.4 Problems of the thermal infusion method

3 Conclusion and prospects

Fig.1 Preparation of 3D host/Li metal composite electrode via thermal molten infusing method[39]. Copyright 2016, NAS
Fig.2 (a) Schematic diagram of the Li wettability testing; (b) Contact angle images of molten Li on different substrates as a function of temperature[44]. Copyright 2018, Elsevier
Fig.3 Effect of the thickness of CuO modified layer on liquid Li wettability
Fig.4 SEM images and Li infusion process of CFZO hosts with (a) irregular particle, (b) petaloid and (c) acicular surface morphology[51]. Copyright 2020, Elsevier
Fig.5 (a) Preparation of the Li-Ni composite anode, digital photos of Ni foam and Li-Ni anode, and comparison of electrochemical performance[52], Copyright 2017, Wiley; (b) SEM images of CuO-Ni and Cu-CuO-Ni skeleton, digital photo of the host during the Li infusion, and illustration of Li deposition/dissolution behavior[53], Copyright 2017, Wiley; (c) Photographs of CONF host during the Li infusing, and the SEM images of CONF-Li electrode[54].Copyright 2018, Elsevier
Fig.6 (a) Preparation of CuFG@Li electrode[55], Copyright 2019, Elsevier ; (b) Preparation of Li@CF electrode[56], Copyright 2019, RSC; (c) Illustration of Li-Cu@Ni composite electrode in regulating Li deposition/dissolution behavior[57]. Copyright 2017, Elsevier
Fig.7 Preparation diagram of the asymmetric MLF electrode and the corresponding COMSOL simulations[58]. Copyright 2019, Wiley
Fig.8 (a) Preparation of Li-rGO composite anode[59], Copyright 2016, Springer; (b) Relationship between Li deposition capacity and electrode thickness[60], Copyright 2018, Wiley; (c) Preparation of OCCu-Li electrode, and the SEM images of the electrode after cycling at different rates[61]. Copyright 2020, Elsevier
Fig.9 (a) Comparison in Li wettability of carbon cloth before and after modification[62], Copyright 2019, ACS; (b) Photos of the Li-CF electrode during the thermal infusing process[63], Copyright 2018, Wiley; (c) Preparation of Li/C-Wood electrode[64]. Copyright 2017, NAS
Table 1 Oxide modified layer to improve the Li wettability for 3D host
Fig.10 (a) Gibbs free energy change of the reaction between Co3O4 and molten Li and symmetrical cell testing[65], Copyright 2019, Wiley; (b) SEM images of CCOF-Li[78], Copyright 2020, Elsevier; (c) Minimum energy path and diffusion barriers for Li on Li22Si5 (001) and Li (001) crystal planes[66]. Copyright 2019, Wiley
Table 2 Simple substance modified layer to improve the Li wettability for host
Fig.11 Gibbs free energy change of elements in the periodic table that reacted with the molten Li[80]. Copyright 2019, Springer
Fig.12 (a) TEM images of carbon fiber and Si/carbon fiber and photos before and after Li infusion[39], Copyright 2016, NAS; (b) Li wettability of CF/Ag host and the binding energy calculations[81]. Copyright 2018, Elsevier
Fig.13 Preparation of NG-Li composite electrode, voltage-capacity curves (at a current density of 0.2 C) and rate performance[86]. Copyright 2016, Wiley
Table 3 Modification of functional groups (defects) for improving the Li wettability of the 3D host
[1]
Armand M, Tarascon J M. Nature, 2008, 451(7179): 652.

doi: 10.1038/451652a
[2]
Tarascon J M. Nat. Chem., 2010, 2(6): 510.

doi: 10.1038/nchem.680
[3]
Service R F. Science, 2019, 366(6463): 292.

doi: 10.1126/science.366.6463.292 pmid: 31624191
[4]
Chiang Y M. Science, 2010, 330(6010): 1485.

doi: 10.1126/science.1198591
[5]
Evarts E C. Nature, 2015, 526(7575): S93.

doi: 10.1038/526S93a
[6]
Whittingham M S. Science, 1976, 192(4244): 1126.

pmid: 17748676
[7]
Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. Energy Environ. Sci., 2011, 4(9): 3243.

doi: 10.1039/c1ee01598b
[8]
Nitta N, Wu F X, Lee J T, Yushin G. Mater. Today, 2015, 18(5): 252.

doi: 10.1016/j.mattod.2014.10.040
[9]
Lin D C, Liu Y Y, Cui Y. Nat. Nanotechnol., 2017, 12(3): 194.

doi: 10.1038/nnano.2017.16
[10]
Cheng X B, Zhang R, Zhao C Z, Zhang Q. Chem. Rev., 2017, 117(15): 10403.

doi: 10.1021/acs.chemrev.7b00115
[11]
Tikekar M D, Choudhury S, Tu Z Y, Archer L A. Nat. Energy, 2016, 1(9): 1.

doi: 10.1038/ng0492-1
[12]
Liu G Y, Lu W. J. Electrochem. Soc., 2017, 164(9): A1826.
[13]
Aurbach D, Zinigrad E, Cohen Y, Teller H. Solid State Ionics, 2002, 148: 405.

doi: 10.1016/S0167-2738(02)00080-2
[14]
Chen K H, Wood K N, Kazyak E, LePage W S, Davis A L, Sanchez A J, Dasgupta N P. J. Mater. Chem. A, 2017, 5(23): 11671.

doi: 10.1039/C7TA00371D
[15]
Ding F, Xu W, Graff G L, Zhang J, Sushko M L, Chen X L, Shao Y Y, Engelhard M H, Nie Z M, Xiao J, Liu X J, Sushko P V, Liu J, Zhang J G. J. Am. Chem. Soc., 2013, 135(11): 4450.

doi: 10.1021/ja312241y pmid: 23448508
[16]
Wang T Y, Li Y B, Zhang J Q, Yan K, Jaumaux P, Yang J, Wang C Y, Shanmukaraj D, Sun B, Armand M, Cui Y, Wang G X. Nat. Commun., 2020, 11(1): 5429.

doi: 10.1038/s41467-020-19246-2
[17]
Yu Z A, Wang H S, Kong X, Huang W, Tsao Y, Mackanic D G, Wang K C, Wang X C, Huang W X, Choudhury S, Zheng Y, Amanchukwu C V, Hung S T, Ma Y T, Lomeli E G, Qin J, Cui Y, Bao Z N. Nat. Energy, 2020, 5(7): 526.

doi: 10.1038/s41560-020-0634-5
[18]
Kang D M, Xiao M Y, Lemmon J P. Batteries Supercaps, 2021, 4(3): 445.

doi: 10.1002/batt.202000225
[19]
Zhou Y G, Zhang X, Ding Y, Zhang L Y, Yu G H. Adv. Mater., 2020, 32(48): 2005763.

doi: 10.1002/adma.202005763
[20]
Li F, He J, Liu J D, Wu M G, Hou Y Y, Wang H P, Qi S H, Liu Q H, Hu J W, Ma J M. Angew. Chem. Int. Ed., 2021, 60(12): 6600.

doi: 10.1002/anie.202013993
[21]
Zhang K, Liu W, Gao Y L, Wang X W, Chen Z X, Ning R Q, Yu W, Li R L, Li L, Li X, Yuan K, Ma L, Li N, Shen C, Huang W, Xie K Y, Loh K P. Adv. Mater., 2021, 33(5): 2006323.

doi: 10.1002/adma.202006323
[22]
Karimi N, Zarrabeitia M, Mariani A, Gatti D, Varzi A, Passerini S. Adv. Energy Mater., 2021, 11(4): 2003521.

doi: 10.1002/aenm.202003521
[23]
Pan L H, Luo Z F, Zhang Y T, Chen W L, Zhao Z H, Li Y Y, Wan J, Yu D D, He H Y, Wang D Y. ACS Appl. Mater. Interfaces, 2019, 11(47): 44383.

doi: 10.1021/acsami.9b17108
[24]
Liu M, Wang C, Cheng Z, Ganapathy S, Haverkate L A, Unnikrishnan S, Wagemaker M. ACS Mater. Lett., 2020, 2(7): 665.
[25]
Wang H, Wu J Y, Yuan L X, Li Z, Huang Y H. ACS Appl. Mater. Interfaces, 2020, 12(25): 28337.

doi: 10.1021/acsami.0c08029
[26]
Zu C X, Manthiram A. J. Phys. Chem. Lett., 2014, 5(15): 2522.

doi: 10.1021/jz501352e
[27]
Shen F, Zhang F, Zheng Y J, Fan Z Y, Li Z H, Sun Z T, Xuan Y Y, Zhao B, Lin Z Q, Gui X C, Han X G, Cheng Y H, Niu C M. Energy Storage Mater., 2018, 13: 323.
[28]
Liu L, Yin Y X, Li J Y, Li N W, Zeng X X, Ye H, Guo Y G, Wan L J. Joule, 2017, 1(3): 563.

doi: 10.1016/j.joule.2017.06.004
[29]
Hong B, Fan H L, Cheng X B, Yan X L, Hong S, Dong Q Y, Gao C H, Zhang Z A, Lai Y Q, Zhang Q. Energy Storage Mater., 2019, 16: 259.
[30]
Chen H, Pei A, Wan J Y, Lin D C, Vilá R, Wang H X, Mackanic D, Steinrück H G, Huang W, Li Y Z, Yang A K, Xie J, Wu Y C, Wang H S, Cui Y. Joule, 2020, 4(4): 938.

doi: 10.1016/j.joule.2020.03.008
[31]
Fang Y T, Cai W L, Zhu S S, Xu K L, Zhu M G, Xiao G N, Zhu Y C. J. Energy Chem., 2021, 54: 105.

doi: 10.1016/j.jechem.2020.05.067
[32]
Park H, Kwon J, Song T, Paik U. J. Power Sources, 2020, 477: 228776.

doi: 10.1016/j.jpowsour.2020.228776
[33]
Huang G X, Guo P M, Wang J, Chen S R, Liang J Y, Tao R M, Tang S, Zhang X F, Cheng S J, Cao Y C, Dai S. Chem. Eng. J., 2020, 384: 123313.

doi: 10.1016/j.cej.2019.123313
[34]
Liu H, Chen X, Cheng X B, Li B Q, Zhang R, Wang B, Chen X, Zhang Q. Small Methods, 2019, 3(9): 1800354.

doi: 10.1002/smtd.201800354
[35]
He J R, Manthiram A. Adv. Energy Mater., 2020, 10(41): 2002654.

doi: 10.1002/aenm.202002654
[36]
Liu F F, Jin Z Z, Hu Z X, Zhang Z W, Liu W, Yu Y. Chem. Asian J., 2020, 15(7): 1057.

doi: 10.1002/asia.201901668
[37]
Pei F, Fu A, Ye W B, Peng J, Fang X L, Wang M S, Zheng N F. ACS Nano, 2019, 13(7): 8337.

doi: 10.1021/acsnano.9b03784
[38]
Zhang D, Dai A, Wu M, Shen K, Xiao T, Hou G Y, Lu J, Tang Y P. ACS Energy Lett., 2020, 5(1): 180.

doi: 10.1021/acsenergylett.9b01987
[39]
Liang Z, Lin D C, Zhao J, Lu Z D, Liu Y Y, Liu C, Lu Y Y, Wang H T, Yan K, Tao X Y, Cui Y. Proc. Natl. Acad. Sci. U.S.A., 2016, 113(11): 2862.

doi: 10.1073/pnas.1518188113
[40]
Zuo G Z, Ren J, Meng X C, Sun Z, Xu W, Huang M, Li C L, Tritz K, Deng H Q, Hu J S, Li J G. Fusion Eng. Des., 2018, 137: 420.

doi: 10.1016/j.fusengdes.2018.10.023
[41]
Li X W, Chao Y H, Chen L L, Chen W, Luo J, Wang C, Wu P W, Li H M, Zhu W S. Chem. Eng. J., 2020, 392: 123731.

doi: 10.1016/j.cej.2019.123731
[42]
Ito Y, Minami K, Nagashima A. Int. J. Thermophys., 1989, 10(1): 173.

doi: 10.1007/BF00500717
[43]
Fiflis P, Press A, Xu W, Andruczyk D, Curreli D, Ruzic D N. Fusion Eng. Des., 2014, 89(12): 2827.
[44]
Wang J Y, Wang H S, Xie J, Yang A K, Pei A, Wu C L, Shi F F, Liu Y Y, Lin D C, Gong Y J, Cui Y. Energy Storage Mater., 2018, 14: 345.
[45]
Meier A, Javernick D A, Edwards G R. JOM, 1999, 51(2): 44.
[46]
Aksay I A, Hoge C E, Pask J A. J. Phys. Chem., 1974, 78(12): 1178.

doi: 10.1021/j100605a009
[47]
Kritsalis P, Coudurier L, Eustathopoulos N. J. Mater. Sci., 1991, 26(12): 3400.

doi: 10.1007/BF01124693
[48]
Dezellus O, Eustathopoulos N. J. Mater. Sci., 2010, 45(16): 4256.

doi: 10.1007/s10853-009-4128-x
[49]
Bai P, Li J, Brushett F R, Bazant M Z. Energy Environ. Sci., 2016, 9(10): 3221.

doi: 10.1039/C6EE01674J
[50]
Pasandideh-Fard M, Qiao Y M, Chandra S, Mostaghimi J. Phys. Fluids, 1996, 8(3): 650.
[51]
Yue X Y, Bao J, Yang S Y, Luo R J, Wang Q C, Wu X J, Shadike Z, Yang X Q, Zhou Y N. Nano Energy, 2020, 71: 104614.

doi: 10.1016/j.nanoen.2020.104614
[52]
Chi S S, Liu Y C, Song W L, Fan L Z, Zhang Q. Adv. Funct. Mater., 2017, 27(24): 1700348.

doi: 10.1002/adfm.201700348
[53]
Wu S L, Zhang Z Y, Lan M H, Yang S R, Cheng J Y, Cai J J, Shen J H, Zhu Y, Zhang K L, Zhang W J. Adv. Mater., 2018, 30(9): 1705830.

doi: 10.1002/adma.201705830
[54]
Yue X Y, Wang W W, Wang Q C, Meng J K, Zhang Z Q, Wu X J, Yang X Q, Zhou Y N. Energy Storage Mater., 2018, 14: 335.
[55]
Zhu W H, Deng W, Zhao F, Liang S S, Zhou X F, Liu Z P. Energy Storage Mater., 2019, 21: 107.
[56]
Ma Y, Gu Y T, Yao Y Z, Jin H D, Zhao X H, Yuan X T, Lian Y B, Qi P W, Shah R, Peng Y, Deng Z. J. Mater. Chem. A, 2019, 7(36): 20926.

doi: 10.1039/C9TA08687K
[57]
Lu L L, Zhang Y, Pan Z, Yao H B, Zhou F, Yu S H. Energy Storage Mater., 2017, 9: 31.
[58]
Yue X Y, Li X L, Bao J, Qiu Q Q, Liu T C, Chen D, Yuan S S, Wu X J, Lu J, Zhou Y N. Adv. Energy Mater., 2019, 9(35): 1901491.

doi: 10.1002/aenm.201901491
[59]
Lin D C, Liu Y Y, Liang Z, Lee H W, Sun J, Wang H T, Yan K, Xie J, Cui Y. Nat. Nanotechnol., 2016, 11(7): 626.

doi: 10.1038/nnano.2016.32
[60]
Sun Z W, Jin S, Jin H C, Du Z Z, Zhu Y W, Cao A Y, Ji H X, Wan L J. Adv. Mater., 2018, 30(32): 1800884.

doi: 10.1002/adma.201800884
[61]
Yue X Y, Bao J, Qiu Q Q, Luo R J, Wang Q C, Wu X J, Zhou Y N. Chem. Eng. J., 2020, 391: 123516.

doi: 10.1016/j.cej.2019.123516
[62]
Go W, Kim M H, Park J, Lim C H, Joo S H, Kim Y, Lee H W. Nano Lett., 2019, 19(3): 1504.

doi: 10.1021/acs.nanolett.8b04106
[63]
Zhang Y, Wang C W, Pastel G, Kuang Y D, Xie H, Li Y J, Liu B Y, Luo W, Chen C J, Hu L B. Adv. Energy Mater., 2018, 8(18): 1800635.

doi: 10.1002/aenm.201800635
[64]
Zhang Y, Luo W, Wang C, Li Y, Chen C, Song J, Dai J, Hitz E M, Xu S, Yang C, Wang Y, Hu L B. Proc. Natl. Acad. Sci. U. S. A., 2017, 114: 3584.

doi: 10.1073/pnas.1618871114 pmid: 28320936
[65]
Li S Y, Liu Q L, Zhou J J, Pan T, Gao L N, Zhang W D, Fan L, Lu Y Y. Adv. Funct. Mater., 2019, 29(19): 1808847.

doi: 10.1002/adfm.201808847
[66]
Liu S, Deng L J, Guo W Q, Zhang C Y, Liu X J, Luo J Y. Adv. Mater., 2019, 31(15): 1807585.

doi: 10.1002/adma.201807585
[67]
Yu B Z, Tao T, Mateti S, Lu S G, Chen Y. Adv. Funct. Mater., 2018, 28(36): 1803023.

doi: 10.1002/adfm.201803023
[68]
Liu Y Y, Lin D C, Liang Z, Zhao J, Yan K, Cui Y. Nat. Commun., 2016, 7(1): 1.
[69]
Wang X S, Pan Z H, Wu Y, Ding X Y, Hong X J, Xu G G, Liu M N, Zhang Y G, Li W S. Nano Res., 2019, 12(3): 525.

doi: 10.1007/s12274-018-2245-z
[70]
Deng W, Zhou X F, Fang Q L, Liu Z P. Adv. Energy Mater., 2018, 8(12): 1703152.

doi: 10.1002/aenm.201703152
[71]
Wang L Y, Zhu X Y, Guan Y P, Zhang J L, Ai F, Zhang W F, Xiang Y, Vijayan S, Li G D, Huang Y Q, Cao G P, Yang Y S, Zhang H. Energy Storage Mater., 2018, 11: 191.
[72]
Fan L, Li S Y, Liu L, Zhang W D, Gao L N, Fu Y, Chen F, Li J, Zhuang H L, Lu Y Y. Adv. Energy Mater., 2018, 8(33): 1802350.

doi: 10.1002/aenm.201802350
[73]
Sun C Z, Li Y P, Jin J, Yang J H, Wen Z Y. J. Mater. Chem. A, 2019, 7(13): 7752.

doi: 10.1039/C9TA00862D
[74]
Huang G X, Lou P, Xu G H, Zhang X F, Liang J Y, Liu H H, Liu C, Tang S, Cao Y C, Cheng S J. J. Alloys Compd., 2020, 817: 152753.

doi: 10.1016/j.jallcom.2019.152753
[75]
Huang X, Feng X Y, Zhang B, Zhang L, Zhang S C, Gao B, Chu P K, Huo K F. ACS Appl. Mater. Interfaces, 2019, 11(35): 31824.

doi: 10.1021/acsami.9b08438
[76]
Park G K, Kang H, Lee J W. J. Alloys Compd., 2019, 790: 847.

doi: 10.1016/j.jallcom.2019.03.281
[77]
Chen L, Fan X L, Ji X, Chen J, Hou S, Wang C S. Joule, 2019, 3(3): 732.

doi: 10.1016/j.joule.2018.11.025
[78]
Yue X Y, Wang W W, Wang Q C, Meng J K, Wang X X, Song Y, Fu Z W, Wu X J, Zhou Y N. Energy Storage Mater., 2019, 21: 180.
[79]
Yue X Y, Li X L, Wang W W, Chen D, Qiu Q Q, Wang Q C, Wu X J, Fu Z W, Shadike Z, Yang X Q, Zhou Y N. Nano Energy, 2019, 60: 257.

doi: 10.1016/j.nanoen.2019.03.057
[80]
Wang S H, Yue J P, Dong W, Zuo T T, Li J Y, Liu X L, Zhang X D, Liu L, Shi J L, Yin Y X, Guo Y G. Nat. Commun., 2019, 10(1): 4930.

doi: 10.1038/s41467-019-12938-4
[81]
Zhang R, Chen X, Shen X, Zhang X Q, Chen X R, Cheng X B, Yan C, Zhao C Z, Zhang Q. Joule, 2018, 2(4): 764.

doi: 10.1016/j.joule.2018.02.001
[82]
Zhao J, Zhou G M, Yan K, Xie J, Li Y Z, Liao L, Jin Y, Liu K, Hsu P C, Wang J Y, Cheng H M, Cui Y. Nat. Nanotechnol., 2017, 12(10): 993.

doi: 10.1038/nnano.2017.129 pmid: 28692059
[83]
Yang C P, Yao Y G, He S M, Xie H, Hitz E, Hu L B. Adv. Mater., 2017, 29(38): 1702714.

doi: 10.1002/adma.201702714
[84]
Yang C P, Xie H, Ping W W, Fu K, Liu B Y, Rao J C, Dai J Q, Wang C W, Pastel G, Hu L B. Adv. Mater., 2019, 31(3): 1804815.

doi: 10.1002/adma.201804815
[85]
Kong L L, Wang L, Ni Z C, Liu S, Li G R, Gao X P. Adv. Funct. Mater., 2019, 29(13): 1808756.

doi: 10.1002/adfm.201808756
[86]
Huang G, Han J H, Zhang F, Wang Z Q, Kashani H, Watanabe K, Chen M W. Adv. Mater., 2019, 31(2): 1805334.

doi: 10.1002/adma.201805334
[87]
Wang H, Lin D, Liu Y, Li Y, Cui Y. Sci. Adv., 2017, 3: e1701301.

doi: 10.1126/sciadv.1701301
[88]
Shi H D, Zhang C J, Lu P F, Dong Y F, Wen P C, Wu Z S. ACS Nano, 2019, 13(12): 14308.

doi: 10.1021/acsnano.9b07710
[89]
Kong L, Zhang Q. J. Energy Chem., 2019, 33: 167.

doi: 10.1016/j.jechem.2018.08.003
[1] Qi Yang, Nanping Deng, Bowen Cheng, Weimin Kang. Gel Polymer Electrolytes in Lithium Batteries [J]. Progress in Chemistry, 2021, 33(12): 2270-2282.
[2] Zenghua Chang, Jiantao Wang, Zhaohui Wu, Jinling Zhao, Shigang Lu. Concentrated Electrolyte for Lithium/Li-Ion Batteries [J]. Progress in Chemistry, 2018, 30(12): 1960-1974.
[3]

Liang Feng** |Dai Yongnian|Yi Huihua|Xiong Xue

. Nano-Scale LiFePO4 as Lithium Ion Battery Cathode Materials [J]. Progress in Chemistry, 2008, 20(10): 1606-1611.
[4] Feng Xu|He Xiangming*|Pu Weihua|Wan Chunrong|Jiang Changyin. FeS2 Cathode Materials for Lithium Batteries [J]. Progress in Chemistry, 2008, 20(0203): 396-404.
[5] Li Wang Xiangming He Weihua Pu Changyin Jiang Chunrong Wan . Progress in Rechargeable Lithium Metal Batteries [J]. Progress in Chemistry, 2006, 18(05): 641-647.
[6] Zhijun Ling,Xiangming He*,Jianjun Li,Changyin Jiang,Chunrong Wan. Recent Advances of All-Solid-State Polymer Electrolyte for Li-Ion Batteries [J]. Progress in Chemistry, 2006, 18(04): 459-466.
[7] Xiangming He,Weihua Pu,Li Wang,Changyin Jiang,Chunrong Wan. Plastic Crystals: An Effective Ambient Temperature All-Solid-State Electrolyte for Lithium Batteries [J]. Progress in Chemistry, 2006, 18(01): 24-29.
[8] Wang Qingwei,Xie Demin. Progress in Gel Electrolyte [J]. Progress in Chemistry, 2002, 14(03): 167-.