English
新闻公告
More
化学进展 2016, Vol. 28 Issue (11): 1591-1600 DOI: 10.7536/PC160630 前一篇   后一篇

• 综述与评论 •

有机太阳能电池给受体材料界面的微纳结构调控

谢祥1, 吕文珍1, 陈润锋1*, 黄维1,2*   

  1. 1. 南京邮电大学信息材料与纳米技术研究院 有机电子与信息显示国家重点实验室培育基地 江苏省有机电子和信息显示协同创新中心 南京 210023;
    2. 南京工业大学先进材料研究院 江苏省柔性电子重点实验室 先进生物与化学制造协同创新中心 南京 211816
  • 收稿日期:2016-06-01 修回日期:2016-08-01 出版日期:2016-11-15 发布日期:2016-10-08
  • 通讯作者: 陈润锋, 黄维 E-mail:iamrfchen@njupt.edu.cn;wei-huang@njtech.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21274065,21304049)资助

Micro/Nano Structure Regulation of Donor/Acceptor Interface for High-Performance Organic Solar Cells

Xie Xiang1, Lv Wenzhen1, Chen Runfeng1*, Huang Wei1,2*   

  1. 1. Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023, China;
    2. Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
  • Received:2016-06-01 Revised:2016-08-01 Online:2016-11-15 Published:2016-10-08
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21274065, 21304049).
有机太阳能电池因具有成本低、质轻、柔韧性好、可大面积印刷制备等优势,引起了人们极大的关注并成为现阶段有机电子学研究的重要热点之一。有机功能层中电子给体和受体界面特性对电池的功率转换效率影响很大,通过给受体界面的微纳结构化,可扩大给受体的接触面积、缩短给体和受体的距离、增强光吸收,能产生更多激子并促进激子有效分离,从而有效提高器件的电池效率。本文综述了纳米压印、自组装、溶剂挥发以及模板法等调控微纳结构的技术和方法,总结了基于微纳结构构建有机光伏器件的发展现状,并对目前微纳结构化方法和光伏应用中存在问题和研究重点做了简要评述,最后展望了该研究领域下一步的发展方向和应用前景。
With apparent advantages of low cost, low weight, high flexibility, high efficiency, and high processability in large size device manufacture, organic solar cells (OSCs) have aroused a great deal of attention in current studies of organic electronics all over the world. Especially, the interface structure investigations of acceptor and donor materials in the active layer of OSCs are of particular attraction due to the great influence of micro/nano structures on the photovoltaic performance. The micro/nano structured donor/acceptor interface leads to the enlarged interface area, the reduced distance between acceptor and donor, and the enhanced sunlight absorption, which are favorable to increase the molecular excitation, promote the efficient charge separation and effective exciton dissociation, produce the continuous paths for efficient charge transport, and finally improve the power conversion efficiency (PCE) in OSC applications. In this review, we summarize the recent development of micro/nano interface structured organic solar cells made by various methods in controlling the structures of donor/acceptor interface through nanoimprint lithography, self-assembly technology, solvent evaporation and template methods. The basic principles of these fabrication techniques in producing various micro/nano interface structures, including nano-textured interface, nano-gratings, nanorods array, nanoparticle mediated layer, rough interface and some special patterns, are discussed in detail with particular attention on the effects of the resulted nanostructures on the photovoltaic performance. Further, the current difficulties and future research directions of the micro/nano-structured OSCs are also discussed to give an outlook of the prospect trends and application potentials in modulating photovoltaic devices for high PCEs.

Contents
1 Introduction
2 Effects of micro/nano structures on photovoltaic properties
3 Methods to construct micro/nano interface structures
3.1 Nanoimprint lithography
3.2 Self-assembly technology
3.3 Solvent evaporation
3.4 Template methods
4 Applications of micro/nano structures on solar cells
4.1 Nano-textured interface
4.2 Nano gratings structure
4.3 Nanorods arrays
4.4 Nanoparticles
4.5 Rough interface
4.6 Special patterns
5 Conclusions and perspectives

中图分类号: 

()
[1] Luo G, Ren X, Zhang S, Wu H, Choy W C, He Z, Cao Y. Small, 2016, 12(12):1547.
[2] Wang Q, Xie Y, Soltani-Kordshuli F, Eslamian M. Renew. Sust. Energ. Rev., 2016, 56(26):347.
[3] Chen R, Zheng C, Li C, Li H, Wang Z, Tang Y, Jiang H, Tan Z, Huang W. Polym. Chem., 2016, 7(4):780.
[4] 关丽(Guan L),张晓远(Zhang X Y),孙福强(Sun F Q). 化学进展(Progress in Chemistry), 2015, 27(10):1435.
[5] Yusoff A R B M, Kim D, Kim H P, Shneider F K, Da Silva W J, Jang J. Energ. Environ. Sci., 2015, 8(1):303.
[6] Zhao J, Li Y, Yang G, Jiang K, Lin H, Ade H, Ma W, Yan H. Nat. Energ., 2016, 1(2):15027.
[7] 王洪宇(Wang H Y),赖衍帮(Lai Y B),丁益民(Ding Y M). 化学进展(Progress in Chemistry), 2014, 26(10):1673.
[8] Lee D H, Michael Y Y, You J, Richard E, Li G. Nanotechnology, 2014, 25(29):295401.
[9] Lee K H, Schwenn P E, Smith A R G, Cavaye H, Shaw P E, James M, Krueger K B, Gentle I R, Meredith P, Burn P L. Adv. Mater., 2011, 23(6):766.
[10] Stevens D M, Qin Y, Hillmyer M A, Frisbie C D. J. Phys. Chem. C., 2009, 113(26):11408.
[11] Yang H Y, Kang N S, Hong J, Song Y, Kim T W, Lim J A. Org. Electron., 2012, 13(11):2688.
[12] Chen J T, Hsu C H. Polym. Chem., 2011, 11(2):2707.
[13] Thompson B C, Fréchet J M J. Angew. Chem. Int. Edit., 2008, 47(1):58.
[14] Brocks G, Tol A. J. Phys. Chem., 1996, 100(2):1838.
[15] Zhou L, Ou Q, Chen J, Shen S, Tang J, Li Y, Lee S. Sci. Rep., 2014, 12(7):4.
[16] Forberich K, Dennler G, Scharber M C, Hingerl K, Fromherz T, Brabec C J. Thin Solid Films, 2008, 516(20):7167.
[17] Xue J, Cao W. Energ. Environ. Sci., 2014, 11(7):2123.
[18] Chen J, Cui C, Li Y, Zhou L, Ou Q, Li C, Li Y, Tang J. Adv. Mater., 2015, 27(6):1035.
[19] Cho C, Jeong S, Choi H, Shin N, Kim B, Jeon E, Lee J. Adv. Opt. Mater., 2015, 3(12):1697.
[20] Csucs G, Michel R, Lussi J W, Textor M, Danuser G. Biomaterials, 2003, 24(10):1713.
[21] Dunst S, Rath T, Radivo A, Sovernigo E, Tormen M, Amenitsch H, Marmiroli B, Sartori B, Reichmann A, Knall A, Trimmel G. ACS. Appl. Mater. Inter., 2014, 6(10):7633.
[22] Wagner D J, Jayatissa A H. Org. Electron., 2005, 6002(24):60020.
[23] Mrksich M, Whitesides G M. Trends Biotechnol., 1995, 13(6):228.
[24] Zeng W, Chong K S L, Low H Y, Williams E L, Tam T L, Sellinger A. Thin Solid Films, 2009, 517(24):6833.
[25] Yang Y, Mielczarek K, Zakhidov A, Hu W. ACS Appl. Mater. Inter., 2014, 6(21):19282.
[26] Avnon E, Yaacobi-Gross N, Ploshnik E, Shenhar R, Tessler N. Org. Electron., 2011, 12(7):1241.
[27] An Z, Zheng C, Tao Y, Chen R, Shi H, Chen T, Wang Z, Li H, Deng R, Liu X, Huang W. Nat. Mater., 2015, 14(7):685.
[28] Yuan J, Tang Y, Xu S, Chen R, Huang W. Sci. Bull., 2015, 2(894):1631.
[29] Byeon K J, Lee H. Eur. Phys. J. Appl. Phys., 2012, 59(1):10001.
[30] Lehn B J. Angew. Chem. Int. Edit., 1990, 19(2):1304.
[31] Hoeben F J M, Jonkheijm P, Meijer E W, Schenning A P H J. Chem. Rev., 2005, 105(4):1491.
[32] Jukes P C, Heriot S Y, Sharp J S, Jones R A L. Macromolecules, 2005, 38(6):2030.
[33] Heriot S Y, Jones R. Nat. Mater., 2005.27(4):782.
[34] Arias A C, Mackenzie J D, Stevenson R, Halls J J M, Inbasekaran M, Woo E P, Richards D, Friend R H. Macromolecules, 2001, 34(17):6005.
[35] Li G, Yao Y, Yang H, Shrotriya V, Yang G, Yang Y. Adv. Funct. Mater., 2007, 17(10):1636.
[36] Cheng H, Lin W, Wu F. Appl. Phys. Lett., 2009, 94(22):223302.
[37] Salim T, Wong L H, Uer B B, Kukreja R, Yong L F. J. Mater. Chem., 2010, 21(1):242.
[38] Chen F, Tseng H, Ko C. Appl. Phys. Lett., 2008, 92(10):103316.
[39] Kekuda D, Lin H, Chyi Wu M, Huang J, Ho K, Chu C. Sol. Energ. Mat. Sol. C., 2011, 95(2):419.
[40] Steinhart M, Wendorff J H, Greiner A. Wehrspohn R B, Nielsch K, Schilling J, Choi J, Gösele U. Science, 2002, 292(14):117.
[41] Steinhart M, Wehrspohn R B, Gösele U, Wendorff J H. Angew. Chem. Int. Edit., 2004, 43(11):1334.
[42] Chen D, Chen J, Glogowski E, Emrick T, Russell T P. Macromol. Rap. Comm., 2009, 12(30):377.
[43] Masuda H, Fukuda K. Science, 1995, 9(268):1466.
[44] Haberkorn N, Weber S A L, Berger R, Theato P. ACS Appl. Mater. Inter., 2010, 2(6):1573.
[45] Yang Y, Mielczarek K, Zakhidov A, Hu W. ACS Appl. Mater. Inter., 2016, 8(11):7300.
[46] Mayer J, Gallinet B, Offermans T, Ferrini R. Opt. Exp., 2016, 24(2):A358.
[47] Wang H, Lin L, Chen S, Wang Y, Wei K. Nanotechnology, 2009, 20(7):75201.
[48] Kim J S, Park Y, Lee D Y, Lee J H, Park J H, Kim J K, Cho K. Adv. Funct. Mater., 2010, 20(4):540.
[49] Chang C, Wu C, Chen S, Cui C, Cheng Y, Hsu C, Wang Y, Li Y. Angew. Chem. Int. Edit., 2011, 50(40):9386.
[50] Chen D, Zhao W, Russell T P. ACS Nano, 2012, 6(2):1479.
[51] Ulum S, Holmes N, Barr M, Kilcoyne A L D, Gong B B, Zhou X, Belcher W, Dastoor P. Nano Energy, 2013, 2(5):897.
[52] Gärtner S, Christmann M, Sankaran S, Röhm H, Prinz E, Penth F, Pütz A, Türeli A E, Penth B, Baumstümmler B, Colsmann A. Adv. Mater., 2014, 26(38):6653.
[53] Rtner S G, Reich S, Bruns M, Czolk J, Colsmann A. Nanoscale, 2016, 8(12):6721.
[54] Vaughan B, Williams E L, Holmes N P, Sonar P, Dodabalapur A, Dastoor P C, Belcher W J. Phys Chem. Chem. Phys., 2014, 16(6):2647.
[55] Reyes-Reyes M, López-Sandoval R, Liu J, Carroll D L. Sol. Energ. Mat. Sol. C., 2007, 91(15/16):1478.
[56] Stapleton A, Vaughan B, Xue B, Sesa E, Burke K, Zhou X, Bryant G, Werzer O, Nelson A, David Kilcoyne A L, Thomsen L, Wanless E, Belcher W, Dastoor P. Sol. Energ. Mat. Sol. C., 2012, 102(2):114.
[57] Holmes N P, Nicolaidis N, Feron K, Barr M, Burke K B, Al-Mudhaffer M, Sista P, Kilcoyne A L D, Stefan M C, Zhou X, Dastoor P C, Belcher W J. Sol. Energ. Mat. Sol. C., 2015, 140(4):412.
[58] Dam H F, Holmes N P, Andersen T R, Larsen-Olsen T T, Barr M, Kilcoyne A L D, Zhou X, Dastoor P C, Krebs F C, Belcher W J. Sol. Energ. Mat. Sol. C., 2015, 138(6):102.
[59] Holmes N P, Ulum S, Sista P, Burke K B, Wilson M G, Stefan M C, Zhou X, Dastoor P C, Belcher W J. Sol. Energ. Mat. Sol. C., 2014, 128(8):369.
[60] Holmes N P, Marks M, Kumar P, Kroon R, Barr M G, Nicolaidis N, Feron K, Pivrikas A, Fahy A, Mendaza A D D Z, Kilcoyne A L D, Müller C, Zhou X, Andersson M R, Dastoor P C, Belcher W J. Nano Energy, 2016, 19(13):495.
[61] Lee D H, Michael Y Y, You J, Richard E, Li G. Nanotechnology, 2014, 25(29):295401.
[62] Seok J, Shin T J, Park S, Cho C, Lee J, Yeol Ryu D, Kim M H, Kim K. Sci. Rep., 2015, 5(44):8373.
[63] Vohra V, Rling B D, Higashimine K, Murata H. Appl. Phys. Exp., 2016,6(16):012301-1.
[64] van Franeker J J, Kouijzer S, Lou X, Turbiez M, Wienk M M, Janssen R A J. Adv. Energy. Mater., 2015, 5(14):1500464.
[65] Aguirre J C, Hawks S A, Ferreira A S, Yee P, Subramaniyan S, Jenekhe S A, Tolbert S H, Schwartz B J. Adv. Energy. Mater., 2015, 5(11):1402020.
[66] Khaleque T, Svavarsson H G, Magnusson R. Opt. Exp., 2013, 21(S4):A631.
[67] Atwater H A, Polman A. Nat. Mater., 2010, 9(3):205.
[68] Khaleque T, Svavarsson H G, Magnusson R. Opt. Exp., 2013, 21(S4):A631.
[69] Atwater H A, Polman A. Nat. Mater., 2010, 9(3):205.
[70] Chen J, Yu M, Chang C, Chao Y, Sun K W, Hsu C. ACS Appl. Mater. Inter., 2014, 6(9):6164.
[71] He Z, Zhong C, Huang X, Wong W, Wu H, Chen L, Su S, Cao Y. Adv. Mater., 2011, 23(40):4636.
[72] Xu J, Hu Z, Zhang K, Huang L, Zhang J, Zhu Y. Energ. Technol., 2016, 4(2):314.
[1] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[2] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[3] 卢明龙, 张晓云, 杨帆, 王 练, 王育乔. 表界面调控电催化析氧反应[J]. 化学进展, 2022, 34(3): 547-556.
[4] 薛朝鲁门, 刘宛茹, 白图雅, 韩明梅, 莎仁, 詹传郎. 非富勒烯受体DA'D型稠环单元的结构修饰及电池性能研究[J]. 化学进展, 2022, 34(2): 447-459.
[5] 杜宇轩, 江涛, 常美佳, 戎豪杰, 高欢欢, 尚玉. 基于非稠环电子受体的有机太阳能电池材料与器件[J]. 化学进展, 2022, 34(12): 2715-2728.
[6] 徐翔, 李坤, 魏擎亚, 袁俊, 邹应萍. 基于非富勒烯小分子受体Y6的有机太阳能电池[J]. 化学进展, 2021, 33(2): 165-178.
[7] 卢芸, 李景鹏, 张燕, 仲国瑞, 刘波, 王慧庆. 木基炭微纳功能骨架[J]. 化学进展, 2020, 32(7): 906-916.
[8] 熊耀旭, 胡友根, 朱朋莉, 孙蓉, 汪正平. 微纳结构柔性压力传感器的制备及应用[J]. 化学进展, 2019, 31(6): 800-810.
[9] 吴媛媛, 潘海华, 唐睿康. 胶原矿化与仿生修复[J]. 化学进展, 2018, 30(10): 1503-1510.
[10] 刘炜珍, 郑嘉毅, 吴智诚, 刘章斌, 林璋. 表界面调控晶体变化微观机制探索与铬渣治理研究的结合[J]. 化学进展, 2017, 29(9): 1053-1061.
[11] 王晶, 姚楠*. 适用于合成气制甲烷的Ni基催化剂[J]. 化学进展, 2017, 29(12): 1509-1517.
[12] 吴阳, 王再禹, 孟向毅, 马伟. 同步辐射共振软X射线散射对有机太阳能电池中活性层形貌的解析[J]. 化学进展, 2017, 29(1): 93-101.
[13] 宋成杰, 王二静, 董兵海, 王世敏. 非富勒烯类有机小分子受体材料[J]. 化学进展, 2015, 27(12): 1754-1763.
[14] 安光明, 凌世全, 王智伟, 栾琳, 吴天准. 基于微纳结构液体灌注的超滑表面的制备与应用[J]. 化学进展, 2015, 27(12): 1705-1713.
[15] 杨雷, 程涛, 曾文进, 赖文勇, 黄维. 导电聚合物薄膜的喷墨打印制备及其光电器件[J]. 化学进展, 2015, 27(11): 1615-1627.