English
新闻公告
More
化学进展 2018, Vol. 30 Issue (10): 1503-1510 DOI: 10.7536/PC180541 前一篇   后一篇

• 综述 •

胶原矿化与仿生修复

吴媛媛1, 潘海华2*, 唐睿康1,2*   

  1. 1. 浙江大学化学系 杭州 310027;
    2. 浙江大学求是高等研究院 杭州 310027
  • 收稿日期:2018-06-01 修回日期:2018-07-25 出版日期:2018-10-15 发布日期:2018-09-25
  • 通讯作者: 潘海华, 唐睿康 E-mail:rtang@zju.edu.cn;panhh@zju.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21771160,21625105)、浙江省自然科学基金项目(No.LY17B010001)和中央高校基本科研业务费(No.2016QN81020)资助

Collagen Mineralization and Tissue Repair

Yuanyuan Wu1, Haihua Pan2*, Ruikang Tang1,2*   

  1. 1. Department of Chemistry, Zhejiang University, Hangzhou 310027, China;
    2. Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, China
  • Received:2018-06-01 Revised:2018-07-25 Online:2018-10-15 Published:2018-09-25
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21771160, 21625105), the National Natural Science Foundation of Zhejiang Province(No. LY17B010001), and the Fundamental Research Funds for the Central Universities(No. 2016QN81020).
脊椎动物硬组织(牙和骨)是通过生命系统的矿化过程形成的,其中矿化胶原是这些生物材料的基本结构单元。矿化胶原是由胶原分子与纳米磷酸钙矿物形成的有机-无机复合材料,其所特有的纳米有序多级结构赋予了生物硬组织材料优异的机械性能(如硬度和韧性)。该结构特性和矿化过程可为新型硬组织修复材料制备提供有益的启示。其中,胶原纤维内有序矿化是仿生重构的难点,也是开展硬组织修复的关键。本文综述了骨的分层结构特征、胶原分子的组装和矿化胶原的多级结构特点,胶原分子和非胶原蛋白与磷酸钙材料的相互作用,功能调控分子对胶原和矿物的界面修饰,以及胶原矿化技术在硬组织修复中的应用;指出了目前胶原矿化亟须解决的一些关键问题,如调控无定形矿物进入胶原纤维、胶原矿化速度和程度,大规模有序胶原纤维制备等。
The hard tissue(tooth and bone) in vertebrates is formed by the biomineralization processes, which are regulated and controlled by bio-systems. Among them, the mineralized collagen fibril is an essential building block for the construction of biominerals. The mineralized collagen is a hybrid material of nano inorganic mineral(calcium phosphate) and assembled organic molecules(collagen). The advanced nano hierarchical and ordered structure of the mineralized collagen fibrils will endow biological hard tissue with excellent mechanical properties(such as hardness and toughness). The structure feature and mineralization process may inspire new materials fabrications aimed at hard tissue repair. It is important but challenging to reconstruct the ordered organic/inorganic hybrid structures via intrafibrillar mineralization of collagen, and that is the key to the tissue repair. In this review, the same basic questions are discussed including hierarchical structures of bones, the assembled structure of collagen fibrils and the nano-hybrid structure of mineralized collagen fibrils, the interactions between the organic(collagen and non-collagenous proteins) and inorganic counterparts and their interface, the modification of mineralizing interface by the functional molecules, and the control of collagen mineralization and their applications in tissue repair. Some unresolved but urgent issues for collagen mineralization are also discussed, such as the regulation of amorphous precursors for the infiltration into the nano-compartment of collagen fibrils, the control of the mineralization rate and degree, as well as the large scale fabrication of ordered collagen fibrils and their mineralization.
Contents
1 Introduction
2 Hierarchical organic-inorganic structure of mineralized collagen
3 Interactions between the organic and inorganic components
4 Interfaces of collagen mineralization and their regulation
5 Biomimetic mineralization of collagen fibrils and their applications in hard tissue repair
6 Conclusion

中图分类号: 

()
[1] Mann S. J. Mater. Chem., 1995, 5:935.
[2] Weiner S, Traub W. FEBS Lett., 1986, 206:262.
[3] Reznikov N, Bilton M, Lari L, Stevens M, Kröger R. Science, 2018, 360:eaao2189.
[4] De Yoreo J J, Vekilov P G. Rev. Mineral. Geochem., 2003, 54:57.
[5] Liu X Y, de Yoreo J. Nanoscale Structure and Assembly at Solid-fluid Interfaces:Assembly in Hybrid and Biological Systems. Springer London, 2004.
[6] Lu X, Leng Y. Biomaterials, 2005, 26:1097.
[7] Tomoaia G, Pasca R D. Clujul. Med., 2015, 88:15.
[8] Rhee S H, Lee J D, Tanaka J. J. Am. Ceram. Soc., 2000, 83:2890.
[9] Lickorish D, Ramshaw J A M, Werkmeister J A, Glattauer V, Howlett C R. J. Biomed. Mater. Res. A., 2004, 68:19.
[10] Zhai Y, Cui F Z, Wang Y. Curr. Appl. Phys., 2005, 5:429.
[11] Nair A K, Gautieri A, Chang S W, Buehler M J. Nat. Commun., 2013, 4:1724.
[12] Weiner S, Wagner H. Annu. Rev. Mater. Sci., 1998, 28:271.
[13] 于世凤(Yu S F). 口腔组织病理学(Oral Histopathology). 北京:人民卫生出版社(Beijing:People's Medical Publishing House), 2012. 7.
[14] Shoulders M D, Raines R T. Annu. Rev. Biochem., 2009, 78:929.
[15] Orgel J P R O, Irving T C, Miller A, Wess T J. Proc. Natl. Acad. Sci. U. S. A., 2006, 103:9001.
[16] Hu C M, Zhang L C, Wei M. ACS Biomater. Sci. Eng., 2015, 1:669.
[17] Liu Y, Luo D, Kou X X, Wang X D, Tay F R, Sha Y L, Gan Y H, Zhou Y H. Adv. Funct. Mater., 2013, 23:1404.
[18] Gao H, Ji B, Jager I L, Arzt E, Fratzl P. Proc. Natl. Acad. Sci. U. S. A., 2003, 100:5597.
[19] Boskey A L. Bone, 1989, 6:111.
[20] Orsini G, Ruggeri A, Mazzoni A, Nato F, Mazzotti G, Putignano A, Tjäderhane L, Breschi L. Endodontic Topics, 2012, 21:1.
[21] Deshpande A S, Fang P A, Zhang X, Jayaraman T, Sfeir C, Beniash E. Biomacromolecules, 2011, 12:2933.
[22] Nudelman F, Pieterse K, George A, Bomans P, Friedrich H, Brylka L, Hilbers P, de With G, Sommerdijk N. Nat. Mater., 2010, 9:1004.
[23] Olszta M J, Cheng X, Jee S S, Kumar R, Kim Y Y, Kaufman M J, Douglas E P, Gower L B. Am. J. Mater. Sci. Eng., 2007, 58:77.
[24] Bhowmik R, Katti K S, Katti D. Polymer, 2007, 48:664.
[25] Wang Y, Azaïs T, Robin M, Vallée A, Catania C, Legriel P, Pehau-Arnaudet G, Babonneau F, Giraud-Guille MM, Nassif N. Nat. Mater., 2012, 11:724.
[26] Landis W J, Silver F H. Cells Tissues Organs, 2009, 189:20.
[27] Silver F H, Landis W J. Connect. Tissue Res., 2011, 52:242.
[28] Cui F Z, Wang Y, Cai Q, Zhang W. J. Mater. Chem., 2008, 18:3835.
[29] Kawska A, Hochrein O, Brickmann J, Kniep R, Zahn D. Angew. Chem., 2008, 47:4982.
[30] Zahn D, Hochrein O, Kawska A, Brickmann J, Kniep R. J. Mater. Sci., 2007, 42:8966.
[31] Tao J, Battle K C, Pan H, Salter E A, Chien Y C, Wierzbicki A, Yoreo J J D. Proc. Natl. Acad. Sci. U. S. A., 2015, 112:326.
[32] Almora-Barrios N, Leeuw N H D. CrystEngComm, 2009, 12:960.
[33] Almora-Barrios N, Leeuw N H D. Cryst. Growth Des., 2016, 12:756.
[34] Toroian D, Lim J E, Price P A. J. Biol. Chem., 2007, 282:22437.
[35] Price P A, Toroian D, Lim J E. J. Biol. Chem., 2009, 284:17092.
[36] Tay F R, Pashley D H. Biomaterials, 2008, 29:1127.
[37] Li J H, Yang J J, Li J Y, Chen L, Liang K N, Wu W, Chen X Y, Li J S. Biomaterials, 2013, 34:6738.
[38] Gu L S, Kim J, Kim Y K, Liu Y, Dickens S H, Pashley D H, Ling J Q, Tay F R. Dent. Mater., 2010, 26:1077.
[39] Chen C Q, Mao C Y, Sun J, Chen Y, Wang W, Pan H H, Tang R K, Gu X H. Am. J. Mater. Sci. Eng., 2016, 67:657.
[40] Shao C Y, Zhao R B, Jiang S Q, Yao S S, Wu Z F, Jin B, Yang Y L, Pan H H, Tang R K. Adv. Mater., 2018, 30:1704876.
[41] Wang J M, Chen Y, Li L, Sun J, Gu X H, Xu X R, Pan H H, Tang R K. CrystEngComm, 2013, 15:6151.
[42] Sun J, Chen C Q, Pan H H, Chen Y, Mao C Y, Wang W, Tang R K, Gu X H. J. Mater. Chem. B, 2014, 2:4544.
[43] Niu L N, Jee S E, Jiao K, Tonggu L, Li M, Wang L, Yang Y D, Bian J H, Breschi L, Jang S S, Chen J H, Pashley D H, Tay F R. Nat. Mater., 2017, 16:370.
[44] Jones F H. Surf. Sci. Rep., 2001, 42:75.
[45] Burwell A K, Thula-Mata T, Gower L B, Habelitz S, Kurylo M, Ho S P, Chien Y C, Cheng J, Cheng N F, Gansky S A. PLoS One, 2012, 7:1.
[46] Kim Y K, Gu L, Bryan T E, Kim J R, Chen L, Liu Y, Yoon J C, Breschi L, Pashley D H, Tay F R. Biomaterials, 2010, 31:6618.
[47] Liu Y, Kim Y K, Dai L, Li N, Khan S O, Pashley D H, Tay F R. Biomaterials, 2011, 32:1291.
[48] Dai L, Qi Y P, Niu L N, Liu Y, Pucci C R, Looney S W, Ling J Q, Pashle D H, Tay F R. Cryst. Growth Des., 2011, 11:3504.
[49] Zhang W, Luo X, Niu L, Yang H, Yiu C K, Zhou L, Mao J, Huang C, Pashley D H, Tay F R. Sci. Rep., 2015, 5:11199.
[50] Wu Z F, Wang X K, Wang Z, Shao C Y, Jin X T, Zhang L Q, Pan H H, Tang R K, Fu B P. ACS Appl. Mater. Interfaces, 2017, 9:17710.
[51] Cao Y, Mei M L, Xu J, Lo E C M, Li Q, Chu C H. J. Dent., 2013, 41:818.
[52] Li J, Xie X, Wang Y, Yin W, Antoun J S, Farella M, Mei L. J. Dent., 2014, 42:769.
[53] Noyama Y, Miura T, Ishimoto T, Itaya T, Niinomi M, Nakano T. Mater. Trans., 2012, 53:565.
[54] Ambard A J, Mueninghoff L. J. Prosthodontics., 2006, 15:321.
[55] Hu Y Y, Rawal A, Schmidt-Rohr K. Proc. Natl. Acad. Sci. U. S. A., 2010, 107:22425.
[56] Davies E H, Müller K, Wong W C, Pickard C J, Reid D G, Skepper J N, Duer M. J. Proc. Natl. Acad. Sci. U. S. A., 2014, 111:1354.
[57] Liu C, Zhai H L, Zhang Z, Li Y, Xu X, Tang R K. ACS Appl. Mater. Interfaces, 2016, 8:29997.
[58] Liu X, Zhao K, Gong T, Song J, Bao C Y, Luo E, Weng J, Zhou S B. Biomacromolecules, 2014, 15:1019.
[59] Tan R W, She Z D, Wang M B, Yu X, He J, Feng Q L. J. Tissue Eng. Regener. Med., 2012, 6:614.
[60] Zhai H L, Jiang W G, Tao J H, Lin S Y, Chu X B, Xu X R, Tang R K. Adv. Mater., 2010, 22:3729.
[61] John A,Hong L, Ikada Y, Tabata Y. J. Biomater. Sci. Polymer Ed., 2001, 12:689.
[62] Liao S S, Cui F Z. J. Biomed. Mater. Res., 2004, 69:158.
[1] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[2] 卢明龙, 张晓云, 杨帆, 王 练, 王育乔. 表界面调控电催化析氧反应[J]. 化学进展, 2022, 34(3): 547-556.
[3] 林巧霞, 殷萌, 魏延, 杜晶晶, 陈维毅, 黄棣. 钛及钛合金表面羟基磷灰石涂层结合强度及稳定性[J]. 化学进展, 2020, 32(4): 406-416.
[4] 刘炜珍, 郑嘉毅, 吴智诚, 刘章斌, 林璋. 表界面调控晶体变化微观机制探索与铬渣治理研究的结合[J]. 化学进展, 2017, 29(9): 1053-1061.
[5] 王晶, 姚楠*. 适用于合成气制甲烷的Ni基催化剂[J]. 化学进展, 2017, 29(12): 1509-1517.
[6] 王荣民, 孙康祺, 王建凤, 何玉凤, 宋鹏飞, 熊玉兵. 天然高分子复合羟基磷灰石材料的制备与应用[J]. 化学进展, 2016, 28(6): 885-895.
[7] 谢祥, 吕文珍, 陈润锋, 黄维. 有机太阳能电池给受体材料界面的微纳结构调控[J]. 化学进展, 2016, 28(11): 1591-1600.
[8] 陈峰, 朱英杰. 磷酸钙纳米结构材料的微波辅助液相合成[J]. 化学进展, 2015, 27(5): 459-471.
[9] 廖建国, 李艳群, 段星泽, 朱伶俐. 纳米羟基磷灰石/聚合物复合骨修复材料[J]. 化学进展, 2015, 27(2/3): 220-228.
[10] 张定林, 赵华文, 赵先英, 刘毅敏, 陈华, 李贤均. 羟基磷灰石作催化剂和催化剂载体的应用[J]. 化学进展, 2011, 23(4): 687-694.
[11] 倪淞波, 李延报, 王秀梅. 羟基磷灰石微球的制备、应用和功能化[J]. 化学进展, 2011, 23(01): 231-245.
[12] 曾绍先. 医用生物陶瓷及临床应用[J]. 化学进展, 1997, 9(01): 90-.
阅读次数
全文


摘要

胶原矿化与仿生修复