English
新闻公告
More
化学进展 2017, Vol. 29 Issue (12): 1509-1517 DOI: 10.7536/PC170709 前一篇   后一篇

• 综述 •

适用于合成气制甲烷的Ni基催化剂

王晶, 姚楠*   

  1. 浙江工业大学工业催化研究所 化学工程学院 绿色化学合成技术国家重点实验室培育基地 杭州 310014
  • 收稿日期:2017-07-11 修回日期:2017-11-01 出版日期:2017-12-15 发布日期:2017-11-15
  • 通讯作者: 姚楠,kenyao@zjut.edu.cn E-mail:kenyao@zjut.edu.cn
  • 基金资助:
    浙江省自然科学基金项目(No.LR13B030002)资助

Ni-Based Catalysts for Syngas Methanation Reaction

Jing Wang, Nan Yao*   

  1. Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, China
  • Received:2017-07-11 Revised:2017-11-01 Online:2017-12-15 Published:2017-11-15
  • Supported by:
    The work was supported by the Zhejiang Provincial Natural Science Foundation of China (No. LR13B030002).
合成气(CO、H2)甲烷化是合成天然气的有效途径,Ni基催化剂是目前最具有工业化应用潜力的甲烷化催化剂。在催化反应过程中,由于高CO浓度、反应温度,以及原料气中的含硫组分,所以催化剂易发生积碳、烧结和硫中毒,从而导致失活。如何提高Ni基催化剂的抗硫性能、抗烧结和抗积碳能力仍是一个挑战。本文分别从金属-载体相互作用、催化剂表界面性质调控以及限域效应这三个方面综述了近年来在提高Ni基催化剂抗积碳、抗烧结和抗硫中毒性能领域的最新研究进展,以期为Ni基甲烷化催化剂微观结构设计及反应性能调控提供理论依据。
Syngas(CO, H2) methanation is an effective route to produce synthetic nature gas (SNG), and the Ni-based catalysts are extensively used for this reaction. However, due to the high CO concentration, high reaction temperature and the presence of sulfur-containing compounds in raw gas, the Ni-based catalysts suffer from sintering, carbon deposition and sulfur poisoning during the methanation reaction. These often lead to the catalyst deactivation. How to improve the sulfur-tolerant, anti-sintering and anti-carbon deposition abilities of the Ni-based catalysts remains a great challenge. In this paper, the recent progress in solving the above issue is reviewed from the aspects of the metal-support interaction, the interface modification and the confinement effect to provide a theoretical basis for the microstructure design and the performance regulation of the Ni-based methanation catalysts.
Contents
1 Introduction
2 Metal-support interaction
3 Interface modification
4 Confinement effect
5 Conclusion

中图分类号: 

()
[1] Ma S L, Tan Y S, Han Y Z. J. Nat. Gas Chem., 2011, 20(4):435.
[2] Gao J J, Liu Q, Gu F N, Liu B, Zhong Z Y, Su F B. RSC Adv., 2015, 5(29):22759.
[3] Sabatier P, Senderens J B. Compt. Rend. Acad. Sci., 1902, 134:514.
[4] Gupta N M, Kamble V S, Rao K A, Iyer R M. J. Catal., 1979, 60(1):57.
[5] Somorjai G A. Catal. Rev., 1981, 23:189.
[6] Mills G A, Steffgen F W. Catal. Rev., 1974, 8:159.
[7] Wang W J, Chen Y W. Appl. Catal., 1991, 77(1):21.
[8] Jenewein B, Fuchs M, Hayek K. Surf. Sci., 2003, 532/535:364.
[9] Gao J J, Jia C M, Li J, Gu F N, Xu G W, Zhong Z Y, Su F B. Ind. Eng. Chem. Res., 2012, 51(31):10345.
[10] Bai X B, Wang S, Sun T J, Wang S D. Catal. Lett., 2014, 144(12):2157.
[11] Rönsch S, Schneider J, Matthischke S, Schlüter M, Götz M, Lefebvre J, Prabhakaran P, Bajohr S. Fuel, 2016, 166:276.
[12] Bartholomew C H. Catal. Rev., 1982, 24(1):67.
[13] Miao B, Ma S S K, Wang X, Su H B, Chan S H. Catal. Sci. Technol., 2016, 6(12):4048.
[14] Bartholomew C H. Appl. Catal. A:Gen., 2001, 212(1):17.
[15] Bai X B, Wang S, Sun T J, Wang S D. Reac. Kinet. Mech. Catal., 2014, 112(2):437.
[16] Zhang J G, Wang H, Dalai A K. J. Catal., 2007, 249(2):300.
[17] Singha R K, Shukla A, Yadav A, Konathala L N S, Bal R. Appl. Catal. B:Environ., 2017, 202:473.
[18] Zhang J Y, Xin Z, Meng X, Tao M. Fuel, 2013, 109:693.
[19] He S, Li C M, Chen H, Su D S, Zhang B S, Cao X Z, Wang B Y, Wei M, Evans D G, Duan X. Chem. Mater, 2013, 25(7):1040.
[20] Ren J, Li H D, Jin Y U, Zhu J Y, Liu S S, Lin J Y, Li Z. Appl. Catal. B:Environ., 2017, 201:561.
[21] Fan M T, Miao K P, Lin J D, Zhang H B, Liao D W. Appl. Surf. Sci., 2014, 307:682.
[22] Jin G J, Gu F N, Liu Q, Wang X Y, Jia L H, Xu G W, Zhong Z Y, Su F B. RSC Adv., 2016, 6(12):9631.
[23] Tao M, Meng X, Xin Z, Bian Z C, Lv Y H, Gu J. Appl. Catal. A:Gen., 2016, 516:127.
[24] Tao M, Meng X, Lv Y H, Bian Z C, Xin Z. Fuel, 2016, 165:289.
[25] Tao M, Xin Z, Meng X, Lv Y H, Bian Z C. RSC Adv., 2016, 6(42):35875.
[26] Guo C L, Wu Y Y, Qin H Y, Zhang J L. Fuel Process. Technol., 2014, 124:61.
[27] Zhang H, Dong Y Y, Fang W P, Lian Y X. Chinese J. Catal., 2013, 34(2):330.
[28] Ding M Y, Tu J L, Zhang Q, Wang M L, Tsubaki N, Wang T J, Ma L L. Biomass Bioenergy, 2016, 85:12.
[29] Yao N, Ma H F, Shao Y, Yuan C K, Lv D Y, Li X N. J. Mater. Chem., 2011, 21(43):17403.
[30] Niu J T, Ran J Y, Du X S, Qi W J, Zhang P, Yang L. Mol. Catal., 2017, 434:206.
[31] Bayat N, Rezaei M, Meshkani F. Int. J. Hydrogen Energy, 2016, 41(12):5494.
[32] Yuan C K, Yao N, Wang X D, Wang J G, Lv D Y, Li X N. Chem. Eng. J., 2015, 260:1.
[33] Liu B, Yao N, Li S, Wang J, Lv D Y, Li X N. Chem. Eng. J., 2016, 304:476.
[34] Lee K T, Song C S, Janik M J. Appl. Catal. A:Gen., 2010, 389(1):122.
[35] Liu J G, Cao A, Si J, Zhang L H, Hao Q L, Liu Y. Nano, 2016, 11(10):1650118.
[36] Yu Y, Jin G Q, Wang Y Y, Guo X Y. Catal. Commun., 2013, 31:5.
[37] Cheng C B, Shen D K, Xiao R, Wu C F. Fuel, 2017, 189:419.
[38] Tian D Y, Liu Z H, Li D D, Shi H L, Pan W X, Cheng Y. Fuel, 2013, 104:224.
[39] Zeng Y, Ma H F, Zhang H T, Ying W Y, Fang D Y. Fuel, 2014, 137:155.
[40] Meng F H, Li Z, Ji F K, Li M H. Int. J. Hydrogen Energy, 2015, 40(29):8833.
[41] Liu Q, Gu F N, Zhong Z Y, Xu G W, Su F B. RSC Adv., 2016, 6(25):20979.
[42] Liu Q, Gu F N, Gao J J, Li H F, Xu G W, Su F B. J. Energy Chem., 2014, 23(6):761.
[43] Li H D, Ren J, Qin X, Qin Z F, Lin J Y, Li Z. RSC Adv., 2015, 5(117):96504.
[44] Zhang J Y, Xin Z, Meng X, Lv Y H, Tao M. Fuel, 2014, 116:25.
[45] Bian Z C, Meng X, Tao M, Lv Y, Xin Z. Fuel, 2016, 179:193.
[46] Zhang J Y, Xin Z, Meng X, Lv Y H, Tao M. Ind. Eng. Chem. Res., 2013, 52(41):14533.
[47] Lu X P, Gu F N, Liu Q, Gao J J, Jia L H, Xu G W, Zhong Z Y, Su F B. Ind. Eng. Chem. Res., 2015, 54(50):12516.
[48] 刘博(Liu B), 季生福(Ji S F), 吕顺丰(Lv S F), 李彤(Li T), 王世亮(Wang S L). 石油化工(Petrochemical Technology), 2013, 42(3):271.
[49] Qin H Y, Guo C L, Wu Y Y, Zhang J T. Korean J. Chem. Eng., 2014, 31(7):1168.
[50] Meng F H, Li X, Li M H, Cui X X, Li Z. Chem. Eng. J., 2017, 313:1548.
[51] Zhao A, Ying W, Zhang H, Ma H, Fang D. Energy Sources Part A, 2014, 36(10):1049.
[52] Song K H, Yan X, Koh D J, Kim T W, Chung J S. Appl. Catal. A:Gen., 2017, 530:184.
[53] Meng F H, Li Z, Liu J, Cui X X, Zheng H Y. J. Nat. Gas Sci. Eng., 2015, 23:250.
[54] Zeng Y, Ma H F, Zhang H T, Ying W Y, Fang D Y. Fuel, 2015, 162:16.
[55] Li K, Yin C, Zheng Y, He F, Wang Y, Jiao M G, Tang H, Wu Z J. J. Phys. Chem. C, 2016, 120(40):23030.
[56] Lu H L, Yang X Z, Gao G J, Wang J, Han C H, Liang X Y, Li C F, Li Y Y, Zhang W D, Chen X T. Fuel, 2016, 183:335.
[57] Lu X P, Gu F N, Liu Q, Gao J J, Liu Y J, Li H G, Jia L H, Xu G W, Zhong Z Y, Su F N. Fuel Process. Technol., 2015, 135:34.
[58] Liu Q, Gu F N, Lu X P, Liu Y J, Li H F, Zhong Z Y, Xu G W, Su F B. Appl. Catal. A:Gen., 2014, 488:37.
[59] Wang J, Yao N, Liu B, Cen J, Li X N. Chem. Eng. J., 2017, 322:339.
[60] Chen X, Jin J H, Sha G Y, Li C, Zhang B S, Su D S, Williams C T, Liang C H. Catal. Sci. Technol., 2014, 4(1):53.
[61] Li W, Liu J, Zhao D Y. Nat. Rev. Mater., 2016, 1:16023.
[62] Wei J, Sun Z K, Luo W, Li Y H, Elzatahry A A, Al-Enizi A M, Deng Y H, Zhao D Y. J. Am. Chem. Soc., 2017, 139(5):1706.
[63] Wang N, Shen K, Huang L H, Yu X P, Qian W Z, Chu W. ACS Catal., 2013, 3(3):1638.
[64] Tao M, Xin Z, Meng X, Bian Z C, Lv Y H. Fuel, 2017, 188:267.
[65] Bian Z C, Xin Z, Meng X, Tao M, Lv Y H, Gu J. Ind. Eng. Chem. Res., 2017, 56(9):2383.
[66] Liu Q, Gao J J, Gu F N, Lu X P, Liu Y J, Li H F, Zhong Z Y, Liu B, Xu G W, Su F B. J. Catal., 2015, 326:127.
[67] Liu Q, Zhong Z Y, Gu F N, Wang X Y, Lu X P, Li H F, Xu G W, Su F B. J. Catal., 2016, 337:221.
[68] Liu Q, Gu F N, Wang X Y, Jin G J, Li H F, Gao F, Zhong Z Y, Xu G W, Su F B. RSC Adv., 2015, 5(102):84186.
[69] Liu Q, Tian Y U, Ai H M. RSC Adv., 2016, 6(25):20971.
[70] Wang X Y, Liu Q, Jiang J X, Jin G J, Li H F, Gu F N, Xu G W, Zhong Z Y, Su F B. Catal. Sci. Technol., 2016, 6(10):3529.
[71] Lucchini M A, Testino A, Kambolis A, Proff C, Ludwig C. Appl. Catal. B:Environ., 2016, 182:94.
[72] Lakshmanan P, Kim M S, Park E D. Appl. Catal. A:Gen., 2016, 513:98.
[73] Gao L J, Fu Q, Wei M M, Zhu Y F, Liu Q, Crumlin E, Liu Z, Bao X H. ACS Catal., 2016, 6(10):6814.
[74] Wang C, Zhai P, Zhang Z C, Zhou Y, Zhang J K, Zhang H, Shi Z J, Han R P S, Huang F Q, Ma D. J. Catal., 2016, 334:42.
[1] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[2] 卢明龙, 张晓云, 杨帆, 王 练, 王育乔. 表界面调控电催化析氧反应[J]. 化学进展, 2022, 34(3): 547-556.
[3] 杨林颜, 郭宇鹏, 李正甲, 岑洁, 姚楠, 李小年. 钴基费托合成催化剂的表界面性质调控[J]. 化学进展, 2022, 34(10): 2254-2266.
[4] 刘炜珍, 郑嘉毅, 吴智诚, 刘章斌, 林璋. 表界面调控晶体变化微观机制探索与铬渣治理研究的结合[J]. 化学进展, 2017, 29(9): 1053-1061.
[5] 薛丽君, 张迪, 魏杰, 刘欣梅. 催化剂的孔道限域效应[J]. 化学进展, 2016, 28(4): 450-458.
[6] 王周君, 傅强, 包信和. 新型催化剂载体碳化硅的研究现状[J]. 化学进展, 2014, 26(04): 502-511.
[7] 王芳 吕功煊. 助剂改性对贵金属催化剂CO选择氧化活性中心的影响*[J]. 化学进展, 2010, 22(08): 1538-1549.