English
新闻公告
More
化学进展 2015, Vol. 27 Issue (12): 1705-1713 DOI: 10.7536/PC150630 前一篇   后一篇

• 综述与评论 •

基于微纳结构液体灌注的超滑表面的制备与应用

安光明1,2, 凌世全1, 王智伟1*, 栾琳3, 吴天准1*   

  1. 1. 中国科学院深圳先进技术研究院 深圳 518005;
    2. 哈尔滨理工大学机械动力工程学院 哈尔滨 150080;
    3. 深圳市光启高等理工研究院 深圳 518057
  • 收稿日期:2015-06-01 修回日期:2015-08-01 出版日期:2015-12-15 发布日期:2015-09-17
  • 通讯作者: 王智伟, 吴天准 E-mail:zw.wang@siat.ac.cn;tz.wu@siat.ac.cn
  • 基金资助:
    国家自然科学基金项目(No.51475451,51406221),广东省引进创新创业团队计划(No.2013S046),深圳市海外高层次人才资金和深圳市科技研发项目(No.JC201105201157A)资助

Fabrication and Application of Ultra-Slippery Surfaces Based on Liquid Infusion in Micro/Nano Structure

An Guangming1,2, Ling Shiquan1, Wang Zhiwei1*, Luan Lin3, Wu Tianzhun1*   

  1. 1. Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518005, China;
    2. School of Mechanical Engineering, Harbin University of Science and Technology, Harbin 150080, China;
    3. Kuang-Chi Institute of Advanced Technology, Shenzhen 518057, China
  • Received:2015-06-01 Revised:2015-08-01 Online:2015-12-15 Published:2015-09-17
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51475451, 51406221), the Guangdong Innovative and Entrepreneurial Research Team Program (No. 2013S046), the Shenzhen Peacock Plan and Shenzhen Science and Technology Research and Development Projects (No. JC201105201157A).
超滑表面利用其基底上的微纳结构通过毛细作用将润滑油等液体锁定在孔隙中,孔隙中浸润的润滑油在基底形成一层动态油膜,油膜与不溶液体的液-液界面代替了固体与液体的固-液界面,从而大幅减少了滑动阻力。与传统具有类似低滚动角特性的超疏水和超疏油表面相比,孔隙中填充润滑油比空气具有更好的压力稳定性,而且润滑油的毛细流动性使得超滑表面具有良好的自修复能力。由于其明显的优势,近些年超滑表面已成为国际学术界研究热点,应用也拓展到防结冰、强化传热、减阻、抗生物黏附、微流控等领域。目前超滑表面研究仍存在重要挑战,例如如何避免润滑油的挥发带来的性能退化、如何针对各种材质和结构设计合适的加工工艺制备微纳结构等,这些问题限制了超滑表面的广泛应用。本文综述了超滑表面的制备工艺以及应用,分析了现存的问题,并且对超滑表面未来的发展趋势进行了展望。
The ultra-slippery surface is fabricated by infiltrating functionalized micro/nano surface structures with low-surface energy, chemically inert lubricating oil. The lubricating oil is locked by micro/nano structures due to the capillary effect, and a dynamic oil film is formed on the surface. Therefore, the liquid-solid interface is replaced by liquid-liquid interface, leading to the significant reduction of flow resistance. Compared with traditional superhydrophobic surfaces and superoleophobic surfaces with similar low sliding angles, air trapped in the pores is replaced by the lubricating oil, which can provide better pressure stability. Furthermore, ultra-slippery surfaces possess appealing self-healing ability due to the capillary flow of lubricating oil. Because of these significant advantages, recently they have drawn much attention and become a research focus all over the world. So far ultra-slippery surfaces have been investigated for various applications such as anti-icing, heat transfer enhancement, drag reduction, anti-biofouling, microfluidics, etc. However, there are still some important challenges which limit their applications, for example, how to avoid or alleviate the performance deterioration caused by the evaporation of lubricating oil, and how to choose proper process to fabricate various micro/nano structures on different kinds of material. This paper reviews the recent progress of the fabrication and applications of ultra-slippery surfaces, discusses the existing problems, and provides outlook of development tendency.

Contents
1 Introduction
2 Design principles of SLIPS
3 Fabrication technologies of SLIPS
3.1 Overview of fabrication methods
3.2 Chemical reaction
3.3 Spray coating
3.4 Self-assembly fabrication
4 Applications of SLIPS
4.1 Anti-icing application
4.2 Heat transfer enhancement
4.3 Pipeline transportation
4.4 Droplet manipulation
4.5 Marine anti-biofouling
4.6 Bioengineering application
4.7 Sediment removal
5 Conclusion

中图分类号: 

()
[1] Wong T S, Kang S H, Tang S K Y, Smythe E J, Hatton B D, Grinthal A, Aizenberg J. Nature, 2011, 477: 443.
[2] Yan Y Y, Gao N, Barthlott W. Adv. Colloid Interface Sci., 2011, 169: 80.
[3] Wolfs M, Darmanin T, Guittard F. Polym. Rev., 2013, 53: 460.
[4] Darmanin T, Guittard F. J. Mater. Chem. A, 2014, 2: 16319.
[5] Celia E, Darmanin T, de Givenchy E T, Amigoni S, Guittard F. J. Colloid Interface Sci., 2013, 402: 1.
[6] Bhushan B, Jung Y C.Prog. Mater. Sci., 2011, 56: 1.
[7] Lv P, Xue Y, Shi Y, Lin H, Duan H. Phys. Rev. Lett., 2014, 112: 196101.
[8] Boreyko J B, Collier C P.J. Phys. Chem. C, 2013, 117: 18084.
[9] Bormashenko E, Musin A, Whyman G, Zinigrad M. Langmuir, 2012, 28: 3460.
[10] Tuteja A, Choi W, Ma M, Mabry J M, Mazzella S A, Rutledge G C, Mckinley G H, Cohen R E. Science, 2007, 318: 1618.
[11] Tuteja A, Choi W, Mabry J M, Mckinley G H, Cohen R E. Proc. Natl. Acad. Sci. U. S. A., 2008, 105: 18200.
[12] Liu T L, Kim C J. Science, 2014, 346: 1096.
[13] Wu T, Suzuki Y.Sensor. Actuat. B-Chem., 2011, 156: 401.
[14] Wu T, Suzuki Y. Lab Chip, 2011, 11: 3121.
[15] Yuan L, Wu T, Zhang W, Ling S, Xiang R, Gui X, Zhu Y, Tang Z. J. Mater. Chem. A, 2014, 2: 6952.
[16] Amadei C A, Lai C Y, Heskes D, Chiesa M. J. Chem. Phys., 2014, 141: 7.
[17] Dou R, Chen J, Zhang Y, Wang X, Cui D, Song Y, Jiang L, Wang J. ACS Appl. Mater. Interfaces, 2014, 6: 6998.
[18] Howell C, Vu T L, Lin J J, Kolle S, Juthani N, Watson E, Weaver J C, Alvarenga J, Aizenberg J. ACS. Appl. Mater. Interfaces, 2014, 6: 13299.
[19] Khalil K S, Mahmoudi S R, Abu-Dheir N, Varanasi K K.Appl. Phys. Lett., 2014, 105: 041604.
[20] Bixler G D, Theiss A, Bhushan B, Lee S C. J. Colloid Interface Sci., 2014, 419: 114.
[21] Leslie D C, Waterhouse A, Berthet J B, Valentin T M, Watters A L, Jain A, Kim P, Hatton B D, Nedder A, Donovan K, Super E H, Howell C, Johnson C P, Vu T L, Bolgen D E, Rifai S, Hansen A R, Aizenberg M, Super M, Aizenberg J, Ingber D E.Nat. Biotechnol., 2014, 32: 1134.
[22] Liao R, Zuo Z, Guo C, Yuan Y, Zhuang A. Appl. Surf. Sci., 2014, 317: 701.
[23] Liu K, Cao M, Fujishima A, Jiang L. Chem. Rev., 2014, 114: 10044.
[24] Tao Y, Tao Y, Wang B, Tai Y. Mater. Chem. Phys., 2014, 147: 28.
[25] Wang Y, Shi Y, Pan L, Yang M, Peng L, Zong S, Shi Y, Yu G. Nano Lett., 2014, 14: 4803.
[26] Wei Q, Schlaich C, Prevost S, Schulz A, Boettcher C, Gradzielski M, Qi Z, Haag R, Schalley C A. Adv. Mater., 2014, 26: 7358.
[27] Wu G, An J, Tang X Z, Xiang Y, Yang J. Adv. Funct. Mater., 2014, 24: 6751.
[28] Yang J, Song H, Ji H, Chen B. J. Adhes. Sci. Technol., 2014, 28: 1949.
[29] Yuan Q, Huang X, Zhao Y P. Phys. Fluids, 2014, 26: 092104.
[30] Cui W W, Zhang M L, Zhang D H, Pang W, Zhang H. Appl. Phys. Lett., 2014, 105: 013509.
[31] Yao X, Hu Y H, Grinthal A, Wong T S, Mahadevan L, Aizenberg J. Nat. Mater., 2013, 12: 529.
[32] Epstein A K, Wong T S, Belisle R A, Boggs E M, Aizenberg J. Proc. Natl. Acad. Sci. U. S. A., 2012, 109: 13182.
[33] Smith J D, Dhiman R, Anand S, Reza-Garduno E, Cohen R E, Mckinley G H, Varanasi K K. Soft Matter, 2013, 9: 1772.
[34] Hare E F, Shafrin E G, Zisman W A. J. Phys. Chem., 1954, 58: 236.
[35] Yang J, Song H J, Ji H Y, Chen B B. J. Adhes. Sci. Technol., 2014, 28: 1949.
[36] Kim P, Kreder M J, Alvarenga J, Aizenberg J. Nano Lett., 2013, 13: 1793.
[37] Wang Y Q, Shi Y, Pan L J, Yang M, Peng L L, Zong S, Shi Y, Yu G H. Nano Lett., 2014, 14: 4803.
[38] Liu H L, Zhang P C, Liu M J, Wang S T, Jiang L. Adv. Mater., 2013, 25: 4477.
[39] Ogihara H, Xie J, Okagaki J, Saji T. Langmuir, 2012, 28: 4605.
[40] Lu Y, Sathasivam S, Song J L, Crick C R, Carmalt C J, Parkin I P. Science, 2015, 347: 1132.
[41] Ge D T, Yang L L, Zhang Y F, Rahmawan Y, Yang S. Part. Part. Syst. Char., 2014, 31: 763.
[42] Vogel N, Belisle R A, Hatton B, Wong T S, Aizenberg J. Nat. Commun., 2013, 4: 2176.
[43] Passoni L, Bonvini G, Luzio A, Facibeni A, Bottani C E, di Fonzo F. Langmuir, 2014, 30: 13581.
[44] Zhao N, Xu J, Xie Q D, Weng L H, Guo X L, Zhang X L, Shi L H. Macromol. Rapid Commun., 2005, 26: 1075.
[45] Zhu M, Rong M Z, Zhang M Q. Polym. Int., 2014, 63: 1741.
[46] Erbil H Y, Demirel A L, Avci Y, Mert O. Science, 2003, 299: 1377.
[47] Lu X Y, Zhang C C, Han Y C. Macromol. Rapid.Commun., 2004, 25: 1606.
[48] Shiu J Y, Kuo C W, Chen P L, Mou C Y. Chem. Mater., 2004, 16: 561.
[49] Lau K K S, Bico J, Teo K B K, Chhowalla M, Amaratunga G J, Milne W I, Mckinley G H, Gleason K K. Nano Lett., 2003, 3: 1701.
[50] Chen J, Luo Z, Fan Q, Lv J, Wang J. Small, 2014, 10: 4693.
[51] Subramanyam S B, Rykaczewski K, Varanasi K K. Langmuir, 2013, 29: 13414.
[52] Zhu L, Xue J, Wang Y, Chen Q, Ding J, Wang Q.ACS. Appl. Mater. Interfaces, 2013, 5: 4053.
[53] Kim P, Wong T S, Alvarenga J, Kreder M J, Adorno-Martinez W E, Aizenberg J. ACS Nano, 2012, 6: 6569.
[54] Miljkovic N, Enright R, Wang E N. ACS Nano, 2012, 6: 1776.
[55] Xiao R, Miljkovic N, Enright R, Wang E N. Sci. Rep., 2013, 3: 1998.
[56] Solomon B R, Khalil K S, Varanasi K K. Langmuir, 2014, 30: 10970.
[57] Hao C L, Liu Y H, Chen X M, He Y C, Li Q S, Li K Y, Wang Z K. Sci. Rep., 2014, 4: 7.
[58] Xiao L, Li J, Mieszkin S, Di Fino A, Clare A S, Callow M E, Callow J A, Grunze M, Rosenhahn A, Levkin P A. ACS. Appl. Mater. Interfaces, 2013, 5: 10074.
[59] Epstein A K, Wong T S, Belisle R A, Boggs E M, Aizenberg J. Proc. Natl. Acad. Sci. U. S. A., 2012, 109: 13182.
[60] Charpentier T V J, Neville A, Baudin S, Smith M J, Euvrard M, Bell A, Wang C, Barker R. J. Colloid Interface Sci., 2015, 444: 81.
[1] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[2] 叶娟, 林子谦, 李伟健, 向洪平, 容敏智, 章明秋. 自修复有机硅材料的制备策略[J]. 化学进展, 2023, 35(1): 135-156.
[3] 许金凯, 蔡倩倩, 于占江, 廉中旭, 田纪文, 于化东. 金属基仿生超滑表面制造及其应用[J]. 化学进展, 2021, 33(6): 958-974.
[4] 卢芸, 李景鹏, 张燕, 仲国瑞, 刘波, 王慧庆. 木基炭微纳功能骨架[J]. 化学进展, 2020, 32(7): 906-916.
[5] 熊耀旭, 胡友根, 朱朋莉, 孙蓉, 汪正平. 微纳结构柔性压力传感器的制备及应用[J]. 化学进展, 2019, 31(6): 800-810.
[6] 侯瑞, 李桂群, 张岩, 李明俊, 周桂明, 柴晓明. 基于超分子聚合物的自修复材料[J]. 化学进展, 2019, 31(5): 690-698.
[7] 程龙, 于大江, 尤加健, 龙腾, 陈素素, 周传健. 有机硅自修复材料[J]. 化学进展, 2018, 30(12): 1852-1862.
[8] 谢祥, 吕文珍, 陈润锋, 黄维. 有机太阳能电池给受体材料界面的微纳结构调控[J]. 化学进展, 2016, 28(11): 1591-1600.
[9] 韦存茜, 严杰, 唐浩, 张庆华, 詹晓力, 陈丰秋. 灌注液体型光滑多孔表面制备及应用[J]. 化学进展, 2016, 28(1): 9-17.
[10] 李思超, 韩朋, 许华平*. 自修复高分子材料[J]. 化学进展, 2012, 24(07): 1346-1352.
[11] 祁恒治, 赵蕴慧, 朱孔营, 袁晓燕. 自修复聚合物材料的研究进展[J]. 化学进展, 2011, 23(12): 2560-2567.
[12] 汪海平, 容敏智, 章明秋. 微胶囊填充型自修复聚合物及其复合材料[J]. 化学进展, 2010, 22(12): 2397-2407.
[13] 赵宁,卢晓英,张晓艳,刘海云,谭帅霞,徐坚. 超疏水表面的研究进展*[J]. 化学进展, 2007, 19(06): 860-871.