English
新闻公告
More
化学进展 2011, Vol. 23 Issue (12): 2457-2465 前一篇   后一篇

• 综述与评论 •

梯度接触角表面的构建与应用

张勇, 皮丕辉, 文秀芳, 郑大锋, 蔡智奇, 程江*   

  1. 华南理工大学化学与化工学院 广州 510640
  • 收稿日期:2011-03-01 修回日期:2011-06-01 出版日期:2011-12-24 发布日期:2011-09-29
  • 作者简介:e-mail:cejcheng@scut.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.20976055)资助

Construction and Application of Wettability Gradient Surfaces

Zhang Yong, Pi Pihui, Wen Xiufang, Zheng Dafeng, Cai Zhiqi, Cheng Jiang*   

  1. School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
  • Received:2011-03-01 Revised:2011-06-01 Online:2011-12-24 Published:2011-09-29
梯度接触角是梯度表面张力的反映,固体表面的润湿性由表面化学组成和表面微观形貌共同决定。通过表面化学组成和表面微观形貌的梯度化,可制备接触角变化范围不同的梯度接触角表面。本文综述了梯度接触角表面在液滴移动、微流体流动和生物吸附等领域中的应用。梯度接触角表面具有的不平衡杨氏力是促进液滴移动的主要原因,而表面所产生的接触角滞后则阻碍液滴移动;在生物学领域,梯度接触角表面会造成蛋白质和细胞选择性吸附或黏附。最后,简要探讨了梯度接触角表面存在的问题和发展方向。
A gradient wettability surface is the one that displays a gradual change in its surface tension along its length. The wettability of solid surfaces is governed by both the surface chemical composition and the geometrical microstructure. In this paper, two ways to fabricate the wettability gradient surfaces, controlling the chemical composition or surface morphology along the surfaces are introduced,and the application of the functional wettability surfaces, such as droplet moving, micro-fluid flow, and biosorption has been presented. The dominant force responsible for drop movement is the unbalanced Young force that results from the difference in wettability between the front and backsides of the drop, and the contact angle hysteresis has a reduced effect on the droplet moving. Generally speaking, the higher the gradient, the faster the droplet moved. The wettability gradient surfaces are also used for control of liquids flow on submillimeter scales. In addition, surface wettability is found to play an important role in biosorption and the difference in protein adsorption behavior can be attributed mainly to the wettability gradient and the type of protein. Problems existed in this research field and prospects of wettability gradient surfaces are also discussed briefly. Contents 1 Introduction 2 Preparation of the wettability gradient surfaces 2.1 Surface-chemical gradients 2.2 Morphological gradients 3 Application of the wettability gradient surfaces 3.1 Droplet moving 3.2 Micro-fluid flow 3.3 Biosorption 4 Conclusion

中图分类号: 

()
[1] Thomson Y. Trans. Roy. Soc. London, 1805, 95: 65-87
[2] Thomosn J. Phi. Mag. Series 4, 1855, 10(67): 330-333
[3] Marangoni C, Pietro S, Liceo R. Il Nuovo Cimento(1869-1876). 1872, (7/8): 301-356
[4] Hong D, Cho W K, Kong B, Choi I S. Langmuir, 2010, 26(19): 15080-15083
[5] Yasuda T, Suzuki K, Shimoyama I. Proc. Micro. Total Analysis Systems, 2003, 2: 1129-1132
[6] Sun C, Zhao X W, Han Y H, Gu Z Z. Thin Solid Films, 2008, 516(12): 4059-4063
[7] Lai Y H, Yang J T, Shieh D B. Lab on a Chip, 2010, 10(4): 499-504
[8] Chaudhury M K, Whitesides G M. Science, 1992, 256(5063): 1539-1541
[9] Ichimura K, Oh S K, Nakagawa M. Science, 2000, 288(5471): 1624-1626
[10] Gallardo B S, Gupta V K, Eagerton F D, Jong L I, Craig V S, Shah R R, Abbott N L. Science, 1999, 283(5398): 57-60
[11] Gau H, Herminghaus S, Lenz P, Lipowsky R. Science, 1999, 283(5398): 46-49
[12] Oh S K, Nakagawa M, Ichimura K. J. Mater. Chem., 2002, 12(8): 2262-2269
[13] Yasuda T, Harada S, Daimon K. Trans. Ins. Elect. Eng. Japan. E, 2008, 128(3): 75-79
[14] Elwing H, Welin S, Askendahl A, Lundström I. J. Colloid Interface Sci., 1988, 123(1): 306-308
[15] Elwing H, Welin S, Askendal A, Nilsson U, Lundstrm I. J. Colloid Interface Sci., 1987, 119(1): 203-210
[16] Tengvall P, Askendal A, Lundström I, Elwing H. Biomaterials, 1992, 13(6): 367-374
[17] Elwing H, Askendal A, Lundström I. J. Colloid Interface Sci., 1989, 128(1): 296-300
[18] Welin-Klintström S, Lestelius M, Liedberg B, Tengvall P. Colloids Surf. B, 1999, 15(1): 81-87
[19] Ruardy T G, Moorlag H E, Schakenraad J M, Vandermei H C, Busscher H J. J. Colloid Interface Sci, 1997, 188(1): 209-217
[20] Kim M S, Seo K S, Khang G, Lee H B. Langmuir, 2005, 21(9): 4066-4070
[21] Lin Y S, Hlady V. Colloids Surfaces B: Biointerfaces, 1994, 2(5): 481-491
[22] Hlady V. Appl. Spect, 1991, 45(2): 246-252
[23] Ueda-Yukoshi T, Matsuda T. Langmuir, 1995, 11(10): 4135-4140
[24] Loos K, Kennedy S B, Eidelman N, Tai Y, Zharnikov M, Amis E J, Ulman A, Gross R A. Langmuir, 2005, 21(12): 5237-5241
[25] Chaudhury M K, Daniel S, Callow M E, Callow J A, Finlay J A. Biointerphases, 2006, 1(1): 18-21
[26] Spijker H T, Bos R, Oeveren W, Vries J, Busscher H J. Colloids Surf. B, 1999, 15(1): 89-97
[27] Kennedy S B, Washburn N R, Simon C G, Amis E J. Biomaterials, 2006, 27(20): 3817-3824
[28] Liu C S. J. Qingdao Tech. University, 2008, 29(4): 9-12, 17
[29] Stephan H, Martin B, Ralf S. Ann. Rev. Mater. Res., 2008, 38: 101-121
[30] David Q. Ann. Rev. Mater. Res., 2008, 38: 71-99
[31] John R, Mihail P, Rossen S. Ann. Rev. Mater. Res., 2008, 38: 23-43
[32] Abraham M. Ann. Rev. Mater. Res., 2009, 39: 473-489
[33] Morgenthaler S, Lee S, Zürcher S, Spencer N D. Langmuir, 2003, 19(25): 10459-10462
[34] Yu X, Wang Z Q, Jiang Y G, Zhang X. Langmuir, 2006, 22(10): 4483-4486
[35] Wang L M, Peng B, Su Z H. Langmuir, 2010, 26(14): 12203-12208
[36] Lu X Y, Zhang J L, Zhang C C, Han Y C. Macromol. Rapid Commun., 2005, 26(8): 637-642
[37] Zhang J L, Xue L J, Han Y C. Langmuir, 2005, 21(1): 5-8
[38] Li X F, Dai H J, Tan S X, Zhang X Y, Liu H Y, Wang Y X, Zhao N, Xu J. J. Colloid Interface Sci., 2009, 340(1): 93-97
[39] Edward B, Roman P, Gene W, Yelena B, Mordechai E. Appl. Phys. Lett., 2007, 90(20): art. no. 201917
[40] Wenzel R N. J. Phys. Chem., 1949, 53(9): 1466-1467
[41] Cassie A B D, Baxter S. Trans. Faraday. Soc., 1944, 40: 546-551
[42] Wenzel R N. Ind. Eng. Chem., 1936, 28(8): 988-994
[43] Isaksson J, Robinson N D, Berggren M. Thin Solid Films, 2006, 515(4): 2003-2008
[44] Yamada R, Tada H. Langmuir, 2005, 21(10): 4254-4256
[45] Zhu L, Feng Y Y, Ye X Y, Zhou Z Y. Sens. Actu. A, 2006, 130/131: 595-600
[46] Zhang J L, Han Y C. Langmuir, 2008, 24(3): 796-801
[47] Zheng Y M, Bai H, Huang Z B, Tian X L, Nie F Q, Zhao Y, Zhai J, Jiang L. Nature, 2010, 463(7281): 640-643
[48] Daniel S, Chaudhury M K, Chen J C. Science, 2001, 291(5504): 633-636
[49] Leu T S, Lin H W, Wu T H. Mod. Phy. Lett. B, 2010, 24(13): 1381-1384
[50] Liao Q, Gu Y B, Zhu X, Wang H, Xin M D. J. Enh. Heat. Transfer., 2007, 14(3): 243-256
[51] Lin Y H, Li J K, Chu T Y, Hsu H K. Optics Express, 2010, 18(10): 10104-10111
[52] Yang D K. J. Soc. Inf. Dis., 2008, 16(1): 117-124
[53] Haidara H, Vonna L, Schultz J. J. Chem. Phys., 1997, 107(2): 630-637
[54] Ito Y, Heydari M, Hashimoto A, Konno T, Hirasawa A, Hori S, Kurita K, Nakajima A. Langmuir, 2007, 23(4): 1845-1850
[55] Das A K, Das P K. Langmuir, 2010, 26(12): 9547-9555
[56] Zhu X, Wang H, Liao Q, Ding Y D, Gu Y B. Exper. Thermal. Fluid. Sci., 2009, 33(6): 947-954
[57] Khoo H S, Tseng F G. App. Phy. Letts., 2009, 95(6): 1-3
[58] Brochard F. Langmuir, 1989, 5(2): 432-438
[59] Lee S W, Laibinis P E. J. Am. Chem. Soc., 2000, 122(22): 5395-5396
[60] Sumino Y, Magome N, Hamada T, Yoshikawa K. Phy. Rev. Letts., 2005, 94(6): 1-4
[61] Nagai K, Sumino Y, Kitahata H, Yoshikawa K. Phy. Rev. E, 2005, 71(6): 1-4
[62] Tseng Y T, Tseng F G, Chen Y F, Chieng C C. Sensors Actuators A, 2004, 114(2/3): 292-301
[63] Pismen L M, Thiele U. Phy. Fluids, 2006, 18(4): 1-10
[64] Wasan D T, Nikolov A D, Brenner H. Science, 2001, 291(5504): 605-606
[65] Leu T S, Wu T H. 2008 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems: Sanya, Pisctaway: IEEE, 2008. 641-646
[66] Thiele U, John K, Bar M. Phy. Rev. Letts., 2004, 93(2): 1-4
[67] Daniel S, Chaudhury M K. Langmuir, 2002, 18(9): 3404-3407
[68] Daniel S, Sircar S, Gliem J, Chaudhury M K. Langmuir, 2004, 20(10): 4085-4092
[69] Lu X Y, Tan S X, Zhao N, Yang S G, Xu J. J. Colloid Interface Sci., 2007, 311(1): 186-193
[70] Zhang J L, Han Y C. Langmuir, 2007, 23(11): 6136-6141
[71] Subramanian R S, Moumen N, Mclaughlin J B. Langmuir, 2005, 21(25): 11844-11849
[72] 石自媛(Shi Z Y), 胡国辉(Hu G H), 周哲玮(Zhou Z W). 物理学报(Acta Physica Sinica), 2010, 59(4): 2595-2600
[73] Qu J, Wu H, Cheng P. Int. Commun. Heat. Mass. Trans., 2008, 35(5): 523-528
[74] Suman B. Microfluidics and Nanofluidics, 2008, 5(5): 655-667
[75] Hewakandamby B N, Zimmerman W B. Dyna. Atmo. Oceans., 2001, 34(2/4): 349-364
[76] Elwing H, Askendal A, Lundstrom I. J. Biomed. Mater. Res., 1987, 21(8): 1023-1028
[77] Barrias C C, Martins M C L, Almeida-Porada G, Barbosa M A, Granja P L. Biomaterials, 2009, 30(3): 307-316
[78] Kao W Y J. Biomaterials, 1999, 20(23/24): 2213-2221
[79] Zhao T Y, Nie F Q, Jiang L. J. Mater. Chem., 2010, 20(11): 2176-2181
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[3] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[4] 王静, 于浩迪, 王俊坤, 袁玲, 任林, 高庆宇. 活性人工游泳体的螺旋运动[J]. 化学进展, 2023, 35(2): 206-218.
[5] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[6] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[7] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[8] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[9] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[10] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[11] 孙浩, 王超鹏, 尹君, 朱剑. 用于电催化析氧反应电极的制备策略[J]. 化学进展, 2022, 34(3): 519-532.
[12] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[13] 蔡雪儿, 简美玲, 周少红, 王泽峰, 王柯敏, 刘剑波. 人造细胞的化学构建及其生物医学应用研究[J]. 化学进展, 2022, 34(11): 2462-2475.
[14] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
[15] 曹祥康, 孙晓光, 蔡光义, 董泽华. 耐久型超疏水表面:理论模型、制备策略和评价方法[J]. 化学进展, 2021, 33(9): 1525-1537.
阅读次数
全文


摘要

梯度接触角表面的构建与应用