English
新闻公告
More
化学进展 2023, Vol. 35 Issue (2): 206-218 DOI: 10.7536/PC220705 前一篇   后一篇

• 综述 •

活性人工游泳体的螺旋运动

王静1, 于浩迪1, 王俊坤1, 袁玲1, 任林2,*(), 高庆宇1,*()   

  1. 1 中国矿业大学化工学院 徐州 221116
    2 温州大学化学与材料工程学院 新材料与产业技术研究院 温州 325035
  • 收稿日期:2022-07-06 修回日期:2022-11-18 出版日期:2023-02-24 发布日期:2023-02-15
  • 基金资助:
    国家自然科学基金项目(22120102001); 国家自然科学基金项目(21972165)

Helical Motion of Active Artificial Swimmers

Jing Wang1, Haodi Yu1, Junkun Wang1, Ling Yuan1, Lin Ren2(), Qingyu Gao1()   

  1. 1 School of Chemical Engineering and Technology, China University of Mining and Technology,Xuzhou 221116, China
    2 College of Chemistry and Materials Engineering, Institute of New Materials and Industrial Technologies, Wenzhou University,Wenzhou 325035, China
  • Received:2022-07-06 Revised:2022-11-18 Online:2023-02-24 Published:2023-02-15
  • Contact: *e-mail: rlin1981@163.com (Lin Ren); gaoqy@cumt.edu.cn (Qingyu Gao)
  • Supported by:
    National Natural Science Foundation of China(22120102001); National Natural Science Foundation of China(21972165)

螺旋运动轨迹在自然界的各个尺度中普遍存在,其影响着多种生命过程包括生物繁殖、觅食、定位有利环境和检测营养梯度等。开发化学力等驱动螺旋运动的人工游泳体不仅具有广泛的应用价值以及提升我们对生物游泳体运动规律和机理的认识,同时推动新型机器人运动设计和提高机器人的运动效率。本文首先总结了人工系统中以微生物鞭毛/纤毛的旋转和拍打等方式为灵感来源设计的可进行螺旋运动的人工游泳体,然后综述了近年来在材料化学领域制备的进行螺旋运动小型人工游泳体的研究进展,并根据驱动力来源的不同对各种类型活性人工游泳体进行分类介绍,最后提出了目前研究中待解决的问题并对未来发展和研究方向进行了展望。

Helical motion can be observed on all length scales, which affects a variety of life processes, including biological reproduction, foraging, locating favorable environments and detecting nutrient gradients. The development of artificial swimmers that can perform helical motions not only has a wide range of applications and improves our understanding of the laws and mechanisms of biological swimmers' motions, but also contributes to the design of novel robots and improves the efficiency of robotic motions. In this paper, we first summarize artificial swimmers that can perform helical motions in artificial systems designed by using the rotation and flapping of microbial flagella/cilia as an inspiration source. Then diverse artificial swimmers that perform helical motions in recent years are introduced by different sources of driving force. Finally, the unresolved questions and prospect are tentatively presented in this field.

Contents

1 Introduction

2 Helical motion and bionic design of biological swimmers

2.1 Flagella-driven swimmers

2.2 Cilia-driven swimmers

3 Driving forces and motion control of helical motion of artificial swimmers

3.1 Helical motion driven by external physical fields

3.2 Helical motion driven by interfacial/surface tension force

3.3 Helical motion driven by chemical force

4 Conclusion and outlook

()
图1 生物游泳体的螺旋运动方式:(a, b) 具有单鞭毛生物的运动方式;(c, d) 具有毛周鞭毛生物的运动方式
Fig.1 Helical motion of biological swimmers. (a, b) Motility of organisms with a single flagellum;(c, d) Motility of organisms with a periplasmic flagellum
图2 以生物游泳体为灵感来源设计的仿生人工游泳体[30,32??? ~36]
Fig.2 Bionic artificial swimmers inspired by biological swimmers[30,32??? ~36]
图3 纤毛驱动的螺旋运动:(a) 生物游泳体;(b) 仿生纤毛虫;(i) 和 (ii) 为仿生纤毛虫的磁驱动示意图;(iii) 运动轨迹[47]
Fig.3 Cilia-driven biological movement. (a) Biological swimmers;(b) Bionic ciliates;(i) and (ii) are the magnetic drive schematic diagram of the bionic ciliates; (iii) motion trajectory[47]
图4 ICEP推动人工游泳体的螺旋运动:(a) 球型[7];(b) 椭球型[56]
Fig.4 ICEP driven-helical motion of artificial swimmers: (a) spherical type[7];(b) ellipsoidal type[56]
图5 在不同电场频率下游泳体的运动行为:(a) 电场频率对运动方向的影响;(b) 在不同电场频率下游泳体运动的实时图像[52]
Fig.5 Motion behavior of swimmers at different electric field frequencies. (a) The effect of electric field frequency on the direction of motion;(b) Real-time images of the swimmer's motion at different electric field frequency[52]
图6 磁场驱动游泳体的运动行为:(a) 旋转磁场驱动微轮的运动[58];(b) 磁场驱动非对称游泳体的运动[59]
Fig.6 Magnetic field-driven kinematic behavior of swimmers: (a) Motion of micro wheel driven by rotating magnetic field[58]; (b) Motion of asymmetric swimming body driven by magnetic field[59]
图7 光驱动游泳体的运动行为:(a) 光诱导离子扩散电泳驱动AgCl-Janus 粒子的运动[63];(b) 光诱导扩散渗透流驱动SiO2 颗粒的运动[64]
Fig.7 Light-driven kinematic behavior of swimmers: (a) Light-induced ion diffusion electrophoresis driving the motion of AgCl-Janus particles[63]; (b) Light-induced diffusion permeation flow driving the motion of SiO2 particles[64]
图8 超声场驱动游泳体的运动行为:(a) 超声场驱动手性胶体粒子的螺旋运动轨迹[66];(b) 超声场驱动金属微棒的多种运动模式[67]
Fig.8 Ultrasound field-driven kinematic behavior of swimmers. (a) Ultrasound field-driven helical trajectories of chiral colloidal particles[66];(b) Ultrasound field-driven multiple kinematic modes of metallic microrods[67]
图9 樟脑薄片的螺旋运动:(a) t = 9.5 s时间范围内樟脑薄片的运动轨迹图;(b) 樟脑薄片的顺时针旋转、逆时针旋转和平移运动[41]
Fig.9 Helical motion of camphor flakes.(a) Trajectory diagram of the motion of the camphor sheet at t = 9.5 s;(b) Clockwise rotation, counterclockwise rotation and translational motion of the camphor sheet[41]
图10 温度控制人工游泳体的运动轨迹转变,液晶滴(向列)在34 ℃的轨迹以实线示出,液晶滴(各向异性)在37 ℃的轨迹以虚线示出[71]
Fig.10 Temperature-controlled shifts in the trajectory of artificial swimmers. The trajectory of the liquid crystal droplet (nematic) at a temperature of 34 ℃ is shown as a solid line;the trajectory of the liquid crystal droplet (isotropic) at a temperature of 37 ℃ is shown as a dashed line[71]
图11 光诱导液滴的螺旋轨迹反转[72]
Fig.11 Light induced helical trajectory reversal of droplets[72]
图12 L型粒子的螺旋运动:(a) L+和L-粒子在1 min内的运动轨迹图[79];(b) 相同倾角,光照强度增大时L型粒子的实验轨迹[13]
Fig.12 Spiral motion of L-particles. (a) Plot of the trajectories of L+ and L- particles in 1 minute[79];(b) Experimental trajectories of L-particles at the same inclination angle with increasing light intensity[13]
图13 Janus粒子的运动:(a) 自扩散泳动驱动Janus粒子运动;(b, c) 自电泳驱动Janus粒子运动[85?~87]
Fig.13 Motion of Janus particles. (a) Self-diffusion swimming drives Janus particle motion;(b, c) Self-electrophoresis driven Janus particle motion[85?~87]
图14 螺旋波驱动BZ液滴的运动:(a) 实验图像;(b) 液滴质心的运动轨迹[90]
Fig.14 Spiral wave-driven BZ droplet motion. (a) Experimental image;(b) The trajectory of the droplet center[90]
图15 螺旋波驱动矩形PAAm BZ自振荡凝胶的螺旋运动:(a, b) BZ凝胶质心运动的实验轨迹;(c, d) BZ凝胶质心运动的模拟轨迹[102]
Fig.15 Spiral waves-driven helical motion of rectangular PAAm BZ self-oscillating gel. (a, b) Experimental trajectory;(c, d) Simulated trajectory[102]
[1]
Ramaswamy S. Annu. Rev. Condens. Matter Phys., 2010, 1: 323.

doi: 10.1146/conmatphys.2010.1.issue-1     URL    
[2]
Nakane D, Sato K, Wada H, McBride M J, Nakayama K. Proc. Natl. Acad. Sci. U. S. A., 2013, 110(27): 11145.

doi: 10.1073/pnas.1219753110     URL    
[3]
Herschlag G, Miller L. J. Theor. Biol., 2011, 285(1): 84.

doi: 10.1016/j.jtbi.2011.05.035     pmid: 21669208
[4]
Franks N R, Worley A, Grant K A J, Gorman A R, Vizard V, Plackett H, Doran C, Gamble M L, Stumpe M C, Sendova-Franks A B. Proc. R. Soc. B, 2016, 283(1825): 20152946.

doi: 10.1098/rspb.2015.2946     URL    
[5]
Bunea A I, Taboryski R. Micromachines, 2020, 11(12): 1048.

doi: 10.3390/mi11121048     URL    
[6]
Bente K, Codutti A, Bachmann F, Faivre D. Small, 2018, 14(29): 1704374.

doi: 10.1002/smll.v14.29     URL    
[7]
Lee J G, Brooks A M, Shelton W A, Bishop K J M, Bharti B. Nat. Commun., 2019, 10: 2575.

doi: 10.1038/s41467-019-10579-1    
[8]
Purcell E M. Am. J. Phys., 1977, 45(1): 3.

doi: 10.1119/1.10903     URL    
[9]
Hyon Y, Marcos, Powers T R, Stocker R, Fu H C. J. Fluid Mech., 2012, 705: 58.

doi: 10.1017/jfm.2012.217     URL    
[10]
Koens L, Zhang H, Moeller M, Mourran A, Lauga E. Eur. Phys. J. E, 2018, 41(10): 119.

doi: 10.1140/epje/i2018-11728-2    
[11]
Crenshaw H C. Am. Zool., 1996, 36(6): 608.

doi: 10.1093/icb/36.6.608     URL    
[12]
Chen Y, Lordi N, Taylor M, Pak O S. Phys. Rev. E, 2020, 102(4): 043111.

doi: 10.1103/PhysRevE.102.043111     URL    
[13]
ten Hagen B, Kümmel F, Wittkowski R, Takagi D, Löwen H, Bechinger C. Nat. Commun., 2014, 5: 4829.

doi: 10.1038/ncomms5829    
[14]
Nelson B J, Kaliakatsos I K, Abbott J J. Annu. Rev. Biomed. Eng., 2010, 12: 55.

doi: 10.1146/bioeng.2010.12.issue-1     URL    
[15]
Ye H, Wang Y, Xu D D, Liu X J, Liu S M, Ma X. Appl. Mater. Today, 2021, 23: 101007.
[16]
Jennings H S. Am. Nat., 1901, 35(413): 369.

doi: 10.1086/277922     URL    
[17]
Crenshaw H C. Biophys. J., 1989, 56(5): 1029.

pmid: 2636879
[18]
Elgeti J, Winkler R G, Gompper G. Rep. Prog. Phys., 2015, 78(5): 056601.

doi: 10.1088/0034-4885/78/5/056601     URL    
[19]
Wheeler R J. PLoS Comput. Biol., 2017, 13(1): e1005353.
[20]
Ebrahimi N, Bi C, Cappelleri D J, Ciuti G, Conn A T, Faivre D, Jafari A. Adv. Funct. Mater., 2021, 31: 2005137.

doi: 10.1002/adfm.v31.11     URL    
[21]
Noselli G, Beran A, Arroyo M, DeSimone A. Nat. Phys., 2019, 15(5): 496.

doi: 10.1038/s41567-019-0425-8    
[22]
Kudo S, Imai N, Nishitoba M, Sugiyama S, Magariyama Y. FEMS Microbiol. Lett., 2005, 242(2): 221.

doi: 10.1016/j.femsle.2004.11.007     URL    
[23]
Cicconofri G, Noselli G, DeSimone A. eLife, 2021, 10: 58610.
[24]
Tsang A C H, Lam A T, Riedel-Kruse I H. Nat. Phys., 2018, 14(12): 1216.

doi: 10.1038/s41567-018-0277-7    
[25]
Leifson E. J. Bacteriol., 1951, 62(4): 377.

doi: 10.1128/jb.62.4.377-389.1951     URL    
[26]
Leifson E, Hugh R. J. Bacteriol., 1953, 65(3): 263.

doi: 10.1128/jb.65.3.263-271.1953     URL    
[27]
DiLuzio W R, Turner L, Mayer M, Garstecki P, Weibel D B, Berg H C, Whitesides G M. Nature, 2005, 435(7046): 1271.

doi: 10.1038/nature03660    
[28]
Darnton N C, Turner L, Rojevsky S, Berg H C. J. Bacteriol., 2007, 189(5): 1756.

doi: 10.1128/JB.01501-06     URL    
[29]
Altindal T, Xie L, Wu X L. Biophys. J., 2011, 100(1): 32.

doi: 10.1016/j.bpj.2010.11.029     pmid: 21190654
[30]
Zhang L, Abbott J J, Dong L X, Kratochvil B E, Bell D, Nelson B J. Appl. Phys. Lett., 2009, 94(6): 064107.

doi: 10.1063/1.3079655     URL    
[31]
Zhang L, Abbott J J, Dong L X, Peyer K E, Kratochvil B E, Zhang H X, Bergeles C, Nelson B J. Nano Lett., 2009, 9(10): 3663.

doi: 10.1021/nl901869j     pmid: 19824709
[32]
Ghosh A, Fischer P. Nano Lett., 2009, 9(6): 2243.

doi: 10.1021/nl900186w     URL    
[33]
Dreyfus R, Baudry J, Roper M L, Fermigier M, Stone H A, Bibette J. Nature, 2005, 437(7060): 862.

doi: 10.1038/nature04090    
[34]
Gong D, Cai J, Celi N E, Feng L, Jiang Y G, Zhang D Y. J. Magn. Magn. Mater., 2018, 468: 148.

doi: 10.1016/j.jmmm.2018.08.001     URL    
[35]
Khalil I S M, Tabak A F, Hamed Y, Mitwally M E, Tawakol M, Klingner A, Sitti M. Adv. Sci., 2018, 5(2): 1700461.

doi: 10.1002/advs.201700461     URL    
[36]
Ceylan H, Yasa I C, Yasa O, Tabak A F, Giltinan J, Sitti M. ACS Nano, 2019, 13(3): 3353.

doi: 10.1021/acsnano.8b09233     pmid: 30742410
[37]
Medina-Sánchez M, Schmidt O G. Nature, 2017, 545(7655): 406.

doi: 10.1038/545406a     URL    
[38]
Dusenbery D B. Living at micro scale: the unexpected physics of being small. Cambridge, 2009.
[39]
Behkam B, Sitti M. Appl. Phys. Lett., 2008, 93(22): 223901.

doi: 10.1063/1.3040318     URL    
[40]
Magdanz V, Medina-Sánchez M, Schwarz L, Xu H F, Elgeti J, Schmidt O G. Adv. Mater., 2017, 29(24): 1606301.

doi: 10.1002/adma.201606301     URL    
[41]
Nakata S, Iguchi Y, Ose S, Kuboyama M, Ishii T, Yoshikawa K. Langmuir, 1997, 13(16): 4454.

doi: 10.1021/la970196p     URL    
[42]
Carlsen R W, Sitti M. Small, 2014, 10(19): 3831.

doi: 10.1002/smll.201400384     pmid: 24895215
[43]
Meng F L, Matsunaga D, Yeomans J M, Golestanian R. Soft Matter, 2019, 15(19): 3864.

doi: 10.1039/C8SM02561D     URL    
[44]
Blake J R, Sleigh M A. Biol. Rev., 1974, 49(1): 85.

pmid: 4206625
[45]
Omori T, Ito H, Ishikawa T. Proc. Natl. Acad. Sci. U. S. A., 2020, 117(48): 30201.

doi: 10.1073/pnas.2011146117     URL    
[46]
Marumo A, Yamagishi M, Yajima J. Commun. Biol., 2021, 4: 1209.

doi: 10.1038/s42003-021-02756-0    
[47]
Kim S, Lee S, Lee J, Nelson B J, Zhang L, Choi H. Sci. Rep., 2016, 6: 30713.

doi: 10.1038/srep30713    
[48]
Sareh S, Rossiter J, Conn A, Drescher K, Goldstein R E. J. R. Soc. Interface., 2013, 10(78): 20120666.

doi: 10.1098/rsif.2012.0666     URL    
[49]
Verburg T, Schaap A, Zhang S Z, Toonder J, Wang Y. Biotechnol. Bioeng., 2021, 118(7): 2472.

doi: 10.1002/bit.27756     pmid: 33738795
[50]
Pal M, Dasgupta D, Somalwar N, Reshma V R, Tiwari M, Teja D, Narayana S M, Katke A, Jayshree R S, Bhat R, Saini D K, Ghosh A. J. Phys.: Condens. Matter, 2020, 32(22): 224001.
[51]
Dasgupta D, Pally D, Saini D K, Bhat R, Ghosh A. Angew. Chem. Int. Ed., 2020, 59(52): 23690.

doi: 10.1002/anie.v59.52     URL    
[52]
Zhuang R C, Zhou D K, Chang X C, Mo Y, Zhang G Y, Li L Q. Appl. Mater. Today, 2022, 26: 101314.
[53]
Boymelgreen A, Yossifon G, Miloh T. Langmuir, 2016, 32(37): 9540.

doi: 10.1021/acs.langmuir.6b01758     pmid: 27611819
[54]
Bazant M Z, Squires T M. Phys. Rev. Lett., 2004, 92(6): 066101.

doi: 10.1103/PhysRevLett.92.066101     URL    
[55]
Kilic M S, Bazant M Z. Electrophoresis, 2011, 32(5): 614.

doi: 10.1002/elps.v32.5     URL    
[56]
Lee J G, Al Harraq A, Bishop K J M, Bharti B. J. Phys. Chem. B, 2021, 125(16): 4232.

doi: 10.1021/acs.jpcb.1c01644     URL    
[57]
Lum G Z, Ye Z, Dong X G, Marvi H, Erin O, Hu W Q, Sitti M. Proc. Natl. Acad. Sci. U. S. A., 2016, 113(41): E6007.
[58]
Tasci T O, Disharoon D, Schoeman R M, Rana K, Herson P S, Marr D W M, Neeves K B. Small, 2017, 13(36): 1700954.

doi: 10.1002/smll.v13.36     URL    
[59]
Mohanty S, Jin Q R, Furtado G P, Ghosh A, Pahapale G, Khalil I S M, Gracias D H, Misra S. Adv. Intell. Syst., 2020, 2(9): 2000064.

doi: 10.1002/aisy.v2.9     URL    
[60]
Soto F, Karshalev E, Zhang F Y, Esteban Fernandez de Avila B, Nourhani A, Wang J. Chem. Rev., 2022, 122(5): 5365.

doi: 10.1021/acs.chemrev.0c00999     URL    
[61]
Chen X Z, Jang B, Ahmed D, Hu C Z, De Marco C, Hoop M, Mushtaq F, Nelson B J, PanÉ S. Adv. Mater., 2018, 30(15): 1705061.

doi: 10.1002/adma.v30.15     URL    
[62]
Guix M, Weiz S M, Schmidt O G, Medina-Sánchez M. Part. Part. Syst. Charact., 2018, 35(2): 1700382.

doi: 10.1002/ppsc.v35.2     URL    
[63]
Zhou C, Zhang H P, Tang J Y, Wang W. Langmuir, 2018, 34(10): 3289.

doi: 10.1021/acs.langmuir.7b04301     URL    
[64]
Feldmann D, Arya P, Lomadze N, Kopyshev A, Santer S. Appl. Phys. Lett., 2019, 115(26): 263701.

doi: 10.1063/1.5129238     URL    
[65]
Tu Y F, Peng F, Wilson D A. Adv. Mater., 2017, 29(39): 1701970.

doi: 10.1002/adma.v29.39     URL    
[66]
Sabrina S, Tasinkevych M, Ahmed S, Brooks A M, Olvera de la Cruz M, Mallouk T E, Bishop K J M. ACS Nano, 2018, 12(3): 2939.

doi: 10.1021/acsnano.8b00525     pmid: 29547265
[67]
Zhou C, Zhao L L, Wei M S, Wang W. ACS Nano, 2017, 11(12): 12668.

doi: 10.1021/acsnano.7b07183     URL    
[68]
Morozov M, Michelin S. Soft Matter, 2019, 15(39): 7814.

doi: 10.1039/c9sm01076a     pmid: 31517379
[69]
Kraft D J, Wittkowski R ten Hagen B, Edmond K V, Pine D J, Löwen H. Phys. Rev. E, 2013, 88(5): 050301.

doi: 10.1103/PhysRevE.88.050301     URL    
[70]
Lodish H, Berk A, Kaiser C A, Kaiser C, Krieger M, Scott M P, Matsudaira P. Molecular Cell Biology. Macmillan, 2008.
[71]
Krüger C, Klös G, Bahr C, Maass C C. Phys. Rev. Lett., 2016, 117(4): 048003.

doi: 10.1103/PhysRevLett.117.048003     URL    
[72]
Yamamoto T, Sano M. Soft Matter, 2017, 13(18): 3328.

doi: 10.1039/c7sm00337d     pmid: 28421224
[73]
Lancia F, Yamamoto T, Ryabchun A, Yamaguchi T, Sano M, Katsonis N. Nat. Commun., 2019, 10: 5238.

doi: 10.1038/s41467-019-13201-6    
[74]
Yamamoto T, Sano M. Phys. Rev. E, 2019, 99(2): 022704.

doi: 10.1103/PhysRevE.99.022704     URL    
[75]
Yabunaka S, Ohta T, Yoshinaga N. J. Chem. Phys., 2012, 136(7): 074904.

doi: 10.1063/1.3685805     URL    
[76]
Yoshinaga N, Nagai K H, Sumino Y, Kitahata H. Phys. Rev. E, 2012, 86: 016108.

doi: 10.1103/PhysRevE.86.016108     URL    
[77]
Yamamoto T, Sano M. Phys. Rev. E, 2018, 97: 012607.

doi: 10.1103/PhysRevE.97.012607     URL    
[78]
Lohse D, Zhang X H. Nat. Rev. Phys., 2020, 2(8): 426.

doi: 10.1038/s42254-020-0199-z    
[79]
Kümmel F ten Hagen B, Wittkowski R, Buttinoni I, Eichhorn R, Volpe G, Löwen H, Bechinger C. Phys. Rev. Lett., 2013, 110(19): 198302.

doi: 10.1103/PhysRevLett.110.198302     URL    
[80]
Mijalkov M, Volpe G. Soft Matter, 2013, 9(28): 6376.

doi: 10.1039/c3sm27923e     URL    
[81]
Paxton W F, Kistler K C, Olmeda C C, Sen A, St Angelo S K, Cao Y Y, Mallouk T E, Lammert P E, Crespi V H. J. Am. Chem. Soc., 2004, 126(41): 13424.

doi: 10.1021/ja047697z     URL    
[82]
Zhang J, Grzybowski B A, Granick S. Langmuir, 2017, 33(28): 6964.

doi: 10.1021/acs.langmuir.7b01123     pmid: 28678499
[83]
Archer R J, Campbell A I, Ebbens S J. Soft Matter, 2015, 11(34): 6872.

doi: 10.1039/c5sm01323b     pmid: 26234424
[84]
Palagi S, Fischer P. Nat. Rev. Mater., 2018, 3(6): 113.

doi: 10.1038/s41578-018-0016-9    
[85]
Campbell A I, Wittkowski R ten Hagen B, Löwen H, Ebbens S J. J. Chem. Phys., 2017, 147(8): 084905.

doi: 10.1063/1.4998605     URL    
[86]
Paxton W F, Baker P T, Kline T R, Wang Y, Mallouk T E, Sen A. J. Am. Chem. Soc., 2006, 128(46): 14881.

doi: 10.1021/ja0643164     URL    
[87]
Du S N, Wang H G, Zhou C, Wang W, Zhang Z X. J. Am. Chem. Soc., 2020, 142(5): 2213.

doi: 10.1021/jacs.9b13093     URL    
[88]
Vicario J, Eelkema R, Browne W R, Meetsma A, La Crois R M, Feringa B L. Chem. Commun., 2005,(31): 3936.
[89]
Furtado K, Pooley C M, Yeomans J M. Phys. Rev. E, 2008, 78(4): 046308.

doi: 10.1103/PhysRevE.78.046308     URL    
[90]
Kitahata H, Yoshinaga N, Nagai K H, Sumino Y. Phys. Rev. E, 2011, 84: 015101.

doi: 10.1103/PhysRevE.84.015101     URL    
[91]
Yoshida R, Takahashi T, Yamaguchi T, Ichijo H. J. Am. Chem. Soc., 1996, 118(21): 5134.

doi: 10.1021/ja9602511     URL    
[92]
Yoshida R. Adv. Mater., 2010, 22(31): 3463.

doi: 10.1002/adma.200904075     URL    
[93]
Murase Y, Maeda S, Hashimoto S, Yoshida R. Langmuir, 2009, 25(1): 483.

doi: 10.1021/la8029006     pmid: 19063637
[94]
Hara Y, Maeda S, Hashimoto S, Yoshida R. Int. J. Mol. Sci., 2010, 11(2): 704.

doi: 10.3390/ijms11020704     URL    
[95]
Yoshida R, Ueki T. NPG Asia Mater., 2014, 6(6): e107.
[96]
Zhou H W, Wang Y R, Zheng Z H, Ding X B, Peng Y X. Chem. Commun., 2014, 50(48): 6372.

doi: 10.1039/c4cc01169d     URL    
[97]
Ren L, She W B, Gao Q Y, Pan C W, Ji C, Epstein I R. Angew. Chem., 2016, 128(46): 14513.

doi: 10.1002/ange.v128.46     URL    
[98]
Lu X J, Ren L, Gao Q Y, Zhao Y M, Wang S R, Yang J P, Epstein I R. Chem. Commun., 2013, 49(70): 7690.

doi: 10.1039/c3cc44480e     URL    
[99]
Ren L, Wang L Y, Gao Q Y, Teng R, Xu Z Y, Wang J, Pan C W, Epstein I R. Angew. Chem. Int. Ed., 2020, 59(18): 7106.

doi: 10.1002/anie.v59.18     URL    
[100]
Ren L, Wang M, Pan C W, Gao Q Y, Liu Y, Epstein I R. Proc. Natl. Acad. Sci. U. S. A., 2017, 114(33): 8704.

doi: 10.1073/pnas.1704094114     URL    
[101]
Teng R, Gao Q Y, Yuan L, Ren L, Wang J, Wang Y J, Epstein I R. Cell Rep. Phys. Sci., 2022, 3(6): 100933.
[102]
Wang J, Ren L, Teng R, Epstein I R, Wang H, Zhang M, Yuan L, Gao Q Y. J. Phys. Chem. Lett., 2021, 12(50): 11987.

doi: 10.1021/acs.jpclett.1c03128     URL    
[103]
Rossi M, Cicconofri G, Beran A, Noselli G, DeSimone A. Proc. Natl. Acad. Sci. U. S. A., 2017, 114(50): 13085.

doi: 10.1073/pnas.1708064114     URL    
[104]
Ghanbari A. J. Micro. Bio. Robotics., 2020, 16(2): 173.

doi: 10.1007/s12213-020-00130-7    
[105]
Schauer O, Mostaghaci B, Colin R, Hürtgen D, Kraus D, Sitti M, Sourjik V. Sci. Rep., 2018, 8: 9801.

doi: 10.1038/s41598-018-28102-9     pmid: 29955099
[106]
Peters C, Hoop M, PanÉ S, Nelson B J, Hierold C. Adv. Mater., 2016, 28(3): 533.

doi: 10.1002/adma.v28.3     URL    
[1] 陈雅琼, 宋洪东, 吴懋, 陆扬, 管骁. 蛋白质-多糖复合体系在活性物质传递中的应用[J]. 化学进展, 2022, 34(10): 2267-2282.
[2] 张聪, 岳巧丽, 陶丽霞, 胡莹莹, 李晨钟, 唐波. 基于核酸探针的光学传感方法和细胞成像研究[J]. 化学进展, 2019, 31(6): 858-871.
[3] 张盈盈, 陆小华*, 冯新, 史以俊, 吉晓燕. 胆碱类低共熔溶剂的物性及应用[J]. 化学进展, 2013, 25(06): 881-892.
[4] 闫超, 李梅, 路庆华. 液体弹珠及其研究进展[J]. 化学进展, 2011, 23(4): 649-656.
[5] 张勇, 皮丕辉, 文秀芳, 郑大锋, 蔡智奇, 程江. 梯度接触角表面的构建与应用[J]. 化学进展, 2011, 23(12): 2457-2465.
[6] 杨海朋,陈仕国,李春辉,陈东成,戈早川. 纳米电化学生物传感器*[J]. 化学进展, 2009, 21(01): 210-216.
[7] 李本刚 陈正国. 表面活性剂溶液动态表面张力及吸附动力学研究*[J]. 化学进展, 2005, 17(02): 233-241.
[8] 曹晨刚,刘继广,董金勇,胡友良. 表面活性剂溶液动态表面张力及吸附动力学研究*[J]. 化学进展, 2005, 17(02): 0-.
[9] 董丽丽,黄骏雄. 表面活性剂溶液动态表面张力及吸附动力学研究*[J]. 化学进展, 2005, 17(02): 0-.
[10] 唐睿康. 表面活性剂溶液动态表面张力及吸附动力学研究*[J]. 化学进展, 2005, 17(02): 0-.
阅读次数
全文


摘要

活性人工游泳体的螺旋运动