English
新闻公告
More
化学进展 2022, Vol. 34 Issue (2): 301-318 DOI: 10.7536/PC210630 前一篇   后一篇

• 综述 •

稀土元素在脱硝催化剂中的应用

张柏林1,2, 张生杨1, 张深根1,*()   

  1. 1 北京科技大学新材料技术研究院 北京 100083
    2 北京科技大学顺德研究生院 佛山 528399
  • 收稿日期:2021-06-28 修回日期:2021-09-26 出版日期:2022-02-20 发布日期:2021-12-02
  • 通讯作者: 张深根
  • 基金资助:
    国家自然科学基金项目(U2002212); 中央高校基本科研业务费项目(FRF-IDRY-20-005); 北京科技大学顺德研究生院博士后科研经费(2020BH012)

The Use of Rare Earths in Catalysts for Selective Catalytic Reduction of NOx

Bolin Zhang1,2, Shengyang Zhang1, Shengen Zhang1()   

  1. 1 Institute for Advanced Materials and Technology, University of Science and Technology Beijing,Beijing 100083, China
    2 Shunde Graduate School, University of Science and Technology Beijing,Foshan 528399, China
  • Received:2021-06-28 Revised:2021-09-26 Online:2022-02-20 Published:2021-12-02
  • Contact: Shengen Zhang
  • Supported by:
    National Natural Science Foundation of China(U2002212); Fundamental Research Funds for the Central Universities(FRF-IDRY-20-005); Postdoctor Research Foundation of Shunde Graduate School of University of Science and Technology Beijing(2020BH012)

以NH3为还原剂的选择性催化还原(SCR)技术可实现工业烟气中氮氧化物(NOx)的超低排放,现有钒钛系脱硝催化剂具有生物毒性,且报废后为危险废物。稀土元素(REEs)具有独特的4f电子轨道,表现出优异的储释氧性能,在催化反应中可发挥重要作用,是当前新型脱硝催化剂的重要研究对象,也是国家鼓励的现有钒钛系催化剂的替代品。本文主要总结了铈、钐、镧等12种REEs在新型脱硝催化剂中的近5年研究进展,另有钪、镥等5种REEs的相关研究较少,重点阐述了REEs改善催化剂脱硝活性与稳定性的作用机制及耦合过渡金属的协同催化机理,初步提出了脱硝催化剂的设计原则,并展望了稀土脱硝催化剂的发展前景。

Nitrogen oxides (NOx) can be reduced by technology of selective catalytic reduction (SCR) with NH3, while the spent commercial V2O5/TiO2 catalysts with biotoxicity for SCR technology is recognized as hazardous wastes in China. Rare earths (REEs) possess unique 4f electron orbit ensuring superior performance of oxygen storage and release, which plays a significant role in catalytic reaction. Thus, REEs are the important research subject in SCR catalysts recently and the proposed substitutes for V2O5/TiO2 catalysts. This review mainly summarizes the progress of 12 REEs including Ce, Sm and La in novel SCR catalysts in recent 5 years, and there is seldom study on Sc, Lu, etc. We primarily review the effect of REEs on improving the catalytic activity, N2 selectivity and stability of Mn-, Fe-, V- and other based DeNOx catalysts. The REEs mainly improve the redox behavior via the formation of redox couples with other transition elements and providing more oxygen vacancies. In the aspect of resistance towards SO2, the REEs, such as Ce and Sm, could suppress the oxidation of SO2 to SO3 and attract the poison of SO2 from the main active components, thus improving the resistance towards SO2. We also review the molding and application of REEs-based catalysts. Additionally, the primitive design strategy of SCR catalysts is proposed, and the development prospect of REEs-based catalysts is forecast finally.

Contents

1 Introduction

2 Reaction mechanism and design of catalysts

3 Ce-based SCR catalysts

3.1 Single ceria-based catalysts

3.2 Mn-Ce based catalysts

3.3 Fe-Ce based catalysts

3.4 V-Ce based catalysts

3.5 Other Ce-containing catalysts

4 Sm, La and other REEs in SCR catalysts

4.1 Sm in SCR catalysts

4.2 La in SCR catalysts

4.3 Other REEs in SCR catalysts

5 Molding and application of REEs-based catalysts

6 Conclusion and outlook

()
图1 SCR反应过程的酸性循环与氧化还原循环示意图[2]
Fig. 1 Schematic of acid circle and redox circle of SCR of NOx with NH3[2]. Copyright 2019, American Chemical Society
图2 空气中焙烧的CeO2、Ar氛围焙烧的CeO2-Ar和重复测试的CeO2-Ar的NO转化率(反应条件:150 mg催化剂、[NO] = [NH3] = 650 ppm、[O2] = 5 vol%、气流300 mL·min-1)[8]
Fig. 2 NO conversion of NH3-SCR over CeO2 calcined in air, CeO2-Ar calcined in Ar and retested CeO2-Ar (reaction condition: 150 mg catalysts, [NO] = [NH3] = 650 ppm, [O2] = 5 vol% and flow rate of 300 mL·min-1)[8]. Copyright 2020, Elsevier
图3 SO2作用的CeTiOx催化剂NH3-SCR反应路径[31]
Fig. 3 Schematic of NH3-SCR reaction over sulfated CeTiOx catalyst[31].Copyright 2021, American Chemical Society
图4 Ce对提升birnessite-MnO2催化剂抗SO2性能的作用机制[40]
Fig. 4 Mechanism of Ce in promoting the SO2 poisoning resistance of the birnessite-MnO2 catalyst[40]. Copyright 2021, American Chemical Society
图5 H2O/SO2对MnCeOx@Z5和MnCeOx/Z5的影响[42]
Fig. 5 Possible mechanism of the H2O/SO2 tolerance over MnCeOx@Z5 and MnCeOx/Z5[42]. Copyright 2020, Elsevier
表1 部分Mn-Ce催化剂的脱硝活性列表
Table 1 summary of catalytic activities of some Mn-Ce catalysts
图6 (a)Fe2Ox/MWCNTs和(b)Fe2Ce0.5Ox/MWCNTs在240 ℃时的反应路径示意图[58]
Fig. 6 Reaction routes of (a) Fe2Ox/MWCNTs and (b) Fe2Ce0.5Ox/MWCNTs at 240 ℃[58]. Copyright 2018, American Chemical Society
图7 表面酸性和氧化还原性能组合示意图,以及瞬态响应测试结果,(a)VOx/CeO2 (0.3 g),(b)H-SSZ-13 (0.03 g),(c)VOx/CeO2 + H-SSZ-13 (0.3 g + 0.03 g)的机械混合物,T = 473 K, O2 = H2O = 0%, NO = 350 ppm, 流速 = 3.33 cm3·s-1 NTP[26]
Fig. 7 Schematization of surface acidity and redox properties and transient-response experiment results: NH3 adsorption (not shown) + transient NO pulse over pretreated (a) VOx/CeO2 (0.3 g), (b) H-SSZ-13 (0.03 g) and (c) mechanical mixture of VOx/CeO2 + H-SSZ-13 (0.3 g + 0.03 g). T = 473 K, O2 = H2O = 0%, NO = 350 ppm, ?ow rate = 3.33 cm3·s-1 NTP[26]. Copyright 2020, Elsevier
图8 TEM图像及其主要暴露晶面的示意图[68]
Fig. 8 TEM images and schematic illustrations of (a1-3) CeO2-R ({110}, {100}), (b1-3) CeO2-P ({111}) and (c1-3) CeO2-C ({100})[68]. Copyright 2021, China Academic Journal Electronic Publishing House
图9 V2O5/Ce1-xTixO2的NH3-SCR反应机制[70]
Fig. 9 Tentative mechanism of low-temperature NH3-SCR on V2O5/Ce1-xTixO2 catalysts[70]. Copyright 2017, American Chemical Society
图10 提升催化剂抗As中毒性能的策略[76]
Fig.10 Design strategy of arsenic resistance[76]. Copyright 2020, American Chemical Society
图11 (a)500 ppm SO2对CeSi2性能的影响(反应条件:[NO] = [NH3] = 500 ppm、[O2] = 5 vol%);(b)新CeSi2及在500 ppm SO2条件下使用后的CeSi2性能对比(225 ℃下500 ppm SO2抵抗测试, WHSV = 48 000 mL·g-1·h-1, 使用后的样品命名为CeSi2-225-500);(c)反应机理示意图[82]
Fig. 11 (a) NO conversion of CeSi2 in the presence of 500 ppm SO2 at 225 ℃ (reaction condition: [NO] = [NH3] = 500 ppm, [O2] = 5 vol%); (b) NO conversion of fresh CeSi2 and the used CeSi2 (500 ppm of the SO2 resistance test at 225 ℃, WHSV = 48 000 mL·g-1·h-1, the used sample was denoted as CeSi2-225-500); (c) Scheme of the reaction mechanism and reaction performance on fresh and sulfated samples[82]. Copyright 2021, American Chemical Society
图12 100 ℃时H2O的SO2对TiSmMn催化剂性能的影响[87]
Fig.12 Effect of H2O and SO2 on the NH3-SCR activity of TiSmMn catalyst at 100 ℃[87]. Copyright 2020, American Chemical Society
图13 MnCeSmTiOx催化剂的催化反应机理和抗SO2机制[90]
Fig.13 Reaction and SO2 resistance mechanism on MnCeSmTiOx catalyst[90]. Copyright 2020, American Chemical Society
图14 Ce/Sm改性的Cu-SSZ-13催化剂结构[92]
Fig.14 Structure of Ce/Sm doped Cu-SSZ-13 catalyst[92]. Copyright 2020, American Chemical Society
图15 功能薄膜包覆的Mn-La-Ce-Ni-Ox催化剂图像及其反应机制[102]
Fig.15 Micro-morphology of the membrane coated Mn-La-Ce-Ni-Ox catalyst and mechanism of reaction gas action on the surface of catalyst after injecting SO2 and H2O[102]. Copyright 2017, Elsevier
图16 Er对FeMn/TiO2催化剂抗SO2性能的提升作用[124]
Fig.16 The promotional effect of Er modification on SO2 resistance over FeMn/TiO2 catalysts[124]. Copyright 2021, MDPI and the authors
[1]
Paolucci C, Khurana I, Parekh A A, Li S C, Shih A J, Li H, di Iorio J R, Albarracin-Caballero J D, Yezerets A, Miller J T, Delgass W N, Ribeiro F H, Schneider W F, Gounder R. Science, 2017, 357(6354): 898.

doi: 10.1126/science.aan5630    
[2]
Han L P, Cai S X, Gao M, Hasegawa J Y, Wang P L, Zhang J P, Shi L Y, Zhang D S. Chem. Rev., 2019, 119(19): 10916.

doi: 10.1021/acs.chemrev.9b00202    
[3]
Wang X H, Liu C X, Song C F, Ma D G, Li Z G, Liu Q L. Progress in Chemistry, 2020, 32(12):1917.
( 王晓晗, 刘彩霞, 宋春风, 马德刚, 李振国, 刘庆岭. 化学进展, 2020, 32(12):1917.

doi: 10.7536/PC200325    
[4]
Shao X Z, Wang H Y, Yuan M L, Yang J, Zhan W C, Wang L, Guo Y, Lu G Z. Rare Met., 2019, 38(4): 292.

doi: 10.1007/s12598-018-1176-x     URL    
[5]
Akah A. J. Rare Earths, 2017, 35(10): 941.

doi: 10.1016/S1002-0721(17)60998-0     URL    
[6]
Wang L Y, Yu X H, Wei Y C, Liu J, Zhao Z. J. Rare Earths, 2021, 39(10): 1151.

doi: 10.1016/j.jre.2021.05.001     URL    
[7]
Vargas M A L, Casanova M, Trovarelli A, Busca G. Appl. Catal. B Environ., 2007, 75(3/4): 303.

doi: 10.1016/j.apcatb.2007.04.022     URL    
[8]
Zhang B L, Zhang S G, Liu B. Appl. Surf. Sci., 2020, 529: 147068.

doi: 10.1016/j.apsusc.2020.147068     URL    
[9]
Zhang S G, Zhang B L, Liu B, Sun S L. RSC Adv., 2017, 7(42): 26226.

doi: 10.1039/C7RA03387G     URL    
[10]
Zhang B, Deng L, Liu B, Luo C, Liebau M, Zhang S, Gläser R. Rare Met., 2021, 41(1): 166.

doi: 10.1007/s12598-021-01790-5     URL    
[11]
Yang S J, Xiong S C, Liao Y, Xiao X, Qi F H, Peng Y, Fu Y W, Shan W P, Li J H. Environ. Sci. Technol., 2014, 48(17): 10354.

doi: 10.1021/es502585s     URL    
[12]
Topsøe N Y. Science, 1994, 265(5176): 1217.

pmid: 17787589
[13]
Nuguid R J G, Ferri D, Marberger A, Nachtegaal M, Kröcher O. ACS Catal., 2019, 9(8): 6814.

doi: 10.1021/acscatal.9b01514     URL    
[14]
He G Z, Lian Z H, Yu Y B, Yang Y, Liu K, Shi X Y, Yan Z D, Shan W P, He H. Sci. Adv., 2018, 4(11): eaau4637.

doi: 10.1126/sciadv.aau4637     URL    
[15]
Qu R Y, Gao X, Cen K F, Li J H. Appl. Catal. B Environ., 2013, 142/143: 290.

doi: 10.1016/j.apcatb.2013.05.035     URL    
[16]
Qu W Y, Liu X N, Chen J X, Dong Y Y, Tang X F, Chen Y X. Nat. Commun., 2020, 11: 1532.

doi: 10.1038/s41467-020-15261-5     URL    
[17]
Li X Y, Chen J, Lu C M, Luo G Q, Yao H. Fuel, 2021, 299: 120910.

doi: 10.1016/j.fuel.2021.120910     URL    
[18]
Zhang B L, Liebau M, Liu B, Li L, Zhang S G, Gläser R. J. Mater. Sci., 2019, 54(9): 6943.

doi: 10.1007/s10853-019-03369-z     URL    
[19]
Li G, Mao D S, Chao M X, Li G H, Yu J, Guo X M. J. Rare Earths, 2021, 39(7): 805.

doi: 10.1016/j.jre.2020.10.001     URL    
[20]
Wang H, Qu Z P, Liu L L, Dong S C, Qiao Y J. J. Hazard. Mater., 2021, 414: 125565.

doi: 10.1016/j.jhazmat.2021.125565     URL    
[21]
Zhou J, Guo R T, Zhang X F, Liu Y Z, Duan C P, Wu G L, Pan W G. Energy Fuels, 2021, 35(4): 2981.

doi: 10.1021/acs.energyfuels.0c04231     URL    
[22]
Geng Y, Shan W P, Liu F D, Yang S J. J. Hazard. Mater., 2021, 405: 124223.

doi: 10.1016/j.jhazmat.2020.124223     URL    
[23]
Zhang K, Wang J J, Guan P F, Li N, Gong Z J, Zhao R, Luo H J, Wu W F. Mater. Res. Bull., 2020, 128: 110871.

doi: 10.1016/j.materresbull.2020.110871     URL    
[24]
Chitsazi H, Zhang N Q, Li L C, Liu X J, Wu R, He J D, Song L Y, He H. J. Rare Earths, 2021, 39(5): 526.

doi: 10.1016/j.jre.2020.05.004     URL    
[25]
Kwon D W, Kim J, Ha H P. Appl. Surf. Sci., 2019, 481: 1503.

doi: 10.1016/j.apsusc.2019.03.218     URL    
[26]
Hu W S, Zou R Z, Dong Y, Zhang S, Song H, Liu S J, Zheng C H, Nova I, Tronconi E, Gao X. J. Catal., 2020, 391: 145.

doi: 10.1016/j.jcat.2020.08.002     URL    
[27]
Cong Q L, Chen L, Wang X X, Ma H Y, Zhao J K, Li S J, Hou Y, Li W. Chem. Eng. J., 2020, 379: 122302.

doi: 10.1016/j.cej.2019.122302     URL    
[28]
Chen L X, Agrawal V, Tait S L. Catal. Sci. Technol., 2019, 9(8): 1802.

doi: 10.1039/C8CY02590H     URL    
[29]
Abid R, Delahay G, Tounsi H. J. Rare Earths, 2020, 38(3): 250.

doi: 10.1016/j.jre.2019.09.005     URL    
[30]
Zeng Y Q, Wang Y N, Hongmanorom P, Wang Z G, Zhang S L, Chen J T, Zhong Q, Kawi S. Chem. Eng. J., 2021, 409: 128242.

doi: 10.1016/j.cej.2020.128242     URL    
[31]
Liu B, Liu J, Xin L, Zhang T, Xu Y B, Jiang F, Liu X H. ACS Catal., 2021, 11(13): 7613.

doi: 10.1021/acscatal.1c00311     URL    
[32]
Zhang W J, Liu G F, Jiang J, Tan Y C, Wang Q, Gong C H, Shen D K, Wu C F. Chemosphere, 2020, 243: 125419.

doi: 10.1016/j.chemosphere.2019.125419     URL    
[33]
Xu H M, Yan N Q, Qu Z, Liu W, Mei J, Huang W J, Zhao S J. Environ. Sci. Technol., 2017, 51(16): 8879.

doi: 10.1021/acs.est.6b06079     URL    
[34]
Zhang B L. Doctoral Dissertation of University of Science and Technology Beijing, 2020.
( 张柏林. 北京科技大学博士论文, 2020.)..
[35]
Zhang B L, Liebau M, Suprun W, Liu B, Zhang S G, Gläser R. Catal. Sci. Technol., 2019, 9(17): 4759.

doi: 10.1039/C9CY01156K     URL    
[36]
Yang J, Su Z H, Ren S, Long H M, Kong M, Jiang L J. J. Energy Inst., 2019, 92(4): 883.

doi: 10.1016/j.joei.2018.08.001    
[37]
Li Q, Li X, Li W, Zhong L, Zhang C, Fang Q Y, Chen G. Chem. Eng. J., 2019, 369: 26.

doi: 10.1016/j.cej.2019.03.054     URL    
[38]
Yan D J, Yu Y, Xu Y, Huang X M. Chem. Ind. Eng. Prog., 2015, 34(6): 1652.
( 闫东杰, 玉亚, 徐颖, 黄学敏. 化工进展, 2015, 34(6): 1652.)
[39]
Jin R B, Liu Y, Wang Y, Cen W L, Wu Z B, Wang H Q, Weng X L. Appl. Catal. B Environ., 2014, 148/149: 582.

doi: 10.1016/j.apcatb.2013.09.016     URL    
[40]
Fang X, Liu Y J, Cheng Y, Cen W L. ACS Catal., 2021, 11(7): 4125.

doi: 10.1021/acscatal.0c05697     URL    
[41]
Chen J Y, Fu P, Lv D F, Chen Y, Fan M L, Wu J L, Meshram A, Mu B, Li X, Xia Q B. Chem. Eng. J., 2021, 407: 127071.

doi: 10.1016/j.cej.2020.127071     URL    
[42]
Yan R, Lin S X, Li Y L, Liu W M, Mi Y Y, Tang C J, Wang L, Wu P, Peng H G. J. Hazard. Mater., 2020, 396: 122592.

doi: 10.1016/j.jhazmat.2020.122592     URL    
[43]
Yan D J, Yu Y, Huang X M, Liu S J, Liu Y H. J. Fuel Chem. Technol., 2016, 44(2): 232.

doi: 10.1016/S1872-5813(16)30011-1     URL    
( 闫东杰, 玉亚, 黄学敏, 刘树军, 刘颖慧. 燃料化学学报, 2016, 44(2): 232.)
[44]
Yang L, Tan Y, Sheng Z Y, Zhou A Y, Hu Y F, Dan Y X. Journal of Chemical Engineering of Chinese Universities, 2015, 29(6): 1438.
( 杨柳, 谭月, 盛重义, 周爱奕, 胡宇峰, 单云霞. 高校化学工程学报, 2015, 29(6): 1438.)
[45]
Wu X M, Yu X L, He X Y, Jing G H. J. Phys. Chem. C, 2019, 123(17): 10981.

doi: 10.1021/acs.jpcc.9b01048     URL    
[46]
Liang Y Z, Wang X T, Zhang Q Y, Luo S F, Zhou Y F. Journal of Fuel Chemistry and Technology, 2020, 48(2):205.
( 梁彦正, 王学涛, 张乾蔚, 罗绍峰, 周瑜枫. 燃料化学学报, 2020, 48(2):205.)
[47]
Zhang X L, Zhang X C, Hu X R, Wu X P, Fang C, Xiao K S. Environ. Chem., 2021, 40(2): 632.
( 张先龙, 张新成, 胡晓芮, 吴雪平, 方城, 肖客松. 环境化学, 2021, 40(2): 632.)
[48]
Chu Y H, Gai Z P, Wang T Z, Liu Z, Yao Y, Yin H Q, Guo J X. Advanced Engineering Sciences, 2015, 47(3): 180.
( 楚英豪, 盖志谱, 王天泽, 刘正, 姚远, 尹华强, 郭家秀. 四川大学学报(工程科学版), 2015, 47(3): 180.)
[49]
Jiang L J, Liu Q C, Ran G J, Kong M, Ren S, Yang J, Li J L. Chem. Eng. J., 2019, 370: 810.

doi: 10.1016/j.cej.2019.03.225     URL    
[50]
Yang J, Ren S, Zhang T S, Su Z H, Long H M, Kong M, Yao L. Chem. Eng. J., 2020, 379: 122398.

doi: 10.1016/j.cej.2019.122398     URL    
[51]
Chen L, Wang X X, Cong Q L, Ma H Y, Li S J, Li W. Chem. Eng. J., 2019, 369: 957.

doi: 10.1016/j.cej.2019.03.055     URL    
[52]
Ma S B, Zhao X Y, Li Y S, Zhang T R, Yuan F L, Niu X Y, Zhu Y J. Appl. Catal. B Environ., 2019, 248: 226.

doi: 10.1016/j.apcatb.2019.02.015     URL    
[53]
Shu Y, Aikebaier T, Quan X, Chen S, Yu H T. Appl. Catal. B Environ., 2014, 150/151: 630.

doi: 10.1016/j.apcatb.2014.01.008     URL    
[54]
Zhang W S, Shi X Y, Shan Y L, Liu J J, Xu G Y, Du J P, Yan Z D, Yu Y B, He H. Catal. Sci. Technol., 2020, 10(3): 648.

doi: 10.1039/C9CY02292A     URL    
[55]
Zhang G X, Zhou A Q, Fan H Y, Wang J Q, Chi Z H. J. Fuel Chem. Technol., 2015, 43(10): 1267.
( 张光学, 周安琪, 范海燕, 王进卿, 池作和. 燃料化学学报, 2015, 43(10): 1267.)
[56]
Liu H, Wu Y H, Liu L H, Chu B X, Qin Z Z, Jin G Z, Tong Z F, Dong L H, Li B. Appl. Surf. Sci., 2019, 498: 143780.

doi: 10.1016/j.apsusc.2019.143780     URL    
[57]
Yang L C, Luo H J, Li B W, Zhang K, Wu W F. Chinese Journal of Rare Metals, 2021, 45(2): 187.
( 杨利超, 罗慧娟, 李保卫, 张凯, 武文斐. 稀有金属, 2021, 45(2): 187.)
[58]
Ma Y G, Zhang D Y, Sun H M, Wu J F, Liang P, Zhang H W. Ind. Eng. Chem. Res., 2018, 57(9): 3187.

doi: 10.1021/acs.iecr.8b00015     URL    
[59]
Zhang X J, Zhang T J, Song Z X, Liu W, Xing Y. Journal of Fuel Chemistry and Technology, 2021:1.
( 张学军, 张庭基, 宋忠贤, 刘威, 邢赟. 燃料化学学报, 2021:1.).
[60]
Wang L X, Zhong Z P, Zhu L, Yang H. Chemical Industry and Engineering Progress, 2017, 36(11): 4064.
( 王丽霞, 仲兆平, 朱林, 杨瀚. 化工进展, 2017, 36(11): 4064.)
[61]
Xu J Q, Chen G R, Guo F, Xie J Q. Chem. Eng. J., 2018, 353: 507.

doi: 10.1016/j.cej.2018.05.047     URL    
[62]
Zhang D J, Ma Z R, Wang B D, Sun Q, Xu W Q, Zhu T. J. Rare Earths, 2020, 38(2): 157.

doi: 10.1016/j.jre.2019.02.016     URL    
[63]
Li P P, Yu F, Zhu M Y, Tang C J, Dai B, Dong L. Progress in Chemistry, 2016, 28(10): 1578.
( 李盼盼, 于锋, 朱明远, 汤常金, 代斌, 董林. 化学进展, 2016, 28(10): 1578.)

doi: 10.7536/PC160350    
[64]
Liu X L, Zhao Z W, Ning R L, Qin Y, Zhu T Y, Liu F G. Catal. Lett., 2020, 150(2): 375.

doi: 10.1007/s10562-019-03077-y     URL    
[65]
Huang J, Zhong Z P, Zhu L, Xue J M, Xu Y Y, Wu P T. Chemical Industry and Engineering Progress, 2018, 37(6): 2242.
( 黄金, 仲兆平, 朱林, 薛建明, 许月阳, 吴培亭. 化工进展, 2018, 37(6): 2242.)
[66]
Yang J, Lin F, Chen K, Kong M, Zhao D, Meng F. Journal of Fuel Chemistry and Technology, 2016, 44(11): 1394.
( 杨剑, 林凡, 陈奎, 孔明, 赵冬, 孟飞. 燃料化学学报, 2016, 44(11): 1394.)
[67]
Zhang D J, Ma Z R, Wang B D, Zhu T, Weng D, Wu X D, Chen J Y, Wang H Y, Li G, Zhou J L. J. Rare Earths, 2020, 38(7): 725.

doi: 10.1016/j.jre.2019.05.017     URL    
[68]
Hu W S, Zou R Z, Dong Y, Xin Q, Zheng C H, Gao X. Journal of Engineering Thermophysics, 2021, 42(1): 239.
( 胡文硕, 邹任智, 董毅, 辛琦, 郑成航, 高翔. 工程热物理学报, 2021, 42(1): 239.)
[69]
Wu X M, Ni K W, Yu X L, Zhao N. J. Fuel Chem. Technol., 2020, 48(2): 179.

doi: 10.1016/S1872-5813(20)30009-8     URL    
( 吴孝敏, 倪凯文, 宇小龙, 赵宁. 燃料化学学报, 2020, 48(2): 179.)
[70]
Vuong T H, Radnik J, Rabeah J, Bentrup U, Schneider M, Atia H, Armbruster U, Grünert W, Brückner A. ACS Catal., 2017, 7(3): 1693.

doi: 10.1021/acscatal.6b03223     URL    
[71]
Ma S Y, Gao W Q, Yang Z D, Lin R Y, Wang X W, Zhu X B, Jiang Y. J. Energy Inst., 2021, 94: 73.

doi: 10.1016/j.joei.2020.11.001     URL    
[72]
Liu S S, Wang H, Zhang R D, Wei Y. Mol. Catal., 2019, 478: 110563.
[73]
Bian X, Xiao K Y, Wang S H, Qiu B L. Chinese Journal of Rare Metals, 2020, 44(9): 974.
( 边雪, 肖坤宇, 王书豪, 邱保龙. 稀有金属, 2020, 44(9): 974.)
[74]
He J F, Xiong Z B, Du Y P, Lu W, Tian S L. J. Energy Inst., 2021, 94: 85.

doi: 10.1016/j.joei.2020.11.003     URL    
[75]
Geng X Z, Duan Y F, Hu P, Liu S, Liang C. China Environ. Sci., 2019, 39(4): 1419.
( 耿新泽, 段钰锋, 胡鹏, 柳帅, 梁财. 中国环境科学, 2019, 39(4): 1419.)
[76]
Jiang S, Li T, Zheng J K, Zhang H, Li X, Zhu T L. Environ. Sci. Technol., 2020, 54(22): 14740.

doi: 10.1021/acs.est.0c05152     pmid: 33151663
[77]
Yan Z P, Chong M B, Cheng D G, Chen F Q, Zhan X L. Prog. Chem., 2008, 20(S2): 1037).
( 颜志鹏, 崇明本, 程党国, 陈丰秋, 詹晓力. 化学进展, 2008, 20(S2): 1037.).
[78]
Han M J, Jiao Y L, Zhou C H, Guo Y L, Guo Y, Lu G Z, Wang L, Zhan W C. Rare Met., 2019, 38(3): 210.

doi: 10.1007/s12598-018-1143-6     URL    
[79]
Fan J, Ning P, Wang Y C, Song Z X, Liu X, Wang H M, Wang J, Wang L Y, Zhang Q L. Chem. Eng. J., 2019, 369: 908.

doi: 10.1016/j.cej.2019.03.049     URL    
[80]
Wang X Q, Liu Y, Wu Z B. Chem. Eng. J., 2020, 382: 122941.

doi: 10.1016/j.cej.2019.122941     URL    
[81]
Wang S Q, Li J M, Du Z H. Environmental Pollution & Control, 2021, 43(4): 475.
( 王淑勤, 李金梦, 杜志辉. 环境污染与防治, 2021, 43(4): 475.)
[82]
Tan W, Liu A N, Xie S H, Yan Y, Shaw T E, Pu Y, Guo K, Li L L, Yu S H, Gao F, Liu F D, Dong L. Environ. Sci. Technol., 2021, 55(6): 4017.

doi: 10.1021/acs.est.0c08410     URL    
[83]
Tan W, Wang J M, Li L L, Liu A N, Song G, Guo K, Luo Y D, Liu F D, Gao F, Dong L. J. Hazard. Mater., 2020, 388: 121729.

doi: 10.1016/j.jhazmat.2019.121729     URL    
[84]
Gong P J, Xie J L, He F, Li F X, Qi K. Appl. Surf. Sci., 2020, 505: 144641.

doi: 10.1016/j.apsusc.2019.144641     URL    
[85]
Li P, Chen X Y, Li Y D, Schwank J W. Catal. Today, 2019, 327: 90.

doi: 10.1016/j.cattod.2018.05.059     URL    
[86]
Liu L J, Xu K, Su S, He L M, Qing M X, Chi H Y, Liu T, Hu S, Wang Y, Xiang J. Appl. Catal. A Gen., 2020, 592: 117413.

doi: 10.1016/j.apcata.2020.117413     URL    
[87]
Xu Q, Fang Z L, Chen Y Y, Guo Y L, Guo Y, Wang L, Wang Y S, Zhang J S, Zhan W C. Environ. Sci. Technol., 2020, 54(4): 2530.

doi: 10.1021/acs.est.9b06701     URL    
[88]
Gao C, Shi J W, Fan Z Y, Wang B R, Wang Y, He C, Wang X B, Li J, Niu C M. Appl. Catal. A Gen., 2018, 564: 102.

doi: 10.1016/j.apcata.2018.07.017     URL    
[89]
Sun C Z, Liu H, Chen W, Chen D Z, Yu S H, Liu A N, Dong L, Feng S. Chem. Eng. J., 2018, 347: 27.

doi: 10.1016/j.cej.2018.04.029     URL    
[90]
Wang B, Wang M X, Han L N, Hou Y Q, Bao W R, Zhang C M, Feng G, Chang L P, Huang Z G, Wang J C. ACS Catal., 2020, 10(16): 9034.

doi: 10.1021/acscatal.0c02567     URL    
[91]
Wei Y, Fan H, Wang R. Appl Surf Sci, 2018, 459:63.

doi: 10.1016/j.apsusc.2018.07.151     URL    
[92]
Wang Y J, Shi X Y, Shan Y L, Du J P, Liu K, He H. Ind. Eng. Chem. Res., 2020, 59(14): 6416.

doi: 10.1021/acs.iecr.0c00285     URL    
[93]
Liu H, Fan Z X, Sun C Z, Yu S H, Feng S, Chen W, Chen D Z, Tang C J, Gao F, Dong L. Appl. Catal. B Environ., 2019, 244: 671.

doi: 10.1016/j.apcatb.2018.12.001     URL    
[94]
Liu H, Sun C Z, Fan Z X, Jia X X, Sun J F, Gao F, Tang C J, Dong L. Catal. Sci. Technol., 2019, 9(13): 3554.

doi: 10.1039/C9CY00731H     URL    
[95]
Wu Y X, Liang H L, Chen X, Chen C, Wang X Z, Dai Z Y, Hu L M, Chen Y F. Materials Reports, 2021, 35(6): 6020.
( 吴彦霞, 梁海龙, 陈鑫, 陈琛, 王献忠, 戴长友, 胡利明, 陈玉峰. 材料导报, 2021, 35(6): 6020.)
[96]
Zhang T J, Li J, He H, Song Q Q, Liang Q M. Front. Environ. Sci. Eng., 2017, 11(2): 1.
[97]
Shen B X, Ma J, Hu G L, Sun X, Li D Q. Journal of Fuel Chemistry and Technology, 2012, 40(11): 1372.
( 沈伯雄, 马娟, 胡国丽, 孙喜, 李冬倩. 燃料化学学报, 2012, 40(11): 1372.)
[98]
Liu T K, Wei L Q, Yao Y Y, Dong L H, Li B. Appl. Surf. Sci., 2021, 546: 148971.

doi: 10.1016/j.apsusc.2021.148971     URL    
[99]
Lao Y J, Jiang X X, Huang J, Zhang Z, Wang X Y. Rare Met., 2021, 40(3): 547.

doi: 10.1007/s12598-019-01357-5     URL    
[100]
Wang R, Gui K T, Liang H. Journal of Southeast University (Natural Science Edition), 2016, 46(6): 1234.
( 王瑞, 归柯庭, 梁辉. 东南大学学报(自然科学版), 2016, 46(6): 1234.)
[101]
Li X Z, Yin Y, Yao C, Zuo S X, Lu X W, Luo S P, Ni C Y. Particuology, 2016, 26: 66.

doi: 10.1016/j.partic.2016.01.003     URL    
[102]
Yang B, Shen Y S, Su Y, Li P W, Zeng Y W, Shen S B, Zhu S M. Catal. Commun., 2017, 94: 47.

doi: 10.1016/j.catcom.2017.02.016     URL    
[103]
Zhang L, Qu H X, Du T Y, Ma W H, Zhong Q. Chem. Eng. J., 2016, 296: 122.

doi: 10.1016/j.cej.2016.03.109     URL    
[104]
Chen Z Q, Guo L, Qu H X, Liu L, Xie H F, Zhong Q. Chem. Commun., 2020, 56(15): 2360.

doi: 10.1039/C9CC09734A     URL    
[105]
Chen Z Q, Liu L, Qu H X, Zhou B J, Xie H F, Zhong Q. J. Catal., 2020, 392: 217.

doi: 10.1016/j.jcat.2020.10.005     URL    
[106]
Jin Q J, Shen Y S, Zhu S M, Liu Q, Li X H, Yan W. J. Rare Earths, 2016, 34(11): 1111.

doi: 10.1016/S1002-0721(16)60142-4     URL    
[107]
Chao J D, He H, Song L Y, Fang Y J, Liang Q M, Zhang G Z, Qiu W G, Zhang R. Chemical Journal of Chinese Universities, 2015, 36(3): 523.
( 晁晶迪, 何洪, 宋丽云, 房玉娇, 梁全明, 张桂臻, 邱文革, 张然. 高等学校化学学报, 2015, 36(3): 523.)
[108]
Yu C L, Huang B C, Dong L F, Chen F, Yang Y, Fan Y M, Yang Y X, Liu X Q, Wang X N. Chem. Eng. J., 2017, 316: 1059.

doi: 10.1016/j.cej.2017.02.024     URL    
[109]
Wu P, Zhang Y P, Zhuang K, Shen K, Wang S, Huang T J. J. Rare Earths, 2020, 38(11): 1215.

doi: 10.1016/j.jre.2019.09.010     URL    
[110]
Huang J, Huang H, Jiang H T, Liu L C. Catal. Today, 2019, 332: 49.

doi: 10.1016/j.cattod.2018.07.031    
[111]
Feng X, Lin Q J, Cao Y, Zhang H L, Li Y S, Xu H D, Lin C L, Chen Y Q. J. Taiwan Inst. Chem. Eng., 2017, 80: 805.

doi: 10.1016/j.jtice.2017.09.036     URL    
[112]
Sun P, Guo R T, Liu S M, Wang S X, Pan W G, Li M Y. Appl. Catal. A Gen., 2017, 531: 129.

doi: 10.1016/j.apcata.2016.10.027     URL    
[113]
Liu J, Guo R T, Li M Y, Sun P, Liu S M, Pan W G, Liu S W, Sun X. Fuel, 2018, 223: 385.

doi: 10.1016/j.fuel.2018.03.062     URL    
[114]
Fan Z Y, Shi J W, Gao C, Gao G, Wang B R, Wang Y, He C, Niu C M. Chem. Eng. J., 2018, 348: 820.

doi: 10.1016/j.cej.2018.05.038     URL    
[115]
Guan J K, Zhou L S, Li W Q, Hu D, Wen J, Huang B C. Catalysts, 2021, 11(3): 324.

doi: 10.3390/catal11030324     URL    
[116]
Gao C, Xiao B, Shi J W, He C, Wang B R, Ma D D, Cheng Y H, Niu C M. J. Catal., 2019, 380: 55.

doi: 10.1016/j.jcat.2019.10.003    
[117]
Li W, Zhang C, Li X, Tan P, Fang Q Y, Chen G, Journal of Fuel Chemistry and Technology, 2017, 45(12): 1508.
( 李伟, 张成, 李鑫, 谭鹏, 方庆艳, 陈刚. 燃料化学学报, 2017, 45(12): 1508.)
[118]
Zhuang K, Zhang Y P, Huang T J, Lu B, Shen K. Journal of Fuel Chemistry and Technology, 2017, 45(11): 1356.

doi: 10.1016/S1872-5813(17)30060-9     URL    
( 庄柯, 张亚平, 黄天娇, 陆斌, 沈凯. 燃料化学学报, 2017, 45(11): 1356.)
[119]
Zhu Y W, Zhang Y P, Xiao R, Huang T J, Shen K. Catal. Commun., 2017, 88: 64.

doi: 10.1016/j.catcom.2016.09.031     URL    
[120]
Huang T J, Zhang Y P, Zhuang K, Lu B, Zhu Y W, Shen K. Journal of Fuel Chemistry and Technology, 2018, 46(3): 319.

doi: 10.1016/S1872-5813(18)30015-X     URL    
( 黄天娇, 张亚平, 庄柯, 陆斌, 朱一闻, 沈凯. 燃料化学学报, 2018, 46(3): 319.)
[121]
Casanova M, Llorca J, Sagar A, Schermanz K, Trovarelli A. Catal. Today, 2015, 241: 159.

doi: 10.1016/j.cattod.2014.03.051     URL    
[122]
Kim J, Lee S, Kwon D W, Ha H P. Catal. Today, 2021, 359: 65.

doi: 10.1016/j.cattod.2019.05.030     URL    
[123]
Jin Q J, Shen Y S, Zhu S M, Li X H, Hu M. Chin. J. Catal., 2016, 37(9): 1521.

doi: 10.1016/S1872-2067(16)62450-6     URL    
[124]
Du H, Han Z T, Wu X T, Li C L, Gao Y, Yang S L, Song L G, Dong J M, Pan X X. Catalysts, 2021, 11(5): 618.

doi: 10.3390/catal11050618     URL    
[125]
Niu C H, Wang B R, Xing Y, Su W, He C, Xiao L, Xu Y R, Zhao S Q, Cheng Y H, Shi J W. J. Clean. Prod., 2021, 290: 125858.

doi: 10.1016/j.jclepro.2021.125858     URL    
[126]
Fokema M D, Ying J Y. J. Catal., 2000, 192(1): 54.

doi: 10.1006/jcat.2000.2814     URL    
[127]
Zhang S, Liu X, Zhong Q, Yao Y. Catal Commun, 2012, 25:7.

doi: 10.1016/j.catcom.2012.03.026     URL    
[128]
Damma D, Pappas D K, Boningari T, Smirniotis P G. Appl. Catal. B Environ., 2021, 287: 119939.

doi: 10.1016/j.apcatb.2021.119939     URL    
[129]
Zhang Y D, Ji M L, Zhou G H, Zhang Z Y. Harbin: 2014203.
( 张延东, 姬明林, 周广贺, 张志远. 哈尔滨: 2014203.).
[130]
Xiao G Z. Clean Coal Technol., 2019, 25(6): 146.
( 肖国振. 洁净煤技术, 2019, 25(6): 146.).
[131]
Wu D J, Zhou S H, Li J Y, Yang X B, Ge C M. CN201610418613.6. 2016-11-08.
[132]
Tang Z C, Zhang G D, Han W L. CN202010418630.6. 2020-08-13.
[133]
Zhu S M, Shen Y S. CN200810020425.3. 2008-08-05.
[134]
Zhu S M, Shen Y S. CN200810020427.2. 2008-08-05.
[135]
Zong Y H, Wang H, Chen Z P,. Huang L, Li Q, Wang X W, Sun D. CN201610725462.9. 2017-01-03.
[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[3] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[4] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[5] 张双玉, 胡韵璇, 李成, 徐新华. 微生物铁氧化还原作用对水中砷锑去除影响的研究进展[J]. 化学进展, 2022, 34(4): 870-883.
[6] 张巍, 谢康, 汤云灏, 秦川, 成珊, 马英. 过渡金属基MOF材料在选择性催化还原氮氧化物中的应用[J]. 化学进展, 2022, 34(12): 2638-2650.
[7] 白文己, 石宇冰, 母伟花, 李江平, 于嘉玮. Cs2CO3辅助钯催化X—H (X=C、O、N、B)官能团化反应的理论计算研究[J]. 化学进展, 2022, 34(10): 2283-2301.
[8] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[9] 陈祥云, 袁冰, 于凤丽, 解从霞, 于世涛. 木质素:一种有潜力的生物质基催化剂来源[J]. 化学进展, 2021, 33(2): 303-317.
[10] 徐梦婷, 王彦青, 毛亚, 李景娟, 江志东, 原鲜霞. 非水系锂空气电池催化剂[J]. 化学进展, 2021, 33(10): 1679-1692.
[11] 徐昌藩, 房鑫, 湛菁, 陈佳希, 梁风. 金属-二氧化碳电池的发展:机理及关键材料[J]. 化学进展, 2020, 32(6): 836-850.
[12] 王晓晗, 刘彩霞, 宋春风, 马德刚, 李振国, 刘庆岭. 金属有机骨架材料在氨低温催化还原氮氧化物反应中的应用[J]. 化学进展, 2020, 32(12): 1917-1929.
[13] 牟泽怀, 王银军, 谢鸿雁. 稀土金属配合物催化芳香型乙烯基极性单体立构选择性聚合[J]. 化学进展, 2020, 32(12): 1885-1894.
[14] 刘玥, 吴忆涵, 庞宏伟, 王祥学, 于淑君, 王祥科. 石墨相氮化碳材料在水环境污染物去除中的研究[J]. 化学进展, 2019, 31(6): 831-846.
[15] 程倩, 于佳酩, 霍薪竹, 沈雨萌, 刘守新. 稀土氟化物上转换荧光增强及应用[J]. 化学进展, 2019, 31(12): 1681-1695.
阅读次数
全文


摘要

稀土元素在脱硝催化剂中的应用