English
新闻公告
More
化学进展 2022, Vol. 34 Issue (4): 870-883 DOI: 10.7536/PC210435 前一篇   后一篇

• 综述 •

微生物铁氧化还原作用对水中砷锑去除影响的研究进展

张双玉, 胡韵璇, 李成, 徐新华*()   

  1. 浙江大学环境与资源学院 环境工程系 杭州 310058
  • 收稿日期:2021-04-22 修回日期:2021-06-28 出版日期:2022-04-24 发布日期:2021-07-29
  • 通讯作者: 徐新华
  • 基金资助:
    国家自然科学基金项目(21976153)

Effect of Microbial Iron Redox on Aqueous Arsenic and Antimony Removal

Shuangyu Zhang, Yunxuan Hu, Cheng Li, Xinhua Xu()   

  1. Department of Environment Engineering,College of Environmental and Resource Sciences, Zhejiang University,Hangzhou 310058,China
  • Received:2021-04-22 Revised:2021-06-28 Online:2022-04-24 Published:2021-07-29
  • Contact: Xinhua Xu
  • Supported by:
    National Natural Science Foundation of China(21976153)

砷锑污染在全球领域广泛存在,与常规的铁氧化物相比,微生物铁氧化生成的含Fe(Ⅲ)矿物对水中砷/锑(As/Sb)具有更强的吸附能力,并因其高效、实用和环境友好而具有广阔的应用前景,但微生物铁还原也可能导致被吸附的As/Sb再次释放。本文综述了微生物铁氧化还原作用对As/Sb去除影响的研究进展,归纳了铁矿物“合成-溶解-转化”的微生物循环过程以及该循环伴随的水中As/Sb固定、溶解与转化机理,整合了微生物合成Fe(Ⅲ)矿物的矿物学性质、对As/Sb固定的热动力学规律和络合机制,总结了微生物合成Fe(Ⅲ)矿物对As/Sb去除的影响因素,基于该研究的现存问题展望了利用微生物铁氧化还原作用去除As/Sb的发展方向。

Arsenic and antimony pollution is widespread around the world. Compared with the conventional iron oxide, Fe(Ⅲ) minerals formed by microbial oxidation have a stronger adsorption capacity for aqueous As/Sb. There are wide application prospects of these minerals because of the advantages of high removal efficiency, practicability and environmental friendliness. However, the microbial reduction of the Fe(Ⅲ) minerals may lead to the release of adsorbed As/Sb. This paper reviewed the process of effect of microbial participated iron redox process on As/Sb removal. The microbial cycle of “synthesis, dissolution and transformation” of iron minerals and the mechanism of immobilization, dissolution and transformation of aqueous As/Sb associated with this cycle are concluded. The mineralogy of Fe(Ⅲ) minerals synthesized by microorganisms is illustrated. The thermal dynamics and coordination mechanism of the binding of Fe(Ⅲ) minerals with As/Sb are explained. The factors affecting As/Sb removal by microbial synthesized Fe(Ⅲ) minerals are summarized. Based on the existing problems in this field, the outlook of As/Sb removal by microbial iron redox has prospected.

Contents

1 Introduction

2 Immobilization of As/Sb with synthesis of Fe(Ⅲ) minerals by microorganisms

2.1 Synthesis of Fe(Ⅲ) minerals

2.2 As/Sb immobilization and valence state transformation

3 Release and secondary immobilization of As/Sb with transformation of Fe(Ⅲ) minerals by microorganisms

3.1 Reduction of Fe(Ⅲ) minerals

3.2 As/Sb release and secondary immobilization

3.3 As/Sb valence state transformation

4 Mechanism of As/Sb immobilization by microbial synthesized Fe(Ⅲ) minerals

4.1 Mineralogy of microbial synthesis of Fe(Ⅲ) minerals

4.2 Adsorption thermodynamics of As/Sb by Fe(Ⅲ) minerals

4.3 Complexation mechanism of As/Sb with Fe(Ⅲ) minerals

5 Influencing factors of As/Sb immobilization by microbial synthesized Fe(Ⅲ) minerals

5.1 Species of As/Sb and iron minerals

5.2 Coexisting anions

5.3 Organic matter

5.4 pH

6 Conclusion and outlook

()
图1 Acidovorax菌株BoFeN1氧化Fe(Ⅱ)合成不同种类的Fe(Ⅲ)矿物(橙色、蓝色、棕色矿物是不同结晶度的Fe(Ⅲ)(氢)氧化物)[24]
Fig. 1 Formation of different biogenic Fe(Ⅲ) minerals during Fe(Ⅱ) oxidation by the nitrate-reducing Acidovorax strain BoFeN1 (The orange, blue and brown minerals are ferric (oxyhydr)oxides of different crystallinity)[24]. Copyright 2011, Mineralogical Society of America
表1 微生物参与Fe氧化还原去除砷锑
Table 1 Microorganisms participation in Fe redox to remove arsenic and antimony
Microbes Fe concentration Iron products Target Removal performance ref
Fe(Ⅱ)-oxidizing
denitrifying bacteria BoFeN1
3.5 mM Fe(Ⅱ) Superparamagnetic goethite, ferrihydirte and Lepidocrocite 20 μM As(Ⅲ)、As(Ⅴ) 98.9% As(Ⅴ) removal efficiency
and 97.1% As(Ⅲ) removal
efficiency
29
KS - 98.9% removal efficiency As(Ⅴ)
and 99.6% As(Ⅲ) removal
efficiency
SW2 ND* 98.4% removal efficiency As(Ⅴ)
and 99.6% As(Ⅲ)
removal efficiency
As(Ⅲ)-oxidizing
denitrifying bacteria
20 mg/L Fe(Ⅱ) Hematite and amorphous Fe(Ⅲ) (hydr)oxides 0.5 mg/L
As(Ⅲ)
97.2(±3.3)% As removal efficiency 38
Fe(Ⅱ)-oxidizing
denitrifying bacteria
9.0 mM Fe(Ⅱ) Fe(Ⅲ) (hydr)oxides 100 and 500 μM As(Ⅲ) > 96% As removal efficiency 36
Fe(Ⅲ)-reducing
bacteria MR-1
6~8 mM As-bearing
Fe(Ⅲ) minerals
Secondary Fe(Ⅱ) and
Fe(Ⅱ)/Fe(Ⅲ)
minerals
As(Ⅲ) and
As(Ⅴ) in
Fe(Ⅲ) minerals
Aqueous As(Ⅲ) and As(Ⅴ)
concentrations increased and decresed
respectively
40
Fe(Ⅲ)-reducing
bacteria MR-1
5~7 mM As(Ⅴ)-
bearing Fe(Ⅲ)
(Oxyhydr)oxides
Vivianite and siderite As(Ⅴ) in
Fe(Ⅲ)
(oxyhydr)oxides
As(Ⅴ) oxided to As(Ⅲ) and
absorbed to Fe(Ⅱ)/Fe(Ⅲ) minerals
50
Bacteria from military shooting range soils 29 500 mg/kg Fe 71% Sb(Ⅲ)-goethite
and 10% Sb(Ⅴ)-
goethite
20 mg/kg Sb in soils Sb(Ⅲ) concentrations correlated with Fe(Ⅱ) concentrations 46
Fe(Ⅲ)-reducing
bacteria CN32
20 g/L Sb(Ⅴ)-
bearing ferrihydrite
FeOOH polymorphs,
feroxyhyte and goethite
456 ± 52 μmol/g Sb(Ⅴ) Aqueous Sb(Ⅴ)
concentrations
decreased
53
图2 微生物铁循环
Fig. 2 Microbial iron cycle
图3 微生物参与Fe(Ⅲ)还原过程As(Ⅴ)的转化
Fig. 3 Microorganisms participation in the transformation of As(Ⅴ) in Fe(Ⅲ) reduction process
图4 聚苯胺空心微球/Fe3O4纳米材料吸附水溶液As机理[81]
Fig. 4 Aqueous As adsorption mechanism by hollow polyaniline microsphere/Fe3O4 nanocomposite[81]
图5 铁(氢)氧化物-Sb(Ⅴ)共边(上)和共角(下)配位结构模型(O原子为红色)[55]
Fig. 5 Structure model of Fe (hydro) oxide-Sb(Ⅴ) edge sharing (above) and corner sharing (below) coordinations (O atoms are shown in red)[55]. Copyright 2020, American Chemical Society
表2 砷锑与铁矿物配位机制
Table 2 Coordination mechanism between arsenic/antimony and iron minerals
表3 共存阴离子对铁矿物砷锑去除影响a)
Table 3 Effect of coexisting anions on arsenic and antimony removal by iron mineralsa)
表4 pH对铁矿物砷锑去除的影响
Table 4 Effect of pH on arsenic and antimony removal by iron minerals
[1]
Mandal B K, Suzuki K T. Talanta, 2002, 58(1): 201.

pmid: 18968746
[2]
Sundar S, Chakravarty J. Int. J. Environ. Res. Public Heal., 2010, 7(12): 4267.
[3]
Thomas D J. Environ. Geochem. Heal., 1994, 16(3/4): 107.
[4]
Ungureanu G, Santos S, Boaventura R, Botelho C. J. Environ. Manag., 2015, 151: 326.

doi: 10.1016/j.jenvman.2014.12.051     URL    
[5]
Mitsunobu S, Harada T, Takahashi Y. Environ. Sci. Technol., 2006, 40(23): 7270.

pmid: 17180977
[6]
Filella M, Belzile N, Chen Y W. Earth Sci. Rev., 2002, 59(1/4): 265.

doi: 10.1016/S0012-8252(02)00089-2     URL    
[7]
Zeng J Q, Qi P F, Shi J J, Pichler T, Wang F W, Wang Y, Sui K Y. Chem. Eng. J., 2020, 382: 122999.

doi: 10.1016/j.cej.2019.122999     URL    
[8]
Han Y S, Park J H. J. Hazard. Mater., 2020, 392: 122112.

doi: 10.1016/j.jhazmat.2020.122112     URL    
[9]
Filella M, Belzile N, Chen Y W. Earth Sci. Rev., 2002, 57(1/2): 125.

doi: 10.1016/S0012-8252(01)00070-8     URL    
[10]
Fang L L, Min X Y, Kang R F, Yu H Y, Pavlostathis S G, Luo X B. Sci. Total. Environ., 2018, 639: 110.

doi: 10.1016/j.scitotenv.2018.05.103     URL    
[11]
Wang S S, Gao B, Zimmerman A R, Li Y C, Ma L N, Harris W G, Migliaccio K W. Bioresour. Technol., 2015, 175: 391.

doi: 10.1016/j.biortech.2014.10.104     URL    
[12]
Long X J, Wang X, Guo X J, He M C. J. Environ. Sci., 2020, 90: 189.

doi: 10.1016/j.jes.2019.12.008     URL    
[13]
Zhang F, Wang X, Xionghui J, Ma L J. Environ. Pollut., 2016, 216: 575.

doi: S0269-7491(16)30501-2     pmid: 27376988
[14]
Qi P F, Luo R, Pichler T, Zeng J Q, Wang Y, Fan Y H, Sui K Y. J. Hazard. Mater., 2019, 378: 120721.

doi: 10.1016/j.jhazmat.2019.05.114     URL    
[15]
Chmielewská E, Tylus W, Drábik M, Majzlan J, Kravčak J, Williams C, Čaplovičová M, Čaplovič L. Microporous Mesoporous Mater., 2017, 248: 222.

doi: 10.1016/j.micromeso.2017.04.022     URL    
[16]
Ye C J, Ariya P A, Fu F L, Yu G D, Tang B. J. Hazard. Mater., 2021, 408: 124423.

doi: 10.1016/j.jhazmat.2020.124423     URL    
[17]
Fan P, Sun Y K, Qiao J L, Lo I M C, Guan X H. J. Hazard. Mater., 2018, 343: 266.

doi: 10.1016/j.jhazmat.2017.09.041     URL    
[18]
Wang Y H, Morin G, Ona-Nguema G, Menguy N, Juillot F, Aubry E, Guyot F, Calas G, Brown G E Jr. Geochim. Cosmochim. Acta, 2008, 72(11): 2573.

doi: 10.1016/j.gca.2008.03.011     URL    
[19]
Tufano K J, Fendorf S. Environ. Sci. Technol., 2008, 42(13): 4777.

doi: 10.1021/es702625e     URL    
[20]
Marcus M A, Manceau A, Kersten M. Geochim. Cosmochim. Acta, 2004, 68(14): 3125.

doi: 10.1016/j.gca.2004.01.015     URL    
[21]
Zhang J S, Stanforth R, Pehkonen S O. J. Colloid Interface Sci., 2008, 317(1): 35.

doi: 10.1016/j.jcis.2007.09.024     URL    
[22]
Yusof M S M, Othman M H D, Wahab R A, Jumbri K, Razak F I A, Kurniawan T A, Abu Samah R, Mustafa A, Rahman M A, Jaafar J, Ismail A F. J. Hazard. Mater., 2020, 383: 121214.

doi: 10.1016/j.jhazmat.2019.121214     URL    
[23]
Kappler A, Bryce C, Mansor M, Lueder U, Byrne J M, Swanner E D. Nat. Rev. Microbiol., 2021, 19(6): 360.

doi: 10.1038/s41579-020-00502-7     URL    
[24]
Konhauser K O, Kappler A, Roden E E. Elements, 2011, 7(2): 89.

doi: 10.2113/gselements.7.2.89     URL    
[25]
Lovley D R, Phillips E J P, Lonergan D J. Appl. Environ. Microbiol., 1989, 55(3): 700.

doi: 10.1128/aem.55.3.700-706.1989     URL    
[26]
Jiao Y Q, Kappler A, Croal L R, Newman D K. Appl. Environ. Microbiol., 2005, 71(8): 4487.

doi: 10.1128/AEM.71.8.4487-4496.2005     URL    
[27]
Rentz J A, Kraiya C, Luther G W, Emerson D. Environ. Sci. Technol., 2007, 41(17): 6084.

doi: 10.1021/es062203e     URL    
[28]
Maisch M, Lueder U, Laufer K, Scholze C, Kappler A, Schmidt C. Environ. Sci. Technol., 2019, 53(14): 8197.

doi: 10.1021/acs.est.9b01531     URL    
[29]
Hohmann C, Winkler E, Morin G, Kappler A. Environ. Sci. Technol., 2010, 44(1): 94.

doi: 10.1021/es900708s     URL    
[30]
Li J, Zhang Y, Zheng S, Liu F, Wang G. Front. Microbiol., 2019, 10: 360.

doi: 10.3389/fmicb.2019.00360     URL    
[31]
Silver S, Phung L T. Appl. Environ. Microbiol., 2005, 71(2): 599.

doi: 10.1128/AEM.71.2.599-608.2005     URL    
[32]
Inskeep W P, Macur R E, Hamamura N, Warelow T P, Ward S A, Santini J M. Environ. Microbiol., 2007, 9(4): 934.

doi: 10.1111/j.1462-2920.2006.01215.x     URL    
[33]
Meng Y L, Liu Z J, Rosen B P. J. Biol. Chem., 2004, 279(18): 18334.

doi: 10.1074/jbc.M400037200     URL    
[34]
Lehr C R, Kashyap D R, McDermott T R. Appl. Environ. Microbiol., 2007, 73(7): 2386.

doi: 10.1128/AEM.02789-06     URL    
[35]
Sun W M, Xiao E Z, Xiao T F, Krumins V, Wang Q, Häggblom M, Dong Y R, Tang S, Hu M, Li B Q, Xia B Q, Liu W. Environ. Sci. Technol., 2017, 51(16): 9165.

doi: 10.1021/acs.est.7b00294     URL    
[36]
Wang Z, Wang X, Chen X, Zhu Y. Acta Sci. Circum., 2011, 31(02): 328.
(王兆苏, 王新军, 陈学萍, 朱永官. 环境科学学报, 2011, 31(02): 328.).
[37]
Li J X, Wang Q, Oremland R S, Kulp T R, Rensing C, Wang G J. Appl. Environ. Microbiol., 2016, 82(18): 5482.

doi: 10.1128/AEM.01375-16     URL    
[38]
Sun W J, Sierra-Alvarez R, Milner L, Oremland R, Field J A. Environ. Sci. Technol., 2009, 43(17): 6585.

doi: 10.1021/es900978h     URL    
[39]
Guo W J, Fu Z Y, Wang H, Liu S S, Wu F C, Giesy J P. Sci. Total. Environ., 2018, 644: 1277.

doi: 10.1016/j.scitotenv.2018.07.034     URL    
[40]
Muehe E M, Scheer L, Daus B, Kappler A. Environ. Sci. Technol., 2013, 47(15):8297.
[41]
Lovley D R. FEMS Microbiol. Rev., 1997, 20(3/4): 305.

doi: 10.1111/j.1574-6968.1983.tb00137.x     URL    
[42]
Bretschger O, Obraztsova A, Sturm C A, Chang I S, Gorby Y A, Reed S B, Culley D E, Reardon C L, Barua S, Romine M F, Zhou J Z, Beliaev A S, Bouhenni R, Saffarini D, Mansfeld F, Kim B H, Fredrickson J K, Nealson K H. Appl. Environ. Microbiol., 2007, 73(21): 7003.

doi: 10.1128/AEM.01087-07     URL    
[43]
Kappler A. Rev. Mineral. Geochem., 2005, 59(1): 85.

doi: 10.2138/rmg.2005.59.5     URL    
[44]
Weber K A, Achenbach L A, Coates J D. Nat. Rev. Microbiol., 2006, 4(10): 752.

doi: 10.1038/nrmicro1490     URL    
[45]
Melton E D, Swanner E D, Behrens S, Schmidt C, Kappler A. Nat. Rev. Microbiol., 2014, 12(12): 797.

doi: 10.1038/nrmicro3347     pmid: 25329406
[46]
Hockmann K, Lenz M, Tandy S, Nachtegaal M, Janousch M, Schulin R. J. Hazard. Mater., 2014, 275: 215.

doi: 10.1016/j.jhazmat.2014.04.065     pmid: 24862348
[47]
Posth N R, Huelin S, Konhauser K O, Kappler A. Geochim. Cosmochim. Acta, 2010, 74(12): 3476.

doi: 10.1016/j.gca.2010.02.036     URL    
[48]
Cai X L, ThomasArrigo L K, Fang X, Bouchet S, Cui Y S, Kretzschmar R. Environ. Sci. Technol., 2021, 55(2): 1319.

doi: 10.1021/acs.est.0c05329     URL    
[49]
Dippon U, Schmidt C, Behrens S, Kappler A. Geomicrobiol. J., 2015, 32(10): 878.

doi: 10.1080/01490451.2015.1017623     URL    
[50]
Muehe E M, Morin G, Scheer L, Pape P L, Esteve I, Daus B, Kappler A. Environ. Sci. Technol., 2016, 50(5): 2281.

doi: 10.1021/acs.est.5b04625     URL    
[51]
Islam F S, Pederick R L, Gault A G, Adams L K, Polya D A, Charnock J M, Lloyd J R. Appl. Environ. Microbiol., 2005, 71(12): 8642.

doi: 10.1128/AEM.71.12.8642-8648.2005     URL    
[52]
Fang J H, Xie Z M, Wang J, Liu D W, Zhong Z Q. Ecotoxicol. Environ. Saf., 2021, 208: 111478.

doi: 10.1016/j.ecoenv.2020.111478     URL    
[53]
Burton E D, Hockmann K, Karimian N, Johnston S G. Geochim. Cosmochim. Acta, 2019, 245: 278.

doi: 10.1016/j.gca.2018.11.005     URL    
[54]
Mitsunobu S, Takahashi Y, Terada Y, Sakata M. Environ. Sci. Technol., 2010, 44(10): 3712.

doi: 10.1021/es903901e     pmid: 20426473
[55]
Burton E D, Hockmann K, Karimian N. ACS Earth Space Chem., 2020, 4(3): 476.

doi: 10.1021/acsearthspacechem.0c00013     URL    
[56]
Mitsunobu S, Muramatsu C, Watanabe K, Sakata M. Environ. Sci. Technol., 2013, 47(17): 9660.

doi: 10.1021/es4010398     pmid: 23909642
[57]
Lin J Y, Hu S W, Liu T X, Li F B, Peng L F, Lin Z, Dang Z, Liu C X, Shi Z Q. Environ. Sci. Technol., 2019, 53(15): 8892.

doi: 10.1021/acs.est.9b00109     URL    
[58]
Oremland R S, Stolz J F. Science, 2003, 300(5621): 939.

pmid: 12738852
[59]
Omoregie E O, Couture R M, van Cappellen P, Corkhill C L, Charnock J M, Polya D A, Vaughan D, Vanbroekhoven K, Lloyd J R. Appl. Environ. Microbiol., 2013, 79(14): 4325.

doi: 10.1128/AEM.00683-13     URL    
[60]
Qiao J T, Li X M, Li F B. J. Hazard. Mater., 2018, 344: 958.

doi: 10.1016/j.jhazmat.2017.11.025     URL    
[61]
Takahashi Y, Minamikawa R, Hattori K H, Kurishima K, Kihou N, Yuita K. Environ. Sci. Technol., 2004, 38(4): 1038.

pmid: 14998016
[62]
Zobrist J, Dowdle P R, Davis J A, Oremland R S. Environ. Sci. Technol., 2000, 34(22): 4747.

doi: 10.1021/es001068h     URL    
[63]
Abin C A, Hollibaugh J T. Environ. Sci. Technol., 2014, 48(1): 681.

doi: 10.1021/es404098z     URL    
[64]
Kulp T R, Miller L G, Braiotta F, Webb S M, Kocar B D, Blum J S, Oremland R S. Environ. Sci. Technol., 2014, 48(1): 218.

doi: 10.1021/es403312j     URL    
[65]
Lafferty B J, Loeppert R H. Environ. Sci. Technol., 2005, 39(7): 2120.

pmid: 15871246
[66]
Kolbe F, Weiss H, Morgenstern P, Wennrich R, Lorenz W, Schurk K, Stanjek H, Daus B. J. Colloid Interface Sci., 2011, 357(2): 460.

doi: 10.1016/j.jcis.2011.01.095     URL    
[67]
Sowers T D, Harrington J M, Polizzotto M L, Duckworth O W. Geochim. Cosmochim. Acta, 2017, 198: 194.

doi: 10.1016/j.gca.2016.10.049     URL    
[68]
Kappler A, Schink B, Newman D K. Geobiology, 2005, 3(4): 235.

doi: 10.1111/j.1472-4669.2006.00056.x     URL    
[69]
Wu Z J, Jia N, Yuan L X, Sun L G. Chin. Sci. Bull., 2008, 53(6): 703.

doi: 10.1360/csb2008-53-6-703     URL    
(吴自军, 贾楠, 袁林喜, 孙立广. 科学通报, 2008, 53(6): 703.).
[70]
Waychunas G A, Rea B A, Fuller C C, Davis J A. Geochim. Cosmochim. Acta, 1993, 57(10): 2251.

doi: 10.1016/0016-7037(93)90567-G     URL    
[71]
Hohmann C, Morin G, Ona-Nguema G, Guigner J M, Brown G E Jr, Kappler A Jr. Geochim. Cosmochim. Acta, 2011, 75(17): 4699.

doi: 10.1016/j.gca.2011.02.044     URL    
[72]
Notini L, Latta D E, Neumann A, Pearce C I, Sassi M, N’Diaye A T, Rosso K M, Scherer M M. ACS Earth Space Chem., 2019, 3(12): 2717.

doi: 10.1021/acsearthspacechem.9b00224    
[73]
Hao L L, Liu M Z, Wang N N, Li G J. RSC Adv., 2018, 8(69): 39545.

doi: 10.1039/C8RA08512A     URL    
[74]
Zeng H P, Yin C, Qiao T D, Yu Y P, Zhang J, Li D. ACS Sustainable Chem. Eng., 2018, 6(11): 14734.

doi: 10.1021/acssuschemeng.8b03270     URL    
[75]
Guo X J, Wu Z J, He M C, Meng X G, Jin X, Qiu N, Zhang J. J. Hazard. Mater., 2014, 276: 339.

doi: 10.1016/j.jhazmat.2014.05.025     URL    
[76]
Guo H M, Ren Y, Liu Q, Zhao K, Li Y. Environ. Sci. Technol., 2013, 47(2): 1009.

doi: 10.1021/es303503m     URL    
[77]
Liu C H, Chuang Y H, Chen T Y, Tian Y, Li H, Wang M K, Zhang W. Environ. Sci. Technol., 2015, 49(13): 7726.

doi: 10.1021/acs.est.5b00381     URL    
[78]
D’Arcy M, Weiss D, Bluck M, Vilar R. J. Colloid Interface Sci., 2011, 364(1): 205.

doi: 10.1016/j.jcis.2011.08.023     URL    
[79]
Manning B A, Fendorf S E, Goldberg S. Environ. Sci. Technol., 1998, 32(16): 2383.

doi: 10.1021/es9802201     URL    
[80]
Ona-Nguema G, Morin G, Juillot F, Calas G, Brown G E. Environ. Sci. Technol., 2005, 39(23): 9147.

pmid: 16382936
[81]
Dutta S, Manna K, Srivastava S K, Gupta A K, Yadav M K. Sci. Rep., 2020, 10(1): 4982.

doi: 10.1038/s41598-020-61763-z     URL    
[82]
Fendorf S, Eick M J, Grossl P, Sparks D L. Environ. Sci. Technol., 1997, 31(2): 315.

doi: 10.1021/es950653t     URL    
[83]
Venema P, Hiemstra T, Weidler P G, van Riemsdijk W H. J. Colloid Interface Sci., 1998, 198(2): 282.

doi: 10.1006/jcis.1997.5245     URL    
[84]
Zhao Z W, Meng Y, Yuan Q K, Wang Y H, Lin L M, Liu W B, Luan F B. Sci. Total. Environ., 2021, 763: 144613.

doi: 10.1016/j.scitotenv.2020.144613     URL    
[85]
Wang Y H, Morin G, Ona-Nguema G, Juillot F, Calas G, Brown G E Jr. Environ. Sci. Technol., 2011, 45(17): 7258.

doi: 10.1021/es200299f     URL    
[86]
Wang Y H, Morin G, Ona-Nguema G, Brown G E Jr. Environ. Sci. Technol., 2014, 48(24): 14282.

doi: 10.1021/es5033629     URL    
[87]
Catalano J G, Park C, Fenter P, Zhang Z. Geochim. Cosmochim. Acta, 2008, 72(8): 1986.

doi: 10.1016/j.gca.2008.02.013     URL    
[88]
Scheinost A C, Rossberg A, Vantelon D, Xifra I, Kretzschmar R, Leuz A K, Funke H, Johnson C A. Geochim. Cosmochim. Acta, 2006, 70(13): 3299.

doi: 10.1016/j.gca.2006.03.020     URL    
[89]
Qin H B, Uesugi S, Yang S T, Tanaka M, Kashiwabara T, Itai T, Usui A, Takahashi Y. Geochim. Cosmochim. Acta, 2019, 257: 110.

doi: 10.1016/j.gca.2019.04.018     URL    
[90]
Leuz A K, Mönch H, Johnson C A. Environ. Sci. Technol., 2006, 40(23): 7277.

doi: 10.1021/es061284b     URL    
[91]
Park S, Lee J H, Shin T J, Hur H G, Kim M G. Environ. Sci. Technol., 2018, 52(17): 9983.

doi: 10.1021/acs.est.8b02101     URL    
[92]
van Genuchten C M, Peña J. Chem. Geol., 2016, 429: 1.

doi: 10.1016/j.chemgeo.2016.03.001     URL    
[93]
Larsen O, Postma D. Geochim. Cosmochim. Acta, 2001, 65(9): 1367.

doi: 10.1016/S0016-7037(00)00623-2     URL    
[94]
Pedersen H D, Postma D, Jakobsen R. Geochim. Cosmochim. Acta, 2006, 70(16): 4116.

doi: 10.1016/j.gca.2006.06.1370     URL    
[95]
Park J H, Han Y S, Ahn J S. Water Res., 2016, 106: 295.

doi: S0043-1354(16)30742-4     pmid: 27728822
[96]
Yang K L, Zhou J S, Lou Z M, Zhou X R, Liu Y L, Li Y Z, Ali Baig S, Xu X H. Chem. Eng. J., 2018, 354: 577.

doi: 10.1016/j.cej.2018.08.069     URL    
[97]
Rhine E D, Phelps C D, Young L Y. Environ. Microbiol., 2006, 8(5): 899.

doi: 10.1111/j.1462-2920.2005.00977.x     URL    
[98]
Zhang X F, Liu T X, Li F B, Li X M, Du Y H, Yu H Y, Wang X Q, Liu C P, Feng M, Liao B. J. Environ. Sci., 2021, 100: 90.

doi: 10.1016/j.jes.2020.07.009     URL    
[99]
O’Loughlin E J, Gorski C A, Scherer M M, Boyanov M I, Kemner K M. Environ. Sci. Technol., 2010, 44(12): 4570.

doi: 10.1021/es100294w     URL    
[100]
Deng Y X, Weng L P, Li Y T, Chen Y L, Ma J. Environ. Pollut., 2020, 264: 114783.

doi: 10.1016/j.envpol.2020.114783     URL    
[101]
Borch T, Masue Y, Kukkadapu R K, Fendorf S. Environ. Sci. Technol., 2007, 41(1): 166.

doi: 10.1021/es060695p     URL    
[102]
O’Loughlin E J, Boyanov M I, Flynn T M, Gorski C A, Hofmann S M, McCormick M L, Scherer M M, Kemner K M. Environ. Sci. Technol., 2013, 47(16): 9157.

doi: 10.1021/es400627j     URL    
[103]
Dixit S, Hering J G. Environ. Sci. Technol., 2003, 37(18): 4182.

doi: 10.1021/es030309t     URL    
[104]
Stachowicz M, Hiemstra T, van Riemsdijk W H. J. Colloid Interface Sci., 2008, 320(2): 400.

doi: 10.1016/j.jcis.2008.01.007     URL    
[105]
Nakamaru Y, Tagami K, Uchida S. Environ. Pollut., 2006, 141(2): 321.

pmid: 16246477
[106]
Xi J H, He M C, Wang K P, Zhang G Z. J. Geochem. Explor., 2013, 132: 201.

doi: 10.1016/j.gexplo.2013.07.004     URL    
[107]
Hiemstra T. Geochim. Cosmochim. Acta, 2018, 238: 453.

doi: 10.1016/j.gca.2018.07.017     URL    
[108]
Christl I, Brechbühl Y, Graf M, Kretzschmar R. Environ. Sci. Technol., 2012, 46(24): 13235.

doi: 10.1021/es303297m     pmid: 23163533
[109]
Stachowicz M, Hiemstra T, van Riemsdijk W H. Environ. Sci. Technol., 2007, 41(16): 5620.

pmid: 17874764
[110]
Brechbühl Y, Christl I, Elzinga E J, Kretzschmar R. J. Colloid Interface Sci., 2012, 377(1): 313.

doi: 10.1016/j.jcis.2012.03.025     URL    
[111]
Radu T, Subacz J L, Phillippi J M, Barnett M O. Environ. Sci. Technol., 2005, 39(20): 7875.

doi: 10.1021/es050481s     URL    
[112]
Wei Y F, Wei S D, Liu C B, Chen T, Tang Y H, Ma J H, Yin K, Luo S L. Water Res., 2019, 167: 115107.

doi: 10.1016/j.watres.2019.115107     URL    
[113]
Yang K L, Li C, Wang X M, Liu Y L, Li Y Z, Zhou C C, Wang Z N, Zhou J S, Cao Z, Xu X H. J. Clean. Prod., 2020, 266: 122007.

doi: 10.1016/j.jclepro.2020.122007     URL    
[114]
Fang Z Y, Li Z X, Zhang X L, Pan S Y, Wu M F, Pan B C. Water Res., 2021, 189: 116673.

doi: 10.1016/j.watres.2020.116673     URL    
[115]
Torn M S, Trumbore S E, Chadwick O A, Vitousek P M, Hendricks D M. Nature, 1997, 389(6647): 170.

doi: 10.1038/38260     URL    
[116]
Han X H, Tomaszewski E J, Sorwat J, Pan Y X, Kappler A, Byrne J M. Environ. Sci. Technol., 2020, 54(7): 4121.

doi: 10.1021/acs.est.9b07095     URL    
[117]
Mohapatra M, Sahoo S K, Anand S, Das R P. J. Colloid Interface Sci., 2006, 298(1): 6.

doi: 10.1016/j.jcis.2005.11.052     URL    
[118]
Wainipee W, Weiss D J, Sephton M A, Coles B J, Unsworth C, Court R. Water Res., 2010, 44(19): 5673.

doi: 10.1016/j.watres.2010.05.056     URL    
[119]
Husson O. Plant Soil, 2013, 362(1/2): 389.

doi: 10.1007/s11104-012-1429-7     URL    
[1] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
[2] 陈祥云, 袁冰, 于凤丽, 解从霞, 于世涛. 木质素:一种有潜力的生物质基催化剂来源[J]. 化学进展, 2021, 33(2): 303-317.
[3] 徐梦婷, 王彦青, 毛亚, 李景娟, 江志东, 原鲜霞. 非水系锂空气电池催化剂[J]. 化学进展, 2021, 33(10): 1679-1692.
[4] 张瑞, 吴云, 王鲁天, 吴强, 张宏伟. 微生物燃料电池阴极脱氮[J]. 化学进展, 2020, 32(12): 2013-2021.
[5] 柯少勇, 吴兆圆, 万中义, 方伟, 张亚妮, 王开梅. 具有农药活性的微生物源核苷类化合物[J]. 化学进展, 2019, 31(7): 954-968.
[6] 白睿, 田晓春, 王淑华, 严伟富, 冮海银, 肖勇. 贵金属纳米颗粒的微生物合成[J]. 化学进展, 2019, 31(6): 872-881.
[7] 苏红, 韩业君. 亲电微生物及其催化的CO2固定和合成[J]. 化学进展, 2019, 31(2/3): 433-441.
[8] 田晓春, 吴雪娥, 赵峰, 姜艳霞, 孙世刚. 电化学联用技术研究微生物的胞外电子传递机制[J]. 化学进展, 2018, 30(8): 1222-1227.
[9] 王艳龙, 林道辉*. 纳米零价铁与土壤组分的相互作用及其环境效应[J]. 化学进展, 2017, 29(9): 1072-1081.
[10] 杨世迎, 任腾飞, 张艺萱, 郑迪, 辛佳. 水环境中ZVI/氧化剂体系及其电子迁移作用机制[J]. 化学进展, 2017, 29(4): 388-399.
[11] 刘明学, 董发勤, 聂小琴, 丁聪聪, 何辉超, 杨刚. 光电子协同微生物介导的重金属离子还原与电子转移机理[J]. 化学进展, 2017, 29(12): 1537-1550.
[12] 刘彩锋, 刘中云, 胡云霞. 抗菌分离膜的构建策略及其发展方向[J]. 化学进展, 2017, 29(11): 1395-1406.
[13] 孙佳, 王普, 章鹏鹏, 黄金. 甘油在微生物代谢合成及生物催化中的应用[J]. 化学进展, 2016, 28(9): 1426-1434.
[14] 杨世迎, 郑迪, 常书雅, 石超. 基于零价铝的氧化/还原技术在水处理中的应用[J]. 化学进展, 2016, 28(5): 754-762.
[15] 万晓梅, 张川, 余定华, 黄和, 胡燚. 碳纳米管固定化酶[J]. 化学进展, 2015, 27(9): 1251-1259.