English
新闻公告
More
化学进展 2021, Vol. 33 Issue (10): 1731-1740 DOI: 10.7536/PC200904 前一篇   后一篇

• 综述 •

铅卤钙钛矿-聚合物复合材料的制备及应用

肖晶晶1,2, 王牧3, 张伟杰1,2, 赵秀英1,2,*(), 冯岸超1,2,*(), 张立群1,2   

  1. 1 北京化工大学北京新型高分子材料制备与加工重点实验室 北京 100029
    2 北京化工大学材料科学与工程学院 先进弹性体材料研究中心 北京 100029
    3 中石化石油工程技术研究院 北京 100101
  • 收稿日期:2020-09-03 修回日期:2020-11-17 出版日期:2021-10-20 发布日期:2020-12-22
  • 通讯作者: 赵秀英, 冯岸超

Preparation and Application of Lead Halide Perovskite-Polymer Composites

Jingjing Xiao1,2, Mu Wang3, Weijie Zhang1,2, Xiuying Zhao1,2(), Anchao Feng1,2(), Liqun Zhang1,2   

  1. 1 Beijing Key Laboratory of Preparation and Processing of New Polymer Materials, Beijing University of Chemical Technology,Beijing 100029, China
    2 School of Materials Science and Engineering, Center of Advanced Elastomer Materials, Beijing University of Chemical Technology,Beijing 100029, China
    3 Sinopec Research Institute of Petroleum Engineering,Beijing 100101, China
  • Received:2020-09-03 Revised:2020-11-17 Online:2021-10-20 Published:2020-12-22
  • Contact: Xiuying Zhao, Anchao Feng

铅卤钙钛矿纳米晶具有优异的光电性能,在太阳能电池、光电探测和生物成像等领域展现出巨大的发展潜力。然而,铅卤钙钛矿纳米晶自身稳定性差的缺陷制约了其在实际生活中的应用。将铅卤钙钛矿纳米晶嵌入到聚合物中以制备钙钛矿-聚合物复合材料是近年来发展起来的一种有效增强钙钛矿稳定性的策略,特别是致密的聚合物基质赋予钙钛矿纳米晶优异的水稳定性。本文综述了近十年钙钛矿-聚合物复合材料的制备方法及在发光器件和生物医药等领域的应用,探讨了目前仍存在的一些问题和解决方法,并对未来这一领域的发展进行了展望。

With excellent photoelectric properties, lead halide perovskite nanocrystals(NCs) show great potential in solar cells, photoelectric detection, biological imaging and other fields. However, the poor stability of lead halide perovskite NCs restricts practical applications. Within a few years, many strategies have been developed to solve the problems of poor stability of perovskite NCs, such as ion doping, surface passivation and surface cladding. Noteworthily, it is an effective strategy developed recently that enhance the stability of perovskite by embedding perovskite NCs into polymer and preparing perovskite-polymer composites. Specially, the dense polymer matrix endows the lead halide perovskite NCs with excellent water stability. This review summarizes the preparation of perovskite-polymer composites and their applications in the fields of light-emitting devices and biomedicine. At the same time, the preparation methods of perovskite-polymer composites are discussed in details, which can be classified into three types: blending, in-situ polymerization and in-situ perovskite growth/precipitation method. These methods will be a guide to overcome the limitation of perovskite NCs and impel the development of their practical application. In addition, the existing problems for encapsulating perovskite NCs into polymer matrix are highlighted, while some suggestions for further improving the performance of perovskite-polymer composites are discussed. Finally, the future development of perovskite-polymer composites is prospected.

Contents

1 Introduction

2 Preparation of lead halide perovskite-polymer composites

2.1 Blending method

2.2 In situ polymerization method

2.3 In situ perovskite growth/ precipitation method

3 Application of lead halide perovskite-polymer composites

4 Conclusion and outlooks

()
图1 铅卤钙钛矿晶体结构
Fig. 1 Crystal structures of lead halide perovskites
图2 (a)CsPbX3@SBS纤维膜制造工艺示意图;(b)红、黄、绿和蓝色复合纤维膜在紫外光激发下的光学图像;(c)多功能CsPbX3光纤的荧光显微图像[52]
Fig.2 (a) Schematic of CsPbX3@SBS fiber membranes(FMs) fabrication process.(b) Optical image of red, yellow, green, and blue composite FMs under UV-light excitation.(c) Fluorescence microscopic images of versatile CsPbX3 fibers[52]
图3 电喷雾法制备CsPbBr3@PS微球示意图[42]
Fig.3 Schematic diagram of the electrospraying method for preparing CsPbBr3@PS microspheres[42]
图4 钙钛矿-聚合物复合材料(CsPbBr3-聚合物或CH3NH3PbBr3-聚合物)的制备过程[43]
Fig. 4 Preparation process of perovskite-polymer composites(CsPbBr3-polymer or CH3NH3PbBr3-polymer)[43]
图5 钙钛矿光引发苯乙烯聚合反应机理[56]
Fig. 5 Proposed reaction mechanism of the perovskite photoactivated polymerization of styrene[56]
图6 (a)MAPbBr3-聚合物复合膜的制备;(b)MAPbBr3-聚合物复合膜的水稳定性测试;(c)MAPbBr3-聚合物复合膜的热稳定性测试[45]
Fig.6 (a) Preparation of MAPbBr3 polymer composite films.(b) Water stability tests of MAPbBr3 polymer composite films.(c) Thermal stability tests of MAPbBr3 polymer composite films.[45]
图7 (a)三元NC-GO-g-PAA杂化物的合成;(b) NC-GO-g-PAA杂化物和自组装纳米棒的TEM图像;(c) 涂有NC-GO-g-PAA纳米棒薄膜的玻片在水中浸泡或暴露于空气中0和10 d的照片[67]
Fig.7 (a) Illustration of the Synthesis of Ternary NC-GO-g-PAA Hybrid.(b)TEM images of the NC-GO-g-PAA hybrid and self-assembled nanorods.(c) Photographs of glass slides coated with NC-GO-g-PAA nanorod films after soaking in water or exposure to air for 0 and 10 days[67]
图8 (a)发光二极管器件制备图和白色发光二极管照片;(b)白色发光二极管的发射光谱;(c)尺寸为3.5 cm×5 cm的复合薄膜背光系统演示;(d)获得的白色发光二极管在CIE 1931图中的颜色坐标(黑星)和颜色三角形(白线)[58]
Fig.8 (a) Schematic diagram of the configuration of the prototype LED device and photographs of white LED;(b) Emission spectrum of the white LED;(c) A demonstration of composite films based backlight system with a size of 3.5 cm × 5 cm.(d) The color coordinate(black star) and the color triangle(white line) of obtained white LED is exhibited in CIE 1931 diagram[58]
图9 (a,b,c-1)和(-2)CsPbX3 NCs@MHSs孵育的RAW 264.7细胞的亮场和荧光图像;(a,b,c-3)是(-1)(-2)的叠加照片;(d~f)CsPbX3 NCs@MHSs(虚线)和相应的NCs胶体溶液(实线)的荧光谱图[69]
Fig.9 (a, b, c-1) and(-2) Bright-field and fluorescence images of RAW 264.7 cells incubated with CsPbX3 NCs@MHSs.(a, b, c-3) Overlaid picture of(-1) and(-2).(d~f)The PL spectra of intracellular CsPbX3[69]
[1]
Kojima A, Teshima K, Shirai Y, Miyasaka T. J. Am. Chem. Soc., 2009, 131(17): 6050.

doi: 10.1021/ja809598r     URL    
[2]
Liu M Z, Johnston M B, Snaith H J. Nature, 2013, 501(7467): 395.

doi: 10.1038/nature12509     URL    
[3]
Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J. Science, 2012, 338(6107): 643.

doi: 10.1126/science.1228604     URL    
[4]
Yantara N, Bhaumik S, Yan F, Sabba D, Dewi H A, Mathews N, Boix P P, Demir H V, Mhaisalkar S. J. Phys. Chem. Lett., 2015, 6(21): 4360.

doi: 10.1021/acs.jpclett.5b02011     URL    
[5]
Stoumpos C C, Malliakas C D, Kanatzidis M G. Inorg. Chem., 2013, 52(15): 9019.
[6]
Li X M, Wu Y, Zhang S L, Cai B, Gu Y, Song J Z, Zeng H B. Adv. Funct. Mater., 2016, 26(15): 2584.

doi: 10.1002/adfm.v26.15     URL    
[7]
Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J, Seok S I. Nature, 2015, 517(7535): 476.

doi: 10.1038/nature14133     URL    
[8]
Zhao D W, Wang C L, Song Z N, Yu Y, Chen C, Zhao X Z, Zhu K, Yan Y F. ACS Energy Lett., 2018, 3(2): 305.

doi: 10.1021/acsenergylett.7b01287     URL    
[9]
Sun C, Zhang Y, Ruan C, Yin C Y, Wang X Y, Wang Y D, Yu W W. Adv. Mater., 2016, 28(45): 10088.
[10]
Xing G C, Mathews N, Lim S S, Yantara N, Liu X F, Sabba D, Grätzel M, Mhaisalkar S, Sum T C. Nat. Mater., 2014, 13(5): 476.

doi: 10.1038/nmat3911     URL    
[11]
Chen S T, Roh K, Lee J, Chong W K, Lu Y, Mathews N, Sum T C, Nurmikko A. ACS Nano, 2016, 10(4): 3959.

doi: 10.1021/acsnano.5b08153     URL    
[12]
Zhou L, Yu K, Yang F, Zheng J, Zuo Y H, Li C B, Cheng B W, Wang Q M. Dalton Trans., 2017, 46(6): 1766.

doi: 10.1039/c6dt04758k     pmid: 28091682
[13]
Dou L T, Yang Y, You J B, Hong Z R, Chang W H, Li G, Yang Y,. Nat. Commun., 2014, 5(1): 1.
[14]
Roesch R, Faber T, von Hauff E, Brown T M, Lira-Cantu M, Hoppe H. Adv. Energy Mater., 2015, 5(20): 1501407.

doi: 10.1002/aenm.201501407     URL    
[15]
Leijtens T, Eperon G E, Noel N K, Habisreutinger S N, Petrozza A, Snaith H J. Adv. Energy Mater., 2015, 5(20): 1500963.

doi: 10.1002/aenm.201500963     URL    
[16]
Xu Y, Cao M M, Xiao C, Li H L. Journal of Liaocheng University(Nat.Sci.), 2019, 32(1): 69.
( 徐妍, 曹蒙蒙, 夏超, 李会利. 聊城大学学报(自然科学版), 2019, 32(1): 69.)
[17]
Xie Q F, Wang X Z, Li Y, Ma Y H. Journal of Shenzhen Institute of Information Technology, 2018, 16(2):56.
( 谢启飞, 王新中, 李玥, 马艳红. 深圳信息职业技术学院学报, 2018, 16(2):56.)
[18]
Nedelcu G, Protesescu L, Yakunin S, Bodnarchuk M I, Grotevent M J, Kovalenko M V. Nano Lett., 2015, 15(8): 5635.

doi: 10.1021/acs.nanolett.5b02404     URL    
[19]
Akkerman Q A, D'Innocenzo V, Accornero S, Scarpellini A, Petrozza A, Prato M, Manna L. J. Am. Chem. Soc., 2015, 137(32): 10276.

doi: 10.1021/jacs.5b05602     pmid: 26214734
[20]
Wei Y, Cheng Z Y, Lin J. Chem. Soc. Rev., 2019, 48(1): 310.

doi: 10.1039/c8cs00740c     pmid: 30465675
[21]
Fan Q H, Zu Y Q, Li L, Dai J F, Wu Z X. Acta Phys. Sin., 2020, 69(11): 118501.
( 樊钦华, 祖延清, 李璐, 代锦飞, 吴朝新. 物理学报, 2020, 69(11): 118501.)
[22]
Lou S Q, Xuan T T, Wang J. Opt. Mater.: X, 2019, 1: 100023.
[23]
Zou S H, Liu Y S, Li J H, Liu C P, Feng R, Jiang F L, Li Y X, Song J Z, Zeng H B, Hong M C, Chen X Y. J. Am. Chem. Soc., 2017, 139(33): 11443.

doi: 10.1021/jacs.7b04000     URL    
[24]
Mondal N, De A, Samanta A. ACS Energy Lett., 2019, 4(1): 32.

doi: 10.1021/acsenergylett.8b01909     URL    
[25]
Liu F, Zhang Y H, Ding C, Kobayashi S, Izuishi T, Nakazawa N, Toyoda T, Ohta T, Hayase S, Minemoto T, Yoshino K, Dai S Y, Shen Q. ACS Nano, 2017, 11(10): 10373.

doi: 10.1021/acsnano.7b05442     URL    
[26]
Li H B, Qian Y, Xing X, Zhu J F, Huang X Y, Jing Q, Zhang W H, Zhang C F, Lu Z D. J. Phys. Chem. C, 2018, 122(24): 12994.

doi: 10.1021/acs.jpcc.8b04569     URL    
[27]
Dirin D N, Benin B M, Yakunin S, Krumeich F, Raino G, Frison R, Kovalenko M V. ACS Nano, 2019, 13(10): 11642.

doi: 10.1021/acsnano.9b05481     URL    
[28]
Liu K K, Liu Q, Yang D W, Liang Y C, Sui L Z, Wei J Y, Xue G W, Zhao W B, Wu X Y, Dong L, Shan C X. Light.: Sci. Appl., 2020, 9(1): 1.

doi: 10.1038/s41377-019-0231-1     URL    
[29]
Leng M Y, Yang Y, Zeng K, Chen Z W, Tan Z F, Li S R, Li J H, Xu B, Li D B, Hautzinger M P, Fu Y P, Zhai T Y, Xu L, Niu G D, Jin S, Tang J. Adv. Funct. Mater., 2018, 28(1): 1704446.

doi: 10.1002/adfm.v28.1     URL    
[30]
Liu H Y, Tan Y S, Cao M H, Hu H C, Wu L Z, Yu X Y, Wang L, Sun B Q, Zhang Q. ACS Nano, 2019, 13(5): 5366.

doi: 10.1021/acsnano.9b00001     URL    
[31]
Zhou W L, Zhao Y L, Wang E S, Li Q N, Lou S Q, Wang J, Li X M, Lian Q, Xie Q J, Zhang R Q, Zeng H B. J. Phys. Chem. Lett., 2020, 11(8): 3159.

doi: 10.1021/acs.jpclett.0c00811     URL    
[32]
Zhang Q G, Wang B, Zheng W L, Kong L, Wan Q, Zhang C Y, Li Z C, Cao X Y, Liu M M, Li L. Nat. Commun., 2020, 11(1): 1.

doi: 10.1038/s41467-019-13993-7     URL    
[33]
Lou S Q, Zhou Z, Xuan T T, Li H L, Jiao J, Zhang H W, Gautier R, Wang J. ACS Appl. Mater. Interfaces, 2019, 11(27): 24241.

doi: 10.1021/acsami.9b05484     URL    
[34]
Wang S X, Bi C H, Yuan J F, Zhang L X, Tian J J. ACS Energy Lett., 2018, 3(1): 245.

doi: 10.1021/acsenergylett.7b01243     URL    
[35]
Zhang J B, Jiang P F, Wang Y, Liu X F, Ma J M, Tu G L. ACS Appl. Mater. Interfaces, 2020, 12(2): 3080.

doi: 10.1021/acsami.9b20880     URL    
[36]
Wu H, Wang S, Cao F, Zhou J P, Wu Q Q, Wang H R, Li X M, Yin L Q, Yang X Y. Chem. Mater., 2019, 31(6): 1936.

doi: 10.1021/acs.chemmater.8b04634     URL    
[37]
Wei Y, Xiao H, Xie Z X, Liang S, Liang S S, Cai X C, Huang S S, Al Kheraif A A, Jang H S, Cheng Z Y, Lin J. Adv. Opt. Mater., 2018, 6(11): 1701343.
[38]
Zhong Q X, Cao M H, Hu H C, Yang D, Chen M, Li P L, Wu L Z, Zhang Q. ACS Nano, 2018, 12(8): 8579.

doi: 10.1021/acsnano.8b04209     URL    
[39]
Zhang Y C, Zhao Y S, Wu D, Xue J J, Qiu Y, Liao M, Pei Q B, Goorsky M S, He X M. Adv. Mater., 2019, 31(37): 1902928.

doi: 10.1002/adma.v31.37     URL    
[40]
Meyns M, Perálvarez M, Heuer-Jungemann A, Hertog W, Ibáñez M, Nafria R, Genç A, Arbiol J, Kovalenko M V, Carreras J, Cabot A, Kanaras A G. ACS Appl. Mater. Interfaces, 2016, 8(30): 19579.

doi: 10.1021/acsami.6b02529     URL    
[41]
Wei Y, Deng X R, Xie Z X, Cai X C, Liang S S, Ma P A, Hou Z Y, Cheng Z Y, Lin J. Adv. Funct. Mater., 2017, 27(39): 1703535.

doi: 10.1002/adfm.v27.39     URL    
[42]
Yang X L, Xu T J, Zhu Y H, Cai J, Gu K L, Zhu J R, Wang Y W, Shen J H, Li C Z. J. Mater. Chem. C, 2018, 6(30): 7971.

doi: 10.1039/C8TC01408F     URL    
[43]
Xin Y M, Zhao H J, Zhang J Y. ACS Appl. Mater. Interfaces, 2018, 10(5): 4971.

doi: 10.1021/acsami.7b16442     URL    
[44]
Pathak S, Sakai N, Wisnivesky Rocca Rivarola F, Stranks S D, Liu J W, Eperon G E, Ducati C, Wojciechowski K, Griffiths J T, Haghighirad A A, Pellaroque A, Friend R H, Snaith H J. Chem. Mater., 2015, 27(23): 8066.

doi: 10.1021/acs.chemmater.5b03769     URL    
[45]
Wang Y N, He J, Chen H, Chen J S, Zhu R D, Ma P, Towers A, Lin Y, Gesquiere A J, Wu S T, Dong Y J. Adv. Mater., 2016, 28(48): 10710.

doi: 10.1002/adma.v28.48     URL    
[46]
Raja S N, Bekenstein Y, Koc M A, Fischer S, Zhang D D, Lin L W, Ritchie R O, Yang P D, Alivisatos A P. ACS Appl. Mater. Interfaces, 2016, 8(51): 35523.

doi: 10.1021/acsami.6b09443     URL    
[47]
Song Y H, Yoo J S, Kang B K, Choi S H, Ji E K, Jung H S, Yoon D H. Nanoscale, 2016, 8(47): 19523.

doi: 10.1039/C6NR07410C     URL    
[48]
Wei S S, Zhu H C, Zhang J, Wang L, An M Q, Wang Y L, Zhang X T, Liu Y C. J. Alloys Compd., 2019, 789: 209.

doi: 10.1016/j.jallcom.2019.02.299     URL    
[49]
Kuo C C, Wang C T, Chen W C. Macromol. Mater. Eng., 2008, 293(12): 999.

doi: 10.1002/mame.v293:12     URL    
[50]
Chen J Y, Chiu Y C, Shih C C, Wu W C, Chen W C. J. Mater. Chem. A, 2015, 3(29): 15039.

doi: 10.1039/C5TA02417J     URL    
[51]
Wang Y W, Zhu Y H, Huang J F, Cai J, Zhu J R, Yang X L, Shen J H, Jiang H, Li C Z. J. Phys. Chem. Lett., 2016, 7(21): 4253.

doi: 10.1021/acs.jpclett.6b02045     URL    
[52]
Lin C C, Jiang D H, Kuo C C, Cho C J, Tsai Y H, Satoh T, Su C. ACS Appl. Mater. Interfaces, 2018, 10(3): 2210.

doi: 10.1021/acsami.7b15989     URL    
[53]
Liu H, Siron M, Gao M Y, Lu D, Bekenstein Y, Zhang D D, Dou L T, Alivisatos A P, Yang P D. Nano Res., 2020, 13(5): 1453.
[54]
Sun H Z, Yang Z Y, Wei M Y, Sun W, Li X Y, Ye S Y, Zhao Y B, Tan H R, Kynaston E L, Schon T B, Yan H, Lu Z H, Ozin G A, Sargent E H, Seferos D S. Adv. Mater., 2017, 29(34): 1701153.

doi: 10.1002/adma.v29.34     URL    
[55]
Chen K, Deng X H, Dodekatos G, Tüysüz H. J. Am. Chem. Soc., 2017, 139(35): 12267.

doi: 10.1021/jacs.7b06413     pmid: 28787135
[56]
Wong Y C, de Andrew Ng J, Tan Z K. Adv. Mater., 2018, 30(21): 1800774.

doi: 10.1002/adma.v30.21     URL    
[57]
Cha W, Kim H J, Lee S, Kim J. J. Mater. Chem. C, 2017, 5(27): 6667.

doi: 10.1039/C7TC01562C     URL    
[58]
Zhou Q C, Bai Z L, Lu W G, Wang Y T, Zou B S, Zhong H Z. Adv. Mater., 2016, 28(41): 9163.

doi: 10.1002/adma.201602651     URL    
[59]
Li Y, Lv Y, Guo Z Q, Dong L B, Zheng J H, Chai C F, Chen N, Lu Y J, Chen C. ACS Appl. Mater. Interfaces, 2018, 10(18): 15888.

doi: 10.1021/acsami.8b02857     URL    
[60]
Wang Z B, Wang F Z, Sun W D, Ni R H, Hu S Q, Liu J Y, Zhang B, Alsaed A, Hayat T, Tan Z A. Adv. Funct. Mater., 2018, 28(47): 1804187.

doi: 10.1002/adfm.v28.47     URL    
[61]
Wang Z B, Luo Z, Zhao C Y, Guo Q, Wang Y P, Wang F Z, Bian X M, Alsaedi A, Hayat T, Tan Z A. J. Phys. Chem. C, 2017, 121(50): 28132.

doi: 10.1021/acs.jpcc.7b11518     URL    
[62]
Masi S, Rizzo A, Aiello F, Balzano F, Uccello-Barretta G, Listorti A, Gigli G, Colella S. Nanoscale, 2015, 7(45): 18956.

doi: 10.1039/C5NR04715C     URL    
[63]
Zhao Y C, Wei J, Li H, Yan Y, Zhou W K, Yu D P, Zhao Q. Nat. Commun., 2016, 7(1): 1.
[64]
Ma K Z, Du X Y, Zhang Y W, Chen S. J. Mater. Chem. C, 2017, 5(36): 9398.

doi: 10.1039/C7TC02847D     URL    
[65]
Tsai P C, Chen J Y, Ercan E, Chueh C C, Tung S H, Chen W C. Small, 2018, 14(22): 1704379.

doi: 10.1002/smll.v14.22     URL    
[66]
Wen D, Yu Y H, Fu C, Zhang W Y, Zhang Z T. J. Jianghan Univ. Nat. Sci. Ed., 2015, 43(1): 12.
( 文丹, 喻艳华, 付成, 张玮莹, 张正涛. 江汉大学学报(自然科学版), 2015, 43(1): 12.)
[67]
Pan A Z, Jurow M J, Qiu F, Yang J, Ren B Y, Urban J J, He L, Liu Y. Nano Lett., 2017, 17(11): 6759.

doi: 10.1021/acs.nanolett.7b02959     URL    
[68]
Hou S C, Guo Y Z, Tang Y G, Quan Q M. ACS Appl. Mater. Interfaces, 2017, 9(22): 18417.

doi: 10.1021/acsami.7b03445     URL    
[69]
Zhang H H, Wang X, Liao Q, Xu Z Z, Li H Y, Zheng L M, Fu H B. Adv. Funct. Mater., 2017, 27(7): 1604382.

doi: 10.1002/adfm.v27.7     URL    
[70]
Yang S, Zhang F, Tai J, Li Y, Yang Y, Wang H, Zhang J X, Xie Z G, Xu B, Zhong H Z, Liu K, Yang B. Nanoscale, 2018, 10(13): 5820.
[71]
Chang C Y, Chu C Y, Huang Y C, Huang C W, Chang S Y, Chen C A, Chao C Y, Su W F. ACS Appl. Mater. Interfaces, 2015, 7(8): 4955.

doi: 10.1021/acsami.5b00052     URL    
[1] 张婉萍, 刘宁宁, 张倩洁, 蒋汶, 王梓鑫, 张冬梅. 刺激响应性聚合物微针系统经皮药物递释[J]. 化学进展, 2023, 35(5): 735-756.
[2] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[3] 董宝坤, 张婷, 何翻. 柔性热电材料的研究进展及应用[J]. 化学进展, 2023, 35(3): 433-444.
[4] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[5] 邬学贤, 张岩, 叶淳懿, 张志彬, 骆静利, 符显珠. 面向电子应用的聚合物化学镀前表面处理技术[J]. 化学进展, 2023, 35(2): 233-246.
[6] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[7] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[8] 于兰, 薛沛然, 李欢欢, 陶冶, 陈润锋, 黄维. 圆偏振发光性质的热活化延迟荧光材料及电致发光器件[J]. 化学进展, 2022, 34(9): 1996-2011.
[9] 黄帅, 陶钰, 黄银亮. 基于液晶聚合物的光致形变复合材料[J]. 化学进展, 2022, 34(9): 2012-2023.
[10] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[11] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[12] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[13] 职怡缤, 于兰, 李欢欢, 陶冶, 陈润锋, 黄维. 芳基硅磷光主体材料在有机电致发光器件中的应用[J]. 化学进展, 2022, 34(5): 1109-1123.
[14] 周天瑜, 王彦博, 赵翌琳, 李洪吉, 刘春波, 车广波. 水相识别分子印迹聚合物在样品预处理中的应用[J]. 化学进展, 2022, 34(5): 1124-1135.
[15] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.