English
新闻公告
More
化学进展 2021, Vol. 33 Issue (10): 1721-1730 DOI: 10.7536/PC200841 前一篇   后一篇

• 综述 •

Langmuir单分子膜在海洋飞沫气溶胶表面特性研究中的应用

程淑敏1, 杜林1,*(), 张秀辉2, 葛茂发3   

  1. 1 山东大学环境研究院 青岛 266237
    2 北京理工大学化学与化工学院 原子分子簇科学教育部重点实验室 北京 100081
    3 中国科学院化学研究所 分子动态与稳态结构国家重点实验室 北京 100190
  • 收稿日期:2020-08-20 修回日期:2020-10-23 出版日期:2021-10-20 发布日期:2020-12-28
  • 通讯作者: 杜林
  • 基金资助:
    国家自然科学基金项目(21876098); 国家自然科学基金项目(91644214)

Application of Langmuir Monolayers in the Investigation of Surface Properties of Sea Spray Aerosols

Shumin Cheng1, Lin Du1(), Xiuhui Zhang2, Maofa Ge3   

  1. 1 Environment Research Institute, Shandong University, Qingdao 266237, China
    2 Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
    3 State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2020-08-20 Revised:2020-10-23 Online:2021-10-20 Published:2020-12-28
  • Contact: Lin Du
  • Supported by:
    National Natural Science Foundation of China(21876098); National Natural Science Foundation of China(91644214)

被表面活性有机物包裹的液相气溶胶,如海洋飞沫气溶胶(SSA),通常具有反胶束的结构,它由有机分子形成的疏水表面和一个水相内核构成。SSA界面有机膜的组分和形态对其物理、化学和光学特性有重要的影响。Langmuir单分子膜是由脂肪酸、脂肪醇和磷脂等具有低挥发性的长链表面活性有机物在空气-水界面上扩散形成的单层分子薄膜。采用Langmuir槽可以测定水-气界面的单组分或复合组分单分子膜的表面压随分子面积变化的曲线(π-A曲线),从而揭示相应单分子膜的界面特性,进而预测表面活性剂在实际SSA中的命运和行为。本文综述了常用大气气溶胶界面表征技术、基于单分子膜建立的SSA模型以及有机膜对SSA大气行为的影响。虽然目前对SSA相关单分子膜的物理性质和形貌变化已有深入的研究,但是对于反应性气体、光照和生物活性物质等环境因素引起的界面变化却很少有关注,本文为未来的实验室模拟和模式研究提供了新的思路。

Aqueous aerosols coated by surface-active organics, such as sea spray aerosol(SSA), commonly possess inverse micelle structure with an aqueous core coated by a hydrophobic organic monolayer. The surface organization and chemical composition of organic films of SSAs have important influence on their physical, chemical and optical properties. Langmuir monolayers are monomolecular layers formed by the diffusion of long-chain surface-active organics with low volatility, such as fatty acids, fatty alcohols and phospholipids at the air-water interface. With Langmuir trough, the changes in surface pressure(π) along with decreasing molecular area(A) of single and mixed component monolayers at the air-water interface can be obtained. In addition, π-A isotherms provide information about the interfacial behavior of corresponding monolayers above an aqueous surface. Understanding the interfacial properties of monolayers will enable the prediction of the fate and behaviors of surfactants in the real-world SSA. This paper reviews the commonly used interfacial characterization techniques of atmospheric aerosols, established models for SSA based on Langmuir monolayer, and the implications of organic films on atmospheric behavior of SSA. Although the physical properties and morphological changes of SSA-related monolayers have been studied in depth, little attention has been paid to the interfacial changes induced by environmental factors such as reactive gases, irradiation and bioactive substances. These knowledge gaps shed light on future laboratory simulation and model research of SSA.

Contents

1 Introduction

2 Commonly used interfacial characterization techniques of atmospheric aerosols

3 Established models for SSA based on Langmuir monolayer

3.1 Single component monolayers

3.2 Mixed component monolayers

4 Implications of organic films on atmospheric behaviors of SSA

5 Conclusion and outlook

()
图1 有机物通过海洋飞沫气溶胶的海-气传输示意图[24]
Fig.1 Schematic representation of sea to air transfer of organics via sea spray aerosols[24]
图2 硬脂酸单分子膜在纯水上的π-A曲线,其中图片展示了不同相态下的分子排布情况
Fig. 2 The π-A isotherm of stearic acid on pure water, molecular arrangements in different phases are shown by the cartoons
表1 Langmuir单分子膜的常用分析方法及优缺点
Table 1 Common analytical methods of Langmuir monolayer and their advantages and disadvantages
图3 IRRAS和Langmuir槽联用示意图[69]
Fig. 3 Experimental setup showing the IRRAS as well as the Langmuir trough[69]
图4 纯水界面上棕榈酸单分子膜的BAM图像,从左向右依次是气态、液态和固态膜[21]
Fig. 4 The BAM images of palmitic acid monolayer on pure water show gaseous, liquid and solid films from left to right[21]
图5 (a)低(0 ≤ [Ca2+] ≤ 1 mmol/L)和(b)高(10 ≤ [Ca2+] ≤ 300 mmol/L)亚相Ca2+浓度下d31-棕榈酸单分子膜(20.5 Å2/分子)的IRRAS光谱[23]
Fig. 5 IRRAS spectra of d31-Palmitic acid monolayers(20.5 Å2 per molecule) on CaCl2 subphases of(a) low Ca2+ concentration(0 ≤ [Ca2+] ≤ 1 mmol/L) and(b) high Ca2+ concentration(10 ≤ [Ca2+] ≤ 300 mmol/L)[23]
图6 糖类化合物在磷脂单分子层中的共吸附[43]
Fig. 6 Coadsorption of saccharides in phospholipid monolayers[43]
[1]
Jayarathne T, Sultana C M, Lee C, Malfatti F, Cox J L, Pendergraft M A, Moore K A, Azam F, Tivanski A V, Cappa C D, Bertram T H, Grassian V H, Prather K A, Stone E A. Environ. Sci. Technol., 2016, 50(21): 11511.

pmid: 27709902
[2]
Cunliffe M, Engel A, Frka S, Gašparović B, Guitart C, Murrell J C, Salter M, Stolle C, Upstill-Goddard R, Wurl O. Prog. Oceanogr., 2013, 109: 104.

doi: 10.1016/j.pocean.2012.08.004     URL    
[3]
Wurl O, Ekau W, Landing W M, Zappa C J. Elementa-Sci. Anthrop., 2017, 5: 31.

doi: 10.1525/elementa.228     URL    
[4]
Ellison G B, Tuck A F, Vaida V. J. Geophys. Res., 1999, 104(D9): 11633.

doi: 10.1029/1999JD900073     URL    
[5]
Schiffer J M, Mael L E, Prather K A, Amaro R E, Grassian V H. ACS Cent. Sci., 2018, 4(12): 1617.

doi: 10.1021/acscentsci.8b00674     URL    
[6]
Casper C B, Verreault D, Adams E M, Hua W, Allen H C. J. Phys. Chem. B, 2016, 120(8): 2043.

doi: 10.1021/acs.jpcb.5b10483     URL    
[7]
Cochran R E, Laskina O, Jayarathne T, Laskin A, Laskin J, Lin P, Sultana C, Lee C, Moore K A, Cappa C D, Bertram T H, Prather K A, Grassian V H, Stone E A. Environ. Sci. Technol., 2016, 50(5): 2477.

doi: 10.1021/acs.est.5b04053     URL    
[8]
Cochran R E, Laskina O, Trueblood J V, Estillore A D, Morris H S, Jayarathne T, Sultana C M, Lee C, Lin P, Laskin J, Laskin A, Dowling J A, Qin Z, Cappa C D, Bertram T H, Tivanski A V, Stone E A, Prather K A, Grassian V H. Chem, 2017, 2(5): 655.

doi: 10.1016/j.chempr.2017.03.007     URL    
[9]
Donaldson D J, George C. Environ. Sci. Technol., 2012, 46(19): 10385.

doi: 10.1021/es301651m     pmid: 22724587
[10]
Adams E M, Casper C B, Allen H C. J. Colloid Interface Sci., 2016, 478: 353.

doi: 10.1016/j.jcis.2016.06.016     URL    
[11]
de Leeuw G, Andreas E L, Anguelova M D, Fairall C W, Lewis E R, O'Dowd C, Schulz M, Schwartz S E. Rev. Geophys., 2011, 49(2): RG2001.
[12]
Reddy S K, Thiraux R, Rudd B A W, Lin L, Adel T, Joutsuka T, Geiger F M, Allen H C, Morita A, Paesani F. Chemistry, 2018, 4(7): 1629.
[13]
O'Dowd C D, De Leeuw G. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci., 2007, 365(1856): 1753.
[14]
Bertram T H, Cochran R E, Grassian V H, Stone E A. Chem. Soc. Rev., 2018, 47(7): 2374.

doi: 10.1039/C7CS00008A     URL    
[15]
Chingin K, Yan R H, Zhong D C, Chen H W. ACS Omega, 2018, 3(8): 8709.

doi: 10.1021/acsomega.8b01157     URL    
[16]
Cochran R E, Jayarathne T, Stone E A, Grassian V H. J. Phys. Chem. Lett., 2016, 7(9): 1692.

doi: 10.1021/acs.jpclett.6b00489     URL    
[17]
Tervahattu H, Hartonen K, Kerminen V M, Kupiainen K, Aamio P, Koskentalo T, Tuck A F, Vaida V. J. Geophys. Res., 2002, 107(D7/8): 4053.

doi: 10.1029/2000JD000282     URL    
[18]
Tervahattu H, Juhanoja J, Kupiainen K. J. Geophys. Res.: Atmos., 2002, 107(D16): 4319.

doi: 10.1029/2001JD001403     URL    
[19]
MacIntyre F. Sci. Am., 1974, 230(5): 62.

doi: 10.1038/scientificamerican0574-62     URL    
[20]
MacIntyre F. J. Geophys. Res., 1972, 77(27): 5211.

doi: 10.1029/JC077i027p05211     URL    
[21]
Adams E, Allen H. Atmosphere, 2013, 4(4): 315.

doi: 10.3390/atmos4040315     URL    
[22]
Denton J K, Kelleher P J, Johnson M A, Baer M D, Kathmann S M, Mundy C J, Wellen Rudd B A, Allen H C, Choi T H, Jordan K D. PNAS, 2019, 116(30): 14874.

doi: 10.1073/pnas.1818600116     URL    
[23]
Wellen Rudd B A, Vidalis A S, Allen H C. Phys. Chem. Chem. Phys., 2018, 20(24): 16320.

doi: 10.1039/C8CP01188E     URL    
[24]
Wolf M J, Coe A, Dove L A, Zawadowicz M A, Dooley K, Biller S J, Zhang Y, Chisholm S W, Cziczo D J. Environ. Sci. Technol., 2019, 53(3): 1139.

doi: 10.1021/acs.est.8b05150     URL    
[25]
Ruehl C R, Wilson K R. J. Phys. Chem. A, 2014, 118(22): 3952.

doi: 10.1021/jp502844g     URL    
[26]
Nozière B, Baduel C, Jaffrezo J L. Nat. Commun., 2014, 5(1): 1.
[27]
Tinel L, Rossignol S, Bianco A, Passananti M, Perrier S, Wang X M, Brigante M, Donaldson D J, George C. Environ. Sci. Technol., 2016, 50(20): 11041.

doi: 10.1021/acs.est.6b03165     URL    
[28]
Shrestha M, Luo M, Li Y M, Xiang B, Xiong W, Grassian V H. Chem. Sci., 2018, 9(26): 5716.

doi: 10.1039/c8sc01957f     pmid: 30079180
[29]
Vaida V. Science, 2016, 353(6300): 650.

doi: 10.1126/science.aah4111     URL    
[30]
Mochida M, Kitamori Y, Kawamura K, Nojiri Y, Suzuki K. J. Geophys. Res., 2002, 107(D17): AAC 1.
[31]
Donaldson D J, Vaida V. Chem. Rev., 2006, 106(4): 1445.

pmid: 16608186
[32]
Davies J F, Miles R E H, Haddrell A E, Reid J P. PNAS, 2013, 110(22): 8807.

doi: 10.1073/pnas.1305277110     pmid: 23674675
[33]
Forestieri S D, Staudt S M, Kuborn T M, Faber K, Ruehl C R, Bertram T H, Cappa C D. Atmos. Chem. Phys., 2018, 18(15): 10985.

doi: 10.5194/acp-18-10985-2018     URL    
[34]
Cochran R E, Ryder O S, Grassian V H, Prather K A. Acc. Chem. Res., 2017, 50(3): 599.

doi: 10.1021/acs.accounts.6b00603     URL    
[35]
Sebastiani F, Campbell R A, Rastogi K, Pfrang C. Atmos. Chem. Phys., 2018, 18(5): 3249.

doi: 10.5194/acp-18-3249-2018     URL    
[36]
Rouvière A, Ammann M. Atmos. Chem. Phys., 2010, 10(23): 11489.

doi: 10.5194/acp-10-11489-2010     URL    
[37]
Dynarowicz-Łᶏtka P, Dhanabalan A, Oliveira O N Jr. Adv. Colloid Interface Sci., 2001, 91(2): 221.

doi: 10.1016/S0001-8686(99)00034-2     URL    
[38]
Blodgett K B, Langmuir I. Phys. Rev., 1937, 51(11): 964.

doi: 10.1103/PhysRev.51.964     URL    
[39]
Adams E M, Verreault D, Jayarathne T, Cochran R E, Stone E A, Allen H C. Phys. Chem. Chem. Phys., 2016, 18(47): 32345.

doi: 10.1039/C6CP06887A     URL    
[40]
Mendelsohn R, Brauner J W, Gericke A. Annu. Rev. Phys. Chem., 1995, 46(1): 305.

doi: 10.1146/physchem.1995.46.issue-1     URL    
[41]
Khattari Z, Sayyed M I, Qashou S I, Fasfous I, Al-Abdullah T, Maghrabi M. Chem. Phys., 2017, 490: 106.

doi: 10.1016/j.chemphys.2017.04.012     URL    
[42]
Volpati D, Aoki P H B, Alessio P, Pavinatto F J, Miranda P B, Constantino C J L, Oliveira O N Jr. Adv. Colloid Interface Sci., 2014, 207: 199.

doi: 10.1016/j.cis.2014.01.014     URL    
[43]
Burrows S M, Gobrogge E, Fu L, Link K, Elliott S M, Wang H F, Walker R. Geophys. Res. Lett., 2016, 43(15): 8306.

doi: 10.1002/grl.v43.15     URL    
[44]
Rontu N, Vaida V. J. Phys. Chem. C, 2007, 111(31): 11612.

doi: 10.1021/jp070484m     URL    
[45]
Larsen M C. J. Chem. Educ., 2014, 91(4): 597.

doi: 10.1021/ed4004854     URL    
[46]
Aston M S. Chem. Soc. Rev., 1993, 22(1): 67.

doi: 10.1039/CS9932200067     URL    
[47]
Rontu N, Vaida V. J. Phys. Chem. C, 2007, 111(27): 9975.

doi: 10.1021/jp0718395     URL    
[48]
Donaldson D J, Tuck A F, Vaida V. Phys. Chem. Chem. Phys., 2001, 3(23): 5270.

doi: 10.1039/b105215m     URL    
[49]
Zhang T, Fiamingo M, Allen H C. J. Geophys. Res. Oceans, 2018, 123(8): 5286.

doi: 10.1029/2018JC013926     URL    
[50]
Tang M J, Huang X, Lu K D, Ge M F, Li Y J, Cheng P, Zhu T, Ding A J, Zhang Y H, Gligorovski S, Song W, Ding X, Bi X H, Wang X M. Atmos. Chem. Phys., 2017, 17(19): 11727.

doi: 10.5194/acp-17-11727-2017     URL    
[51]
Zhao Y, Chen Z M, Shen X L, Zhang X. Environ. Sci. Technol., 2011, 45(8): 3317.

doi: 10.1021/es104107c     pmid: 21428282
[52]
Zhang Y, Tong S R, Ge M F, Jing B, Hou S Q, Tan F, Chen Y, Guo Y C, Wu L Y. Sci. Total. Environ., 2018, 633: 1253.

doi: 10.1016/j.scitotenv.2018.03.288     URL    
[53]
Yang P, Yang H, Wang N, Du C Y, Pang S F, Zhang Y H. J. Environ. Sci., 2020, 87: 250.

doi: 10.1016/j.jes.2019.07.002     URL    
[54]
Zhao Y, Wingen L M, Perraud V, Finlayson-Pitts B J. Atmos. Chem. Phys., 2016, 16(5): 3245.

doi: 10.5194/acp-16-3245-2016     URL    
[55]
Siciliano T, Siciliano M, Malitesta C, Proto A, Cucciniello R, Giove A, Iacobellis S, Genga A. Environ. Sci. Pollut. Res., 2018, 25(24): 23929.
[56]
Varrica D, Tamburo E, Vultaggio M, di Carlo I. Int. J. Environ. Res. Public Heal., 2019, 16(14): 2507.
[57]
Coury C, Dillner A M. Atmos. Environ., 2009, 43(4): 940.

doi: 10.1016/j.atmosenv.2008.10.056     URL    
[58]
Zhang S J, Xu L, Guo X M, Huang D, Li W J. Environm. Sci., 2020, 41(5): 2017.
( 张淑佳, 徐亮, 郭新梅, 黄道, 李卫军. 环境科学, 2020, 41(5): 2017.)
[59]
Li W J, Liu L, Xu L, Zhang J, Yuan Q, Ding X K, Hu W, Fu P Q, Zhang D Z. Sci. Total. Environ., 2020, 719: 137520.

doi: 10.1016/j.scitotenv.2020.137520     URL    
[60]
Langmuir I. J. Am. Chem. Soc., 1917, 39(9): 1848.

doi: 10.1021/ja02254a006     URL    
[61]
Mohwald H. Annu. Rev. Phys. Chem., 1990, 41(1): 441.

doi: 10.1146/physchem.1990.41.issue-1     URL    
[62]
Le Calvez E, Blaudez D, Buffeteau T, Desbat B. Langmuir, 2001, 17(3): 670.

doi: 10.1021/la000224v     URL    
[63]
Gericke A, Huehnerfuss H. J. Phys. Chem., 1993, 97(49): 12899.

doi: 10.1021/j100151a044     URL    
[64]
Sung W, Kim D, Shen Y R. Curr. Appl. Phys., 2013, 13(4): 619.

doi: 10.1016/j.cap.2012.12.002     URL    
[65]
Dluhy R A, Cornell D G. J. Phys. Chem., 1985, 89(15): 3195.
[66]
Wang Y C, Du X Z, Guo L, Liu H J. J. Chem. Phys., 2006, 124(13): 134706.

doi: 10.1063/1.2185629     URL    
[67]
Adams E M, Wellen B A, Thiraux R, Reddy S K, Vidalis A S, Paesani F, Allen H C. Phys. Chem. Chem. Phys., 2017, 19(16): 10481.

doi: 10.1039/C7CP00167C     URL    
[68]
Zhang T, Cathcart M G, Vidalis A S, Allen H C. Chem. Phys. Lipids, 2016, 200: 24.

doi: S0009-3084(16)30060-3     pmid: 27335336
[69]
Cheng S M, Du L, George C. J. Geophys. Res. Atmos., 2020, 125(13): e2019JD032182.
[70]
Roldán-Carmona C, Giner-Casares J J, PÉrez-Morales M, Martín-Romero M T, Camacho L. Adv. Colloid Interface Sci., 2012, 173: 12.

doi: 10.1016/j.cis.2012.02.002     URL    
[71]
Voss L F, Bazerbashi M F, Beekman C P, Hadad C M, Allen H C. J. Geophys. Res., 2007, 112(D6): D06209.
[72]
Gilman J B, Eliason T L, Fast A, Vaida V. J. Colloid Interface Sci., 2004, 280(1): 234.

doi: 10.1016/j.jcis.2004.07.019     URL    
[73]
Sierra-Hernández M R, Allen H C. Langmuir, 2010, 26(24): 18806.

doi: 10.1021/la1032674     pmid: 21117635
[74]
Li S Y, Du L, Wei Z M, Wang W X. Sci. Total. Environ., 2017, 580: 1155.

doi: 10.1016/j.scitotenv.2016.12.072     URL    
[75]
Wellen B A, Lach E A, Allen H C. Phys. Chem. Chem. Phys., 2017, 19(39): 26551.

doi: 10.1039/C7CP04527A     URL    
[76]
Tang C Y, Huang Z S, Allen H C. J. Phys. Chem. B, 2011, 115(1): 34.

doi: 10.1021/jp1062447     URL    
[77]
Brzozowska A M, Duits M H G, Mugele F. Colloids Surf., A, 2012, 407: 38.

doi: 10.1016/j.colsurfa.2012.04.055     URL    
[78]
Li S Y, Du L, Tsona N T, Wang W X. Chemosphere, 2018, 196: 323.

doi: 10.1016/j.chemosphere.2017.12.157     URL    
[79]
Li S Y, Du L, Wang W X. Environ. Chem., 2017, 14(7): 407.
[80]
Link K A, Spurzem G N, Tuladhar A, Chase Z, Wang Z M, Wang H F, Walker R A. J. Phys. Chem. A, 2019, 123(26): 5621.

doi: 10.1021/acs.jpca.9b02255     URL    
[81]
Li S Y, Jiang X T, Roveretto M, George C, Liu L, Jiang W, Zhang Q Z, Wang W X, Ge M F, Du L. Atmos. Chem. Phys., 2019, 19(15): 9887.

doi: 10.5194/acp-19-9887-2019     URL    
[82]
Carter-Fenk K, Allen H. Atmosphere, 2018, 9(12): 503.

doi: 10.3390/atmos9120503     URL    
[83]
Li S Y, Cheng S M, Du L, Wang W X. Atmos. Environ., 2019, 200: 15.

doi: 10.1016/j.atmosenv.2018.11.052     URL    
[84]
Brzozowska A, Mugele F, Duits M. Colloids Surf. A, 2013, 433: 200.

doi: 10.1016/j.colsurfa.2013.04.062     URL    
[85]
Johansson J H, Salter M E, Acosta Navarro J C, Leck C, Nilsson E D, Cousins I T. Environ. Sci.: Processes Impacts, 2019, 21(4): 635.

doi: 10.1021/es00161a003     URL    
[86]
Gilman J B, Tervahattu H, Vaida V. Atmos. Environ., 2006, 40(34): 6606.

doi: 10.1016/j.atmosenv.2006.05.052     URL    
[87]
Griffith E C, Adams E M, Allen H C, Vaida V. J. Phys. Chem. B, 2012, 116(27): 7849.

doi: 10.1021/jp303913e     URL    
[88]
Cheng S M, Li S Y, Tsona N T, George C, Du L. Sci. Total. Environ., 2019, 671: 1161.

doi: 10.1016/j.scitotenv.2019.03.433     URL    
[89]
Li S Y, Du L, Zhang Q Z, Wang W X. Environ. Pollut., 2018, 242: 626.

doi: 10.1016/j.envpol.2018.07.043     URL    
[90]
Kang M J, Yang F, Ren H, Zhao W Y, Zhao Y, Li L J, Yan Y, Zhang Y J, Lai S C, Zhang Y Y, Yang Y, Wang Z F, Sun Y L, Fu P Q. Sci. Total. Environ., 2017, 607: 339.
[91]
Griffith E C, Guizado T R C, Pimentel A S, Tyndall G S, Vaida V. J. Phys. Chem. C, 2013, 117(43): 22341.

doi: 10.1021/jp402737n     URL    
[92]
Moore M J K, Furutani H, Roberts G C, Moffet R C, Gilles M K, Palenik B, Prather K A. Atmos. Environ., 2011, 45(39): 7462.

doi: 10.1016/j.atmosenv.2011.04.034     URL    
[93]
Cosman L M, Bertram A K. J. Phys. Chem. A, 2008, 112(20): 4625.

doi: 10.1021/jp8005469     pmid: 18444630
[94]
Zhang X L, Massoli P, Quinn P K, Bates T S, Cappa C D. J. Geophys. Res. Atmos., 2014, 119(13): 8384.

doi: 10.1002/2013JD021213     URL    
[95]
Tang I N. J. Geophys. Res., 1996, 101(D14): 19245.

doi: 10.1029/96JD03003     URL    
[96]
Harper K L, Allen H C. Langmuir, 2007, 23(17): 8925.

doi: 10.1021/la7006974     URL    
[97]
Salter M E, Hamacher-Barth E, Leck C, Werner J, Johnson C M, Riipinen I, Nilsson E D, Zieger P. Geophys. Res. Lett., 2016, 43(15): 8277.

doi: 10.1002/2016GL070275     URL    
[98]
Tang C Y, Huang Z S, Allen H C. J. Phys. Chem. B, 2010, 114(51): 17068.

doi: 10.1021/jp105472e     URL    
[99]
George C, Ammann M, D'Anna B, Donaldson D J, Nizkorodov S A. Chem. Rev., 2015, 115(10): 4218.

doi: 10.1021/cr500648z     URL    
[100]
Malfatti F, Lee C, Tinta T, Pendergraft M A, Celussi M, Zhou Y Y, Sultana C M, Rotter A, Axson J L, Collins D B, Santander M V, Anides Morales A L, Aluwihare L I, Riemer N, Grassian V H, Azam F, Prather K A. Environ. Sci. Technol. Lett., 2019, 6(3): 171.

doi: 10.1021/acs.estlett.8b00699     URL    
[101]
Rastelli E, Corinaldesi C, Dell'Anno A, Lo Martire M, Greco S, Cristina Facchini M, Rinaldi M, O'Dowd C, Ceburnis D, Danovaro R. Sci. Rep., 2017, 7(1): 11475.

doi: 10.1038/s41598-017-10563-z     pmid: 28904380
[102]
Mayol E, JimÉnez M A, Herndl G J, Duarte C M, Arrieta J M. Front. Microbiol., 2014, 5: 557.

doi: 10.3389/fmicb.2014.00557     pmid: 25400625
[103]
Mayol E, Arrieta J M, JimÉnez M A, Martínez-Asensio A, Garcias-Bonet N, Dachs J, González-Gaya B, Royer S J, Benítez-Barrios V M, Fraile-Nuez E, Duarte C M. Nat. Commun., 2017, 8(1): 201.

doi: 10.1038/s41467-017-00110-9     pmid: 28779070
[104]
Schiffer J M, Luo M, Dommer A C, Thoron G, Pendergraft M, Santander M V, Lucero D, Pecora de Barros E, Prather K A, Grassian V H, Amaro R E. J. Phys. Chem. Lett., 2018, 9(14): 3839.

doi: 10.1021/acs.jpclett.8b01363     pmid: 29916254
[105]
Luo M, Dommer A C, Schiffer J M, Rez D J, Mitchell A R, Amaro R E, Grassian V H. Langmuir, 2019, 35(27): 9050.

doi: 10.1021/acs.langmuir.9b00689     URL    
[1] 唐荣志, 王辉, 刘莹, 郭松. 大气半/中等挥发性有机物的组成及其对有机气溶胶贡献[J]. 化学进展, 2019, 31(1): 180-190.
[2] 欧阳健明. 单分子膜诱导生物矿物晶体生长中的晶格匹配和电荷匹配*[J]. 化学进展, 2005, 17(05): 931-937.
[3] 张俊苓 杨芳 郑文杰 白燕 欧阳健明. 自组装单分子膜及其表征方法*[J]. 化学进展, 2005, 17(02): 203-208.
[4] 孔德生,万立骏,陈慎豪. 电化学STM技术在金属腐蚀科学中的应用及研究进展*[J]. 化学进展, 2004, 16(02): 204-.
[5] 杨学耕,陈慎豪,马厚义,全贞兰,李德刚. 金属表面自组装缓蚀功能分子膜*[J]. 化学进展, 2003, 15(02): 123-.
[6] 吕庆,贡浩飞,刘鸣华. 双头基两亲分子研究进展[J]. 化学进展, 2001, 13(03): 161-.
[7] 施祖进,李彦,周锡煌,顾镇南. 纳米团簇的超分子自组装[J]. 化学进展, 1999, 11(02): 148-.