Electrochemical impedance spectroscopy (EIS) is one of the most powerful experimental methods to study electrochemical systems, and has been extensively used in the analysis of lithium battery systems, especially to determine kinetic and transport parameters, understand reaction mechanisms, and to study degradation effects in past two decades. In this paper, the electrode polarization process in lithium ion batteries which includes three basic physical and chemical processes, namely, electronic transport process, ionic transport process and electrochemical reaction process, is briefly described, and the EIS characteristics of each transport and reaction stage of the three basic physical and chemical processes are discussed, especially the mechanism of inductance formation and contact impedance is expounded in detail. Moreover, porous electrode theory and its application in lithium ion batteries are reviewed, and emphasis is put upon the principle and method of numerical simulation of impedance with physics-based lithium-ion batteries models. Furthermore, the typical EIS characteristics and the attribution of each time constant of the electrode materials for lithium ion batteries such as graphite, silicon, simple binary transition metal oxides, LiCoO2, spinel LiMn2O4, LiFePO4, spinel Li4Ti5O12 and transition metal oxides are also discussed. Finally, the challenges currently faced by EIS are identified and possible directions and approaches in addressing these challenges are suggested.
Contents
1 Introduction
2 Theoretical basis for EIS analysis of lithium ion batteries
2.1 Schottky contact impedance
2.2 The mechanism of inductance formation
2.3 Porous electrode theory and numerical simulation of impedance and their applications in lithium ion batteries
3 The EIS characteristics of lithium ion battery electrodes
3.1 The EIS characteristics of lithium ion battery anode
3.2 The EIS characteristics of lithium ion battery cathode
Quanchao Zhuang, Zi Yang, Lei Zhang, Yanhua Cui. Research Progress on Diagnosis of Electrochemical Impedance Spectroscopy in Lithium Ion Batteries[J]. Progress in Chemistry, 2020, 32(6): 761-791. DOI: 10.7536/PC191116
1 引言
自1992年实现商品化应用以来,锂离子电池已在小型移动电子设备如移动电话、笔记本电脑等上得到了广泛的应用,是绝大多数便携式电子产品的电源。近年来,锂离子电池的应用范围已经逐渐扩大到电动汽车和储能系统方面,并有望在军事、航天等领域获得进一步的应用。最近,瑞典皇家科学院将2019年诺贝尔化学奖授予约翰·古迪纳夫、斯坦利·惠廷厄姆和吉野彰,以表彰他们在锂离子电池研发领域作出的贡献,显示了人们在锂离子电池领域已取得的巨大成就。然而,锂离子电池要大规模应用于这些新兴领域仍面临着许多障碍,如何进一步提高其能量密度、循环稳定性和安全性及进一步降低成本等仍然是锂离子电池领域面临的重大挑战。毫无疑问,上述问题的解决依赖于人们对于锂离子电池电极和电解液材料以及其中发生的基本物理化学过程认识上的提高,特别是电极薄膜的厚度、多孔性及其制造工艺(包括电极活性材料与黏合剂、导电剂的比例,电极浆料的搅拌混合、涂布、烘干以及辊压过程等)等对电池性能的影响。电化学阻抗谱(Electrochemical impedance spectroscopy,EIS),早期也称交流阻抗谱(AC impedance),是以小振幅的正弦波电势(或电流)为扰动电信号,使电极系统产生近似线性关系的响应,测量电极系统在很宽频率范围内的交流电势与电流信号的比值(此比值即为系统的阻抗),以此来研究电极系统的方法。作为一种经典的电化学研究方法,EIS具有以下几个方面的优点:(1)EIS能够根据电化学反应中发生的基本物理化学过程的弛豫时间常数的不同,在较宽的频率范围内对不同的基本物理化学过程实现同时表征;(2)作为一种线性的研究方法,EIS的数据处理比较简单;(3)EIS能够实现对电极反应的原位测试和对电池实现在线测试,测试方法简单易行,易于在工业化生产中获得应用;(4)EIS测试实验中一般不需要独特的实验技能和方法;(5)商品化的电化学工作站或综合测试仪一般都具备阻抗测试功能,仪器、设备廉价,一般不需要辅助部件;(6)EIS测试过程中,小幅度的交变信号不会使被测体系的状态发生改变,能够实现无损检测。因此在过去的20多年里,EIS被广泛应用于锂离子电池研究和生产领域,包括研究嵌锂反应机理和容量衰减机制[1, 2, 3,4],测定相关电极过程动力学参数和电池的健康状态(State of Health, SOH)[5,6]与荷电状态(State of Charge, SOC)[7]以及电池的内阻,探讨影响锂离子电池电极性能的相关因素等[8,9]。
Fig. 4 Schematic diagram of intercalation particle, with a detailed picture of the particle-film and film-solution interface and an equivalent-circuit diagram of the interfaces[54]
Fig. 6 Schematic diagram showing the differential flow of current in a porous electrode in which current can flow in both the solid and solution phases[54]
两相多孔电极的分散孔模型,也称为圆柱孔模型(Cylindrical pore model)或均匀传输线模型(Transmission line model),是主要用于描述多孔电极阻抗特征的理论。该模型假定多孔电极是由彼此不相交联的许多单孔的组合,因而宏观电流是所有单孔中电流的总和。分散孔模型最简单的情形如图9所示,模型包含一个长度为l、半径为r充满电解液的圆柱孔。假定只有孔壁是可导的,并表现为理想极化电极的行为。圆柱孔内不存在直流电流,交流电流通过电解液流入孔内对孔壁上的双电层进行充电。
Fig. 11 Schematic diagram of uniform transmission line model. Uniform transmission line representing impedance of flooded ideally polarized porous electrode; rs and cdl are the solution resistance and double-layer capacitance, respectively, of a small element of the pore length
Fig. 21 Nyquist plots of the LiFePO4 electrode with 50 weight percent (wt%) graphite as conductive agent at various potentials from 3.3 to 4.2 V during the first delithiation[141]
韩雪冰(Han XB). 清华大学博士论文(Doctoral Dissertation of Tsinghua University), 2014.
[50]
冯毅(FengY). 中国科学院大学上海微系统与信息技术研究所博士论文(Doctoral Dissertation of University of Chinese Academy of Sciences-Shanghai Institute of Microsystem and Information Technology), 2008.
R. de Levie Delahay P, Linford H B. Advances in Electrochemistry and ElectrochemicalEngineering, DelahayP, Ed. New York: Interscience Publishers, 1961. Vol. 6, 329.