中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (6): 761-791 DOI: 10.7536/PC191116 Previous Articles   Next Articles

Special Issue: 电化学有机合成; 锂离子电池

• Review •

Research Progress on Diagnosis of Electrochemical Impedance Spectroscopy in Lithium Ion Batteries

Quanchao Zhuang1,**(), Zi Yang1, Lei Zhang1, Yanhua Cui2,**()   

  1. 1. School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, China
    2. Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang 621900, China
  • Received: Revised: Online: Published:
  • Contact: Quanchao Zhuang, Yanhua Cui
  • Supported by:
    the National Natural Science Foundation of China(U1730136); the Fundamental Research Funds for the Central Universities(2017XKQY062)
Richhtml ( 228 ) PDF ( 3248 ) Cited
Export

EndNote

Ris

BibTeX

Electrochemical impedance spectroscopy (EIS) is one of the most powerful experimental methods to study electrochemical systems, and has been extensively used in the analysis of lithium battery systems, especially to determine kinetic and transport parameters, understand reaction mechanisms, and to study degradation effects in past two decades. In this paper, the electrode polarization process in lithium ion batteries which includes three basic physical and chemical processes, namely, electronic transport process, ionic transport process and electrochemical reaction process, is briefly described, and the EIS characteristics of each transport and reaction stage of the three basic physical and chemical processes are discussed, especially the mechanism of inductance formation and contact impedance is expounded in detail. Moreover, porous electrode theory and its application in lithium ion batteries are reviewed, and emphasis is put upon the principle and method of numerical simulation of impedance with physics-based lithium-ion batteries models. Furthermore, the typical EIS characteristics and the attribution of each time constant of the electrode materials for lithium ion batteries such as graphite, silicon, simple binary transition metal oxides, LiCoO2, spinel LiMn2O4, LiFePO4, spinel Li4Ti5O12 and transition metal oxides are also discussed. Finally, the challenges currently faced by EIS are identified and possible directions and approaches in addressing these challenges are suggested.

Contents

1 Introduction
2 Theoretical basis for EIS analysis of lithium ion batteries

2.1 Schottky contact impedance

2.2 The mechanism of inductance formation

2.3 Porous electrode theory and numerical simulation of impedance and their applications in lithium ion batteries

3 The EIS characteristics of lithium ion battery electrodes

3.1 The EIS characteristics of lithium ion battery anode

3.2 The EIS characteristics of lithium ion battery cathode

4 Conclusion and prospect
Fig. 1 Schematic presentation of model for the physical mechanism of lithium ion insertion
Fig. 2 Variations of impedance spectra of LiCoO2 electrode with the polarization potential in the first delithiation[40]
Fig. 3 Pictorial representation model for the SEI film growth and the concentration cell[40]
Fig. 4 Schematic diagram of intercalation particle, with a detailed picture of the particle-film and film-solution interface and an equivalent-circuit diagram of the interfaces[54]
Fig. 5 Schematic diagram showing the construction of a porous electrode consisting of spherical particles[54]
Fig. 6 Schematic diagram showing the differential flow of current in a porous electrode in which current can flow in both the solid and solution phases[54]
Fig. 7 Nyquist plots of the graphite electrode at various potentials from 3.0 to 0.1 V during the first lithium-ion insertion[64]
Fig. 8 Schematic view of two general models of the porous electrode[64]
Fig. 9 Model of a cylindrical pore; gray area is not conductive. I: axial current flowing to pore, j: local current flowing to pore walls
Fig. 10 Complex plane plot of impedance of single pore
Fig. 11 Schematic diagram of uniform transmission line model. Uniform transmission line representing impedance of flooded ideally polarized porous electrode; rs and cdl are the solution resistance and double-layer capacitance, respectively, of a small element of the pore length
Fig. 12 Transmission line for the capacitive porous electrode with the resistance of the solution in pores, rs, and of the electrode material, re
Fig. 13 Nyquist plots of graphite electrodes with thickness of 0.1, 0.2, 0.4 and 0.6 mm in the first discharge process[77]
Fig. 14 Nyquist plots of the LiNi1/3Co1/3Mn1/3O2 cathode during the first charge process in 1 M LiPF6-EC:EMC electrolyte with 2%DTD+1%MMDS[77]
Fig. 15 Nyquist diagram of the graphite electrode in the first lithiation[81,82]
Fig. 16 Nyquist diagram of the Si/C electrode in the first lithiation[91]
Fig. 17 Nyquist plots of the α-Fe2O3/C composite electrode at various polarization potentials during the first discharge process[99]
Fig. 18 Nyquist diagram of LixNi0.75Co0.25O2 electrode[119]
Fig. 19 Nyquist spectrum and fitting diagram of LiCoO2 electrode at various potentials from 3.6 to 4.3 V in the first delithiation[123]
Fig. 20 Nyquist plots of the spinel LiMn2O4 electrode at various potentials from 3.5 to 4.3 V during the first delithiation at 10°C[129]
Fig. 21 Nyquist plots of the LiFePO4 electrode with 50 weight percent (wt%) graphite as conductive agent at various potentials from 3.3 to 4.2 V during the first delithiation[141]
Fig. 22 Nyquist plots of the Li4Ti5O12 electrode at a series of potentials from 2.8 to 1.0 V in the first lithiation process [146]
Fig. 23 Nyquist plots of the NiF2/C electrode at various potentials from 3.15 to 1.2 V during the first discharge process[31]
[1]
Schmitt J, Maheshwari A, Heck M, Lux S, Vetter M.J. Power Sources, 2017, 353: 183.
[2]
Jalkanen K, Karppinen J, Skogström L, Laurila T, Nisula M, Vuorilehto K. Appl. Energy.., 2015, 154: 160.
[3]
Xie Y, Li J, Yuan C.Electrochim Acta, 2014, 127: 266.
[4]
Reichert M, Andre D, Rösmann A, Janssen P, Bremes H G, Sauer D U, Passerini S, Winter M.J. Power Sources, 2013, 239: 45.
[5]
Cui Y, Zuo P, Du C, Gao Y, Yang J, Cheng X, Ma Y, Yin G. Energy, 2018, 144: 647.
[6]
Berecibar M, Gandiaga I, Villarreal I, Omar N, Van Mierlo J, Van den Bossche P. Renewable Sustainable Energy Rev., 2016, 56: 572.
[7]
Xu J, Mi C C, Cao B, Cao J.J. Power Sources, 2013, 233: 277.
[8]
Maheshwari A, Heck M, Santarelli M. Electrochim Acta, 2018, 273: 335.
[9]
Zhu X, Fernández Macía L, Jaguemont J, de Hoog J, Nikolian A, Omar N, Hubin A. Electrochim Acta, 2018, 287: 10.
[10]
Vyroubal P, Maxa J, Kazda T, Vondrak J. ECS Trans., 2014, 48: 289.https://iopscience.iop.org/article/10.1149/04801.0289ecst

doi: 10.1149/04801.0289ecst
[11]
Levi M D, Aurbach D.J. Phys. Chem. B, 1997, 101: 4630.
[12]
Song J Y, Lee H H, Wang Y Y, Wan, C C.J. Power Sources, 2002, 111: 255.
[13]
Xu M, Dewald H D.Electrochim Acta, 2005, 50: 5473.
[14]
Raijmakers L H J, Lammers M J G, Notten P H L. Electrochim Acta, 2018, 259: 517.
[15]
Gruet D, Delobel B, Sicsic D, Lucas I T, Vivier V.Electrochim Acta, 2019, 295: 787.
[16]
庄全超(Zhuang Q C), 徐守冬(Xu S D), 邱祥云(Qiu X Y), 崔永丽(Cui Y L), 方亮(Fang L)化学进展(Prog. Chem.), 2010, 22: 1044.http://manu56.magtech.com.cn/progchem/CN/Y2010/V22/I06/1044
[17]
Zhuang Q C, Qiu X Y, Xu S D, Qiang Y H, Sun S G. Lithium Ion Batteries-New Developments, 2012, 189.
[18]
Choi S, Kwon T W, Coskun A, Choi J W. Science, 2017, 357: 279.https://www.ncbi.nlm.nih.gov/pubmed/28729506

pmid: 28729506
[19]
Kovalenko I, Zdyrko B, Magasinski A, Hertzberg B, Milicw Z, Burtovyy R, Luzinov I, Yushin G. Science, 2011, 334: 75.https://www.ncbi.nlm.nih.gov/pubmed/21903777

doi: 10.1126/science.1209150 pmid: 21903777
[20]
Yan X, Zhang Y, Zhu K, Gao Y, Zhang D, Chen G, Wang C Z, Wei Y J.J. Power Sources, 2014, 246: 95.
[21]
Takeno M, Fukutsuka T, Miyazaki K, Abe T J. Electrochem. Soc., 2017, 164: A3862.
[22]
Fukutsuka T, Koyamada K, Maruyama S, Miyazaki K, Abe T.Electrochim Acta, 2016, 199: 380.
[23]
Abraham D, Reynolds E, Schultz P, Jansen A, Dees D J. Electrochem. Soc., 2006, 153.
[24]
Wu H C, Lee E, Wu N L. Electrochem. Commun., 2010, 12: 488.
[25]
Wu H C, Lee E, Wu N L, Jow T R.J. Power Sources, 2012, 197: 301.
[26]
Nara H, Mukoyama D, Shimizu R, Momma T, Osaka T.J. Power Sources, 2019, 409: 139.https://linkinghub.elsevier.com/retrieve/pii/S0378775318309856

doi: 10.1016/j.jpowsour.2018.09.014
[27]
Sze S M. Physics of Semiconductor Devices, 2nd edNew Jersey: Wiley, 1981.
[28]
Li S S. Metal-Semiconductor Contacts, Clarendon: Oxford, 1988.
[29]
Card H C, Rhoderick E H. J. Phys. D: Appl. Phys., 1971, 4: 1589.https://iopscience.iop.org/article/10.1088/0022-3727/4/10/319

doi: 10.1088/0022-3727/4/10/319
[30]
施敏(Shi M), 伍国珏(Wu G J). 半导体器件物理(Physicsof Semiconductor Device). 西安:西安交通大学出版社(Xi'an: Xi'an Jiao Tong University Press), 2008.
[31]
Shi Y L, Shen M F, Xu S D, Qiu X Y, Jiang L, Qiang Y H, Zhuang Q C, Sun S G. Int. J. Electrochem. Sci., 2011, 6: 3399.
[32]
Chuah L S. Microelectron. Int., 2008, 25: 3.
[33]
Hampson N A, Karunathilaka S A G R, Leek R. J. Appl. Electrochem., 1980, 10: 3.
[34]
Bünzli C, Kaiser H, Novák P.J. Electrochem. Soc., 2015, 162: A218.
[35]
Huang C, Zhuang S, Tu F.J. Electrochem. Soc., 2013, 160: A376.
[36]
Hong J, Wang C, Kasavajjula U.J. Power Sources, 2006, 162: 1289.https://linkinghub.elsevier.com/retrieve/pii/S0378775306014285

doi: 10.1016/j.jpowsour.2006.08.004
[37]
Gnanaraj J S, Thompson R W, Iaconatti S N, DiCarlo J F, Abraham K MElectrochem. Solid-State Lett., 2005, 8: A128.https://iopscience.iop.org/article/10.1149/1.1850390

doi: 10.1149/1.1850390
[38]
Radvanyi E, Van Havenbergh K, Porcher W, Jouanneau S, Bridel J S, Put S, Franger S.Electrochim Acta, 2014, 137: 751.
[39]
Hoshi Y, Narita Y, Honda K, Ohtaki T, Shitanda I, Itagaki M.J. Power Sources, 2015, 288: 168.
[40]
Zhuang Q, Xu J, Fan X, Wei G, Dong Q, Jiang Y, Huang L, Sun S. Sci. China B: Chem., 2007, 50: 776.http://link.springer.com/10.1007/s11426-007-0088-7

doi: 10.1007/s11426-007-0088-7
[41]
庄全超(Zhuang Q C), 魏涛(Wei T), 魏国祯(Wei G Z), 董全峰(Dong Q F), 孙世刚(Sun S G)化学学报(Acta Chim. Sinica), 2009, 67: 2184.e3f91e9f-7835-4890-8d6e-db2391cacedchttp://sioc-journal.cn/Jwk_hxxb/CN/abstract/abstract330224.shtml
[42]
庄全超(Zhuang Q C). 厦门大学博士论文(Doctoral Dissertation of Xiamen University), 2007.
[43]
Ahn S. Electrochem Solid-State Lett., 1998, 1: 111.
[44]
Malifarge S, Delobel B, Delacourt C.J. Electrochem. Soc., 2017, 164: E3329.https://iopscience.iop.org/article/10.1149/2.0331711jes

doi: 10.1149/2.0331711jes
[45]
查全性(Cha Q X). 电极过程动力学导论(Introduction to Electrode Process Dynamics), 北京: 科学出版社(Beijing:Science Press), 2002.
[46]
吴辉煌(Wu H H). 应用电化学基础(Fundamental Knowledge of Applied Electrochemistry), 厦门:厦门大学出版社(Xiamen:Xiamen University Press), 2006.
[47]
Newman J, Tiedemann W.AlChE J., 1975, 21: 25.http://doi.wiley.com/10.1002/%28ISSN%291547-5905

doi: 10.1002/(ISSN)1547-5905
[48]
Xue N, Du W, Greszler T A, Shyy W, Martins J R R AApplied Energy, 2014, 115: 591.d7b63dfa-7ae5-430c-b303-f37ada341e7dhttp://dx.doi.org/10.1016/j.apenergy.2013.10.044

doi: 10.1016/j.apenergy.2013.10.044
[49]
韩雪冰(Han X B). 清华大学博士论文(Doctoral Dissertation of Tsinghua University), 2014.
[50]
冯毅(Feng Y). 中国科学院大学上海微系统与信息技术研究所博士论文(Doctoral Dissertation of University of Chinese Academy of Sciences-Shanghai Institute of Microsystem and Information Technology), 2008.
[51]
Doyle M, Fuller T F, Newman J.J. Electrochem. Soc., 1993, 140: 1526.https://iopscience.iop.org/article/10.1149/1.2221597

doi: 10.1149/1.2221597
[52]
Pathak M, Murbach M D, Pathak C, Jang T J, Qi Y, Schwartz D T, Subramanian V R.J. Electrochem. Soc., 2018, 165: A1324.https://iopscience.iop.org/article/10.1149/2.0831805jes

doi: 10.1149/2.0831805jes
[53]
Murbach M D, Schwartz D T.J. Electrochem. Soc., 2018, 165: A297.
[54]
Meyers J P, Doyle M, Darling R M, Newman J.J. Electrochem. Soc., 2000, 147: 2930.
[55]
Huang R W J M, Chung F, Kelder E M. J. Electrochem. Soc., 2006, 153: A1459.https://iopscience.iop.org/article/10.1149/1.2203947

doi: 10.1149/1.2203947
[56]
Sikha G, White R E.J. Electrochem. Soc., 2007, 154: A43.
[57]
Sunde S, Lervik I A, Owe L E, Tsypkin M.J. Electrochem. Soc., 2009, 156: B927.
[58]
Nilson R H, Brumbach M T, Bunker B C.J. Electrochem. Soc., 2011, 158: A678.
[59]
Grahame D C.J. Electrochem. Soc., 1952, 99: 370C.
[60]
Newman J. Electrochemical Systems, 2nd ed. Englewood Cliffs: Prentice-Hall, Inc., 1973. 468.
[61]
Levi M D, Aurbach D. J. Phys. Chem. B, 2004, 108: 11693.
[62]
Levi M D, Aurbach D.J. Power Sources, 2005, 146: 727.
[63]
Levi M D, Aurbach D. J. Phys. Chem. B, 2005, 109: 2763.https://www.ncbi.nlm.nih.gov/pubmed/16851285

doi: 10.1021/jp045788c pmid: 16851285
[64]
Xu S D, Zhuang Q C, Tian L L, Qin Y P, Fang L, Sun S G. J. Phys. Chem. C, 2011, 115: 9210.
[65]
徐守冬(Xu S D), 庄全超(Zhuang Q C), 史月丽(Shi Y L), 朱亚波(Zhu Y B), 邱祥云(Qiu X Y), 孙智(Sun Z)物理化学学报(Acta Phys-Chim. Sin.), 2011, 27: 2353.1eeafc65-fcb6-4f3f-887a-2ef90e164fe4http://www.whxb.pku.edu.cn/CN/abstract/abstract27697.shtml

doi: 10.3866/PKU.WHXB20111004
[66]
R. de Levie Delahay P, Linford H B. Advances in Electrochemistry and Electrochemical Engineering, Delahay P, Ed. New York: Interscience Publishers, 1961. Vol. 6, 329.
[67]
de Levie R. Electrochim Acta, 1963, 8: 751.
[68]
Raistrick I D. Electrochim Acta, 1990, 35: 1579.
[69]
Keiser H, Beccu K D, Gutjahr M A.Electrochim Acta, 1976, 21: 539.
[70]
Bisquert J, Garcia-Belmonte G, Fabregat-Santiago F, Compte A. Electrochem. Commun., 1999, 1: 429.
[71]
Bisquert J Garcia-Belmonte G, Fabregat-Santiago F, Ferriols N S, Bogdanoff P, Pereira E C. J. Phys. Chem. B, 2000, 104: 2287.
[72]
Bisquert J. Phys. Chem. Chem. Phys., 2000, 2: 4185.
[73]
Lasia A. Electrochemical Impedance Spectroscopy and Its Applications,Boston: Springer US, 2014. 204.
[74]
Lasia A. in Modeling and Numerical Simulations,New York: Springer, 2009. 67.
[75]
Ogihara N, Kawauchi S, Okuda C, Itou Y, Takeuchi Y, Ukyo Y J. Electrochem. Soc., 2012, 159: A1034.
[76]
Ogihara N, Itou Y, Sasaki T, Takeuchi Y. J. Phys. Chem. C, 2015, 119: 4612.
[77]
刘佳奇(Liu J Q). 中国矿业大学硕士论文(Master’s Dissertation of China University of Mining and Technology), 2016.
[78]
Martinent A, Le Gorrec B, Montella C, Yazami R.J. Power Sources, 2001, 83: 97.
[79]
Chang Y C, Sohn H J. J. Electrochem. Soc., 2000, 147: 50.
[80]
Holzapfel M, Martinent A, Alloin F, Le Gorrec B, Yazami R, Montella C J. Electroanal. Chem., 2003, 546: 41.https://linkinghub.elsevier.com/retrieve/pii/S002207280300144X

doi: 10.1016/S0022-0728(03)00144-X
[81]
Zhuang Q C, Tian L L, Wei G, Dong Q F, Sun S G. Chin. Sci. Bull., 2009, 54: 2627.
[82]
Zhuang Q C, Chen Z, Dong Q F, Jiang Y X, Huang L, Sun S G. Chin. Sci. Bull., 2006, 51: 1055.
[83]
Simon B, Boeuve J P, Broussely M.J. Power Sources, 1993, 43: 65.https://linkinghub.elsevier.com/retrieve/pii/037877539380102U

doi: 10.1016/0378-7753(93)80102-U
[84]
庄全超(Zhuang Q C),陈作锋(Chen Z F),董全峰(Dong Q F),姜艳霞(Jiang Y X),周志有(Zhou Z Y),孙世刚(Sun S G)高等学校化学学报(Chem. J. Chin. Univ.), 2005, 26: 2073.eb268ed4-c64c-4c0a-8865-8a47f023b35chttp://www.cjcu.jlu.edu.cn/CN/abstract/abstract24127.shtml
[85]
任彤(Ren T),庄全超(Zhuang Q C),郝玉婉(Hao Y W),崔永丽(Cui Y L)化学学报(Acta Chim. Sinica), 2016, 74: 833.49b8d9b8-b873-4209-81e3-54c45d2f5e24http://sioc-journal.cn/Jwk_hxxb/CN/abstract/abstract345778.shtml

doi: 10.6023/A16080394
[86]
Zhao X, Zhuang Q C, Xu S D, Xu Y X, Shi Y L, Zhang X X. Int. J. Electrochem., 2015,10: 2515.
[87]
Zhuang Q C, Li J, Tian L L.J. Power Sources, 2013, 222: 177.https://linkinghub.elsevier.com/retrieve/pii/S0378775312013389

doi: 10.1016/j.jpowsour.2012.08.050
[88]
Xu S D, Zhuang Q C, Wang J, Xu Y Q, Zhu Y B. Int. J. Electrochem. Sci., 2013, 8: 8058.
[89]
Weydanz W J, Wohlfahrt-Mehrens M, Huggins R A.J. Power Sources, 1999, 237: 81.
[90]
Holzapfel M, Buqa H, Hardwick L J, Hahn M, Wursig A, Scheifele W, Novak P, Kotz R, Veit C, Petrat F M.Electrochim Acta, 2006, 52: 973.
[91]
杜莉莉(Du L L). 中国矿业大学硕士论文(Master’s Dissertation of China University of Mining and Technology), 2012.
[92]
Di Pietro B, Patriarca M, Scrosati B.J. Power Sources, 1982, 8: 289.
[93]
Thackeray M M, David W I F, Goodenough J B. Mater. Res. Bull., 1982, 17: 785.
[94]
Morzilli S, Scrosati B.Electrochim Acta, 1985, 30: 1271.
[95]
Abraham K M, Pasquariello D M, Willstaedt E B.J. Electrochem. Soc., 1990, 137: 743.
[96]
Li H, Wang Z, Chen L, Huang X. . Adv. Mater.., 2009, 21: 4593.
[97]
Hang B T, Okada S, Yamaki J.J. Power Sources, 2008, 178: 402.
[98]
Hang B T, Doi T, Okada S, Yamaki J. J. Power Sources, 2007, 174: 493.
[99]
吴超(Wu C), 庄全超(Zhuang Q C), 徐守冬(Xu S D), 崔永丽(Cui Y L), 强颖怀(Qiang Y H), 孙智(Sun Z)化学学报(Acta Chim. Sinica), 2012, 70: 51.
[100]
Wu C, Zhang H, Wu Y X, Zhuang Q C, Tian L L, Zhang X X.Electrochim Acta, 2014, 134: 18.https://linkinghub.elsevier.com/retrieve/pii/S0013468614005799

doi: 10.1016/j.electacta.2014.03.068
[101]
赵星(Zhao X),庄全超(Zhuang Q C),邱祥云(Qiu X Y),徐守冬(Xu S D),史月丽(Shi Y L)物理化学学报(Acta Phys-Chim. Sin.), 2011, 27: 1666.35e9d369-6509-4ec2-8377-5c0c4c4f5a74http://www.whxb.pku.edu.cn/CN/abstract/abstract27588.shtml

doi: 10.3866/PKU.WHXB20110715
[102]
Zhao X, Zhuang Q C Xu S D, Xu Y X, Shi Y L, Zhang X X. J. Electrochem. Soc., 2015, 162: A1156.
[103]
Bao W, Zhuang Q, Xu S, Cui Y, Shi Y, Qiang Y. Ionics, 2013, 19: 1005.
[104]
Li F, Zhuang Q C, Qiu X Y, Sun Z. Int. J. Electrochem. Sci., 2013, 8: 3551.
[105]
Yan C, Wu, C, Zhuang Q, Tian L, Cui Y, Zhao X, Ju Z, Sun X. ChemistrySelect, 2016, 1: 3979.
[106]
Julien C M. Materials Science and Engineering: R: Reports, 2003, 40: 47.
[107]
Marianetti C A, Kotliar G, Ceder G. Nat. Mater., 2004, 3: 627.https://www.ncbi.nlm.nih.gov/pubmed/15322532

doi: 10.1038/nmat1178 pmid: 15322532
[108]
Van der Ven A, Thomas J C, Xu Q, Bhattacharya J. Math. Comput. Simulat., 2010, 80: 1393.
[109]
Antolini E. Solid State Ionics, 2004, 170: 159.
[110]
Ceder G, Van der Ven A. Electrochim Acta, 1999, 45: 131.
[111]
Van der Ven A, Aydinol M K, Ceder G, Kresse G, Hafner J. Phys. Rev. B, 1998, 58: 2975.
[112]
van Elp J, Wieland J L, Eskes, H, Kuiper P, Sawatzky G A, de Groot F M F, Turner T S. Phys. Rev. B, 1991, 44: 6090.
[113]
Thomas M G S R, Bruce P G, Goodenough J B J. Electrochem. Soc., 1985, 132: 1521.
[114]
Levi M D, Salitra G, Markovsky B, Teller H, Aurbach D, Heider U, Heider L.J. Electrochem. Soc., 1999, 146: 1279.
[115]
Aurbach D, Levi M D, Levi E, Teller H, Markovsky B, Salitra G, Heider U, Heider L.J. Electrochem. Soc., 1998, 145: 3024.
[116]
Levi M D, Gamolsky K, Aurbach D, Heider U, Oesten R.Electrochim Acta, 2000, 45: 1781.https://linkinghub.elsevier.com/retrieve/pii/S0013468699004028

doi: 10.1016/S0013-4686(99)00402-8
[117]
Nobili F, Dsoke S, Croce F, Marassi R.Electrochim Acta, 2005, 50: 2307.https://linkinghub.elsevier.com/retrieve/pii/S0013468604010473

doi: 10.1016/j.electacta.2004.10.044
[118]
Nobili F, Dsoke S, Minicucci M, Croce F, Marassi R. J. Phys. Chem. B, 2006, 110: 11310.https://www.ncbi.nlm.nih.gov/pubmed/16771401

doi: 10.1021/jp0606356 pmid: 16771401
[119]
Nobili F, Tossici R, Croce F, Scrosati B, Marassi R.J. Power Sources, 2001, 94: 238.
[120]
Nobili F, Tossici R, Marassi R, Croce F, Scrosati B. J. Phys. Chem. B, 2002, 106: 3909.
[121]
Croce F, Nobili F, Deptula A, Lada W, Tossici R, D’Epifanio A, Scrosati B, Marassi R. Electrochem. Commun., 1999, 1: 605.
[122]
Nobili F, Croce F, Scrosati B, Marassi R. Chem. Mater., 2001, 13: 1642.
[123]
Qiu X Y, Zhuang Q C, Zhang Q Q, Cao R, Ying P Z, Qiang Y H, Sun S G. Phys. Chem. Chem. Phys., 2012, 14: 2617.https://www.ncbi.nlm.nih.gov/pubmed/22262135

doi: 10.1039/c2cp23626e pmid: 22262135
[124]
Qiu X Y, Zhuang Q C, Zhang Q Q, Cao R, Qiang Y H, Ying P Z, Sun S G.J. Electroanal. Chem., 2013, 688: 393.
[125]
Austin I G, Mott N F. Advances in Physics, 1969, 18: 41.
[126]
Nishizawa M, Ise T, Koshika H, Itoh T, Uchida I. Chem. Mater., 2000, 12: 1367.https://pubs.acs.org/doi/10.1021/cm990696z

doi: 10.1021/cm990696z
[127]
Pistoia G, Zane D, Zhang Y J. Electrochem. Soc., 1995, 142: 2551.
[128]
Marzec J, Swierczek K, Przewoznik J, Molenda J, Simon D R, Kelder E M, Schoonman J. Solid State Ionics, 2002, 146: 225.https://linkinghub.elsevier.com/retrieve/pii/S0167273801010220

doi: 10.1016/S0167-2738(01)01022-0
[129]
Zhuang Q C, Wei T, Du L L, Cui Y L, Fang L, Sun S G. J. Phys. Chem. C, 2010, 114: 8614.https://pubs.acs.org/doi/10.1021/jp9109157

doi: 10.1021/jp9109157
[130]
Wei T, Zhuang Q C, Wu, C, Cui Y L, Fang L, Sun S G. Acta Chimica Sinica, 2010, 68.
[131]
Aurbach D, Gamolsky K, Markovsky B, Salitra G, Gofer Y, Heider U, Oesten R, Schmidt M J. Electrochem. Soc., 2000, 147: 1322.https://iopscience.iop.org/article/10.1149/1.1393357

doi: 10.1149/1.1393357
[132]
Aurbach D, Levi M D, Gamulski K, Markovsky B, Salitra G, Levi E, Heider U, Heider L, Oesten R.J. Power Sources, 1999, 81: 472.
[133]
Chung S Y, Bloking J T, Chiang Y M. Nature Materials, 2002, 1: 123.https://www.ncbi.nlm.nih.gov/pubmed/12618828

pmid: 12618828
[134]
Cech O, Thomas J E, Sedlarikova M, Fedorkova A, Vondrak J, Moreno M S, Visintin A. Solid State Sciences, 2013, 20: 110.https://linkinghub.elsevier.com/retrieve/pii/S1293255813001106

doi: 10.1016/j.solidstatesciences.2013.03.017
[135]
Koltypin M, Aurbach D, Nazar L, Ellis B.J. Power Sources, 2007, 174: 1241.https://linkinghub.elsevier.com/retrieve/pii/S0378775307012657

doi: 10.1016/j.jpowsour.2007.06.045
[136]
Lu F, Zhou Y, Liu J, Pan Y.Electrochim Acta, 2011, 56: 8833.https://linkinghub.elsevier.com/retrieve/pii/S001346861101125X

doi: 10.1016/j.electacta.2011.07.079
[137]
Bajars G, Kucinskis G, Smits J, Kleperis J, Lusis A. IOP Conf.Ser.: Mater. Sci. Eng., 2012, 38: 012019.
[138]
Wang C, Hong J.Electrochem Solid-State Lett., 2007, 10: A65.https://iopscience.iop.org/article/10.1149/1.2409768

doi: 10.1149/1.2409768
[139]
Jamnik J, Gaberscek M. MRS Bull., 2009, 34: 942.https://www.cambridge.org/core/product/identifier/S0883769400004012/type/journal_article

doi: 10.1557/mrs2009.217
[140]
Gaberscek M, Moskon J, Erjavec B, Dominko R, Jamnik J. Electrochem. Solid-State Lett., 2008, 11: A170.https://iopscience.iop.org/article/10.1149/1.2964220

doi: 10.1149/1.2964220
[141]
Zhang T, Yang Z, Wang L, Zhao X, Zhuang Q C. Int. J. Electrochem. Sci., 2018, 13: 8322.
[142]
Ohzuku T, Ueda A, Yamamoto N.J. Electrochem. Soc., 1995, 142: 1431.https://iopscience.iop.org/article/10.1149/1.2048592

doi: 10.1149/1.2048592
[143]
Nakahara K, Nakajima R, Matsushima T, Majima H J. Power Sources, 2003, 117: 131.https://linkinghub.elsevier.com/retrieve/pii/S0378775303001691

doi: 10.1016/S0378-7753(03)00169-1
[144]
Belharouak I, Sun Y K, Lu W, Amine K.J. Electrochem. Soc., 2007, 154: A1083.https://iopscience.iop.org/article/10.1149/1.2783770

doi: 10.1149/1.2783770
[145]
Takami N, Inagaki H, Kishi T, Harada Y, Fujita Y, Hoshina K.J. Electrochem. Soc., 2009, 156: A128.https://iopscience.iop.org/article/10.1149/1.3043441

doi: 10.1149/1.3043441
[146]
Wu K, Yang J, Qiu X Y, Xu J M, Zhang Q Q, Jin J, Zhuang Q C.Electrochim Acta, 2013, 108: 841.https://linkinghub.elsevier.com/retrieve/pii/S0013468613013170

doi: 10.1016/j.electacta.2013.07.048
[147]
Yamakawa N, Jiang M, Grey C P. Chem. Mater., 2009, 21: 3162.
[148]
Shi Y L, Shen M F, Xu S D, Zhuang Q C, Jiang L, Qiang Y H. Solid State Ionics, 2012, 23: 222.
[149]
Shi YL, Wu N, Shen M F, Cui Y L, Jiang L, Qiang Y H Zhuang Q C. ChemElectroChem., 2014, 1: 645.75cc5cd3-8b75-4f6d-a534-515429d30b1bhttp://dx.doi.org/10.1002/celc.201300069

doi: 10.1002/celc.201300069
[150]
沈明芳(Shen M F). 中国矿业大学硕士论文(Master’s Dissertation of China University of Mining and Technology), 2013.
[151]
杜莉莉(Du L L), 庄全超(Zhuang Q C), 魏涛(Wei T), 史月丽(Shi Y L), 强颖怀(Qiang Y H), 孙世刚(Sun S G). 化学学报(Acta Chim. Sinica), 2011, 69: 2641.cb4cbedb-c476-4339-91f1-61b338b6888bhttp://sioc-journal.cn/Jwk_hxxb/CN/abstract/abstract340826.shtml
[152]
Fasmin F, Srinivasan R.J. Electrochem. Soc., 2017, 164: H443.https://iopscience.iop.org/article/10.1149/2.0391707jes

doi: 10.1149/2.0391707jes
[153]
Murbach M D, Hu V W, Schwartz D T.J. Electrochem. Soc., 2018, 165: A2758.https://iopscience.iop.org/article/10.1149/2.0711811jes

doi: 10.1149/2.0711811jes
[154]
Günter F J, Habedank J B, Schreiner D, Neuwirth T, Gilles R, Reinhart G.J. Electrochem. Soc., 2018, 165: A3249.https://iopscience.iop.org/article/10.1149/2.0081814jes

doi: 10.1149/2.0081814jes
[1] Chen Ni, Di Jiang, Youlin Xu, Wenlai Tang. Application of Viscoelastic Fluid in Passive Particle Manipulation Technologies [J]. Progress in Chemistry, 2020, 32(5): 519-535.
[2] Haodeng Chen, Jianxing Xu, Shaomin Ji, Wenjin Ji, Lifeng Cui, Yanping Huo. Application of MOFs Derived Metal Oxides and Composites in Anode Materials of Lithium Ion Batteries [J]. Progress in Chemistry, 2020, 32(2/3): 298-308.
[3] Yun Zhao, Yuqiong Kang, Yuhong Jin, Li Wang, Guangyu Tian, Xiangming He. Silicon-Based and -Related Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2019, 31(4): 613-630.
[4] Yun Zhao, Yuhong Jin, Li Wang, Guangyu Tian, Xiangming He. The Application of Self-Assembled Hierarchical Structures in Lithium-Ion Batteries [J]. Progress in Chemistry, 2018, 30(11): 1761-1769.
[5] Qing Mao*, Weiyun Jing, Yue Shi. Basic Principles and Applications of Nonlinear Spectroscopy Analysis in Electrochemistry [J]. Progress in Chemistry, 2017, 29(2/3): 210-215.
[6] Xiujuan Li, Yunhe Cao, Kang Hua, Chang Wang, Weilin Xu, Dong Fang. Characterization and Modification Method of Oxovanadium-Based Electrode Materials [J]. Progress in Chemistry, 2017, 29(10): 1260-1272.
[7] Ying Shi, Lei Wen, Minjie Wu, Feng Li. Applications of the Carbon Materials on Lithium Titanium Oxide as Anode for Lithium Ion Batteries [J]. Progress in Chemistry, 2017, 29(1): 149-161.
[8] Chen Jun, Ding Nengwen, Li Zhifeng, Zhang Qian, Zhong Shengwen. Organic Cathode Material for Lithium Ion Battery [J]. Progress in Chemistry, 2015, 27(9): 1291-1301.
[9] Zhang Lingling, Ma Yulin, Du Chunyu, Yin Geping. Research on the High-Voltage Electrolyte for Lithium Ion Batteries [J]. Progress in Chemistry, 2014, 26(04): 553-559.
[10] Hu Jinlin, Yang Qihao, Chen Jing, Wang Taiya, Lin He, Qian Haisheng. Synthesis and Applications of Mesoporous TiO2 Functional Nanomaterials [J]. Progress in Chemistry, 2013, 25(12): 2080-2092.
[11] Han Fei, Lu Anhui, Li Wencui* . Structure Controlled Carbon-Based Materials for Lithium Ion Battery [J]. Progress in Chemistry, 2012, 24(12): 2443-2456.
[12] Liu Weiqing, Kou Dongxing, Cai Molang, Hu Linhua, Dai Songyuan. Impedance Characteristics of Dye Sensitized Solar Cells [J]. Progress in Chemistry, 2012, 24(05): 722-736.
[13] Zhang Linchao, Chen Chunhua. Electrode Materials for Lithium Ion Battery [J]. Progress in Chemistry, 2011, 23(0203): 275-283.
[14] Wang Zhaoxiang, Chen Liquan, Huang Xuejie. Structural Design and Modification of Cathode Materials for Lithium Ion Batteries [J]. Progress in Chemistry, 2011, 23(0203): 284-301.
[15] Xia Lan, Li Suli, Ai Xinping, Yang Hanxi. Safety Enhancing Methods for Li-Ion Batteries [J]. Progress in Chemistry, 2011, 23(0203): 328-335.