中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (4): 926-949 DOI: 10.7536/PC210710 Previous Articles   Next Articles

• Review •

Boron Removal Method, Technology and Process for Producing Solar Grade Silicon by Metallurgical Method

Yi Zeng1, Yongsheng Ren1,2,3(), Wenhui Ma1(), Hui Chen2, Shu Zhan4, Jing Cao1   

  1. 1 Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology,Kunming 650093, China
    2 Department of Materials Engineering, The University of Tokyo, Tokyo 113-8656, Japan
    3 State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing,Beijing 100083, China
    4 School of Computer and Information, Hefei University of Technology, Hefei 230601, China
  • Received: Revised: Online: Published:
  • Contact: Yongsheng Ren, Wenhui Ma
  • Supported by:
    Youth Fund of the National Natural Science Foundation of China(52104303); Yunnan Joint Fund of the National Natural Science Foundation of China(U1702251); Open Fund of the State Key Laboratory of Advanced Metallurgy of University of Science and Technology Beijing(KK21-07)
Richhtml ( 17 ) PDF ( 707 ) Cited
Export

EndNote

Ris

BibTeX

As a kind of green renewable energy, solar energy has attracted wide attention, and impurity removal is a necessary purification process to obtain solar grade silicon from metallurgical grade silicon, which is very important for the preparation of silicon-based solar cells. The new technology for preparing solar grade polysilicon by the metallurgical method has become the focus of research and development because of its advantages such as low energy consumption, low cost and less pollution. However, the effective removal of boron is one of the most severe challenges we face. In this paper, the thermodynamic and kinetic properties of boron (solubility, diffusivity, diffusion coefficient, mass transfer coefficients and activity coefficient) and the research topics of boron removal in recent years (gas blowing, slag treatment, plasma treatment, acid leaching and solvent refining) are reviewed. It is found that solvent refining is a promising method to obtain high purity silicon. The enrichment rate of silicon and the removal rate of boron can reach more than 90%. Additives can strengthen the formation and precipitation of borides to improve the boron removal process, and the subsequent almost can be completely eliminated, which will not cause pollution to the refined silicon, which will be more effective in boron removal and increase the practicability of the process. At the end of the paper, several deboration processes are compared and analyzed, and the application prospect of metallurgical process is forecasted.

Contents

1 Introduction

2 Properties of boron in silicon

2.1 Solubility of boron in silicon

2.2 Diffusivity of boron in silicon

2.3 Diffusion coefficients and mass transfer coefficients of boron in silicon and slags

2.4 Activity coefficients of boron in silicon and slags

2.5 Segregation coefficients of boron between solid silicon and solvent

2.6 The technical difficulties and challenges of boron removal in silicon

3 Boron removal process

3.1 Boron removal by gas blowing

3.2 Boron removal by slag treatment

3.3 Boron removal by a united refining technique combined gas blowing with slag treatment

3.4 Boron removal by plasma refining

3.5 Boron removal by acid leaching

3.6 Boron removal by solvent refining

3.7 Application of boron removal technology by metallurgical method

4 Conclusion and prospect

Fig. 1 Phase equilibria in the Si-rich Si-B system
Fig. 2 Diffusion coefficients of B in Si
Table 1 Diffusion coefficients and mass transfer rates[10,11,22⇓⇓⇓⇓⇓⇓⇓~30].DSi and DS are the diffusion coefficients of B in Si and BO1.5 in slag, respectively. βSi and βS are the mass transfer coefficients of B in Si and BO1.5 in slag, respectively. δSi and δS are boundary layer thicknesses in Si and slag, respectively
Fig. 3 Activity coefficients of B in Si
Table 2 Interaction coefficients between various elements and boron in silicon[21,31,32,34,35,37]
Table 3 Segregation coefficients of boron between solid silicon and eutectics[35,38⇓⇓⇓~42]
Fig. 4 The cross-sectional configuration of experimental setup for gas injection
Fig. 5 Mechanism of boron removal using a mixed water vapor and oxygen gases refining
Fig. 6 Mixing free energy of gaseous boric species for Ar-H2O-(H2, O2 or CO2)-B system through HSC chemistry
Fig. 7 Reaction mechanism of boron removal using CaO-SiO2 slag
Fig. 8 Phase diagram of binary CaO-SiO2 system
Fig. 9 Schematic diagram of boron removal by CaO-SiO2-ZnO ternary slag refining
Fig. 10 Research idea of united refining technique of combining gas blowing with slag treatment
Fig. 11 Boron partition versus a function of slag composition of binary CaO-SiO2 and ternary CaO-SiO2-CaF2 system
Fig. 12 Schematic diagram of synergistic separation to boron using combined slag treatment and gas blowing refining technique
Fig. 13 Mechanism of deboronization process for MG-Si purification by Ar-H2-H2O plasma refining
Fig. 14 Schematic of the experimental apparatus for solvent refining
Fig. 15 Schematic diagram of interaction between boron and additive element in Si-Al melt
Fig. 16 Ellingham diagram of partial borides
Fig. 17 Distribution coefficients of B between slag and Si-Cu alloy as a function of (a) CaO/SiO2 and (b) SiO2/Al2O3 ratios of slag equilibrated at 1773 K
Fig. 18 A schematic of the process of the dissolution of MG-Si, recrystallization of a Si grain, and segregation of impurities
Fig. 19 The B removal from Si-Al, Si-Sn, and Si-Al-Sn alloys using solvent refining methods
Table 5 Reported removal efficiency of B from Si-based alloys using solvent refining method[39,40,42,62,85,97,99,100,101,104,106,108,113,115,116,118,126,128,129,134,135,136⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓~149]
Authors and ref Alloy system B removal efficiency P removal efficiency Si separation method
Yoshikawa and Morita et al.[97] Si-54 wt% Al 56→0.81 ppmw (98.6%) 35.8→0.93 ppmw (97.4%) Electromagnetic separation
Obinata and Komatsu et al.[136] Si-Al 120→20 ppmw (83.3%) Electrolysis separation
Yoshikawa et al.[137] Si-54 wt% Al + Ti 65.4→0.42 ppmw (99.4%) - Electromagnetic separation
Gumaste et al.[138] Si-Al 6→6 ppmw 45→15 ppmw (98.6%) Pouring+acid leaching
Gu et al.[139] Si-Al 8→1.55 ppmw (80.6%) 13→0.41 ppmw(96.8%) Pouring the residual alloy+
Acid leaching
Li et al.[140] 35 wt% Si-Al 8.33→5.25 ppmw (37.0%) 33.65→13.5 ppmw (60.0%) Super gravity separation
Hu et al.[104] Si-Sn 12.1→3.3 ppmw (Si-Sn alloy) 242.6→44.5 ppmw (Si-Sn alloy) Super gravity separation
Si-Al →0.28 ppmw (Si-Al alloy) →0.46 ppmw (Si-Al alloy)
Jie et al.[141] 30 wt% Si-Al 65→3.1 ppmw (93.4%) 68→10.8 ppmw (81.4%) Electromagnetic separation
Li et al.[135] 22.8 wt% Si-Al 14.8→3.8 ppmw (74.3%) - Acid leaching
Li et al.[134] Si-63.8 wt% Al 14.8→1.4 ppmw (90.5%) - Acid leaching
Ma and Lei et al.[99,100,142] 45 wt% Si-Al 27.9→10.8 ppmw (61.3%) 104.9→2.5 ppmw (97.6%) Electromagnetic separation
+Directional solidification
Si-54 wt% Al + Zr 65.4→0.42 ppmw (99.4%) - Electromagnetic separation
Al-46 wt% Si + Hf 58.9→1.04 ppmw (98.2%) - Electromagnetic separation
Al-46 wt% Si + Ti 58.9→0.46 ppmw (99.2%) - Electromagnetic separation
Esfahani et al.[39] Si-17 wt% Fe 27→2 ppmw (92.6%) 68→29 ppmw (57.4%) Heavy medium
Khajavi et al.[116] Si-Fe (70%, at 1583 K; 65%,
at 1483 K)
- Acid leaching
Wu et al.[115] Si-Fe - 378.5→17.2 ppmw (95.5%) Acid leaching
Luo and Huang et al.[108,113,143] Si-Cu 3.12→1.29 ppmw (58.7%) 17.14→9.9 ppmw (42.2%) Acid leaching
Si-50 wt% Cu + 3.12→0.35 ppmw (88.8%) 17.14→7.27 ppmw (57.8%) Acid leaching
slag treatment
Si-Cu 36→27 ppmw (25%) 25→18 ppmw (28%) Directional solidification
Li et al.[62] 30 wt% Si-Cu 15→1 ppmw (93.3%) 20→1 ppmw (95%) Acid leaching
Zhang et al.[144] Si-Sn - 16.1→3.77 ppmw (85.51%) Zone melting directional
solidification method
Li et al.[128] Si-Sn+ 12.92→0.79 ppmw (93.9%) - Acid leaching
slag treatment
Ma et al.[85,145,146] Si-Sn 33→11.6 ppmw (64.8%) 37→9.7 ppmw (73.8%) Directional solidification method
Sn-84.4 wt% Si + 33→9.2 ppmw (75.1%) 36.2→9.6 ppmw (73.5%) Directional solidification method
slag treatment
Sn-26.2 wt% Si + 33→0.3 ppmw (99.1%) - Electromagnetic separation
slag treatment
Hu et al.[147] Si-Sn + Ca 10.3→3.12 ppmw (69.71%) 108.5→28.9 ppmw (73.36%) Super gravity separation
Li et al.[129,148] Si-Al-Sn 14.8→3.8 ppmw (74.3%) - Electromagnetic separation
Si-Al-Zn 14.8→3.8 ppmw(74.3%) - Acid leaching
Zhao et al.[40] 6 wt% Si-Sn 15→0.1 ppmw (99.3%) - Acid leaching
Lei et al.[149] Si-5wt% Zr 52→35 ppmw (32.7%) 51→12 ppmw (76.5%) Acid leaching
Morito et al.[118] Si-Na - 73→3.4 ppmw (95.3%) Acid leaching
Lai et al.[126] Si-Ca 8.6→3 ppmw (65.1%) 35→4 ppmw (88.6%) Acid leaching
Ren et al.[106] Si-50 at% Sn + Zr 120→31.2 ppmw (73.6%) - Directional solidification+
Acid leaching
Ren et al.[42] Si-50 at% Cu + Zr 80→5.3 ppmw (93.4%) - Directional solidification +
Acid leaching
Chen et al.[101] Al-35at% Si + V 73.6→35.5 ppma (76.8%) - Directional solidification +
Acid leaching
[1]
I.S.E. Fraunhofer, Photovoltaics report. Fraunhofer ISE, Freiburg, 2020: 4.
[2]
Shimoda T, Masuda T. Jpn. J. Appl. Phys., 2014, 53(2S): 02BA01.

doi: 10.7567/JJAP.53.02BA01
[3]
Tang K, Øvrelid E J, Tranell G, Tangstad M. Mater. Trans., 2009, 50(8): 1978.

doi: 10.2320/matertrans.M2009110
[4]
Samsonov G V, Sleptsov V M. Russ. J. Inorg. Chem., 1963, 8: 1047.
[5]
Brosset C, Magnusson B. Nature, 1960, 187(4731): 54.

doi: 10.1038/187054a0
[6]
Trumbore F A, Freeland P E, Logan R A. J. Electrochem. Soc., 1961, 108(5): 458.

doi: 10.1149/1.2428111
[7]
Hesse J. Z. Met., 1968, 59: 499.
[8]
Olesinski R W, Abbaschian G J. Bull. Alloy Phase Diagr., 1984, 5(5): 476.

doi: 10.1007/BF02872899
[9]
Fuller C S, Ditzenberger J A. J. Appl. Phys., 1956, 27(5): 544.

doi: 10.1063/1.1722419
[10]
Garandet J P. Int. J. Thermophys., 2007, 28(4): 1285.

doi: 10.1007/s10765-007-0205-z
[11]
Kodera H. Jpn. J. Appl. Phys., 1963, 2(4): 212.

doi: 10.1143/JJAP.2.212
[12]
Williams E L. J. Electrochem. Soc., 1961, 108(8): 795.

doi: 10.1149/1.2428219
[13]
Barry M L, Olofsen P. J. Electrochem. Soc., 1969, 116(6): 854.

doi: 10.1149/1.2412077
[14]
Fuller C S, Ditzenberger J A. J. Appl. Phys., 1954, 25(11): 1439.
[15]
Okamura M. Jpn. J. Appl. Phys., 1969, 8(12): 1440.

doi: 10.1143/JJAP.8.1440
[16]
Domínguez E, Jaraiz M. J. Electrochem. Soc., 1986, 133(9): 1895.

doi: 10.1149/1.2109043
[17]
Vick G L, Whittle K M. J. Electrochem. Soc., 1969, 116(8): 1142.

doi: 10.1149/1.2412239
[18]
Wijaranakula W. Jpn. J. Appl. Phys., 1993, 32(Part 1, No. 9A): 3872.
[19]
Ghoshtagore R N. Phys. Rev. B, 1971, 3(2): 397.
[20]
Tang K, Øvrelid E J, Tranell G, Tangstad M. Thermochemical and Kinetic Databases for the Solar Cell Silicon Materials, Crystal Growth of Si for Solar Cells. Springer, Berlin, Heidelberg, 2009. 219.
[21]
Noguchi R, Suzuki K, Tsukihashi F, Sano N. Metall. Mater. Trans. B, 1994, 25(6): 903.

doi: 10.1007/BF02662772
[22]
Fang M, Lu C H, Huang L Q, Lai H X, Chen J, Yang X B, Li J T, Ma W H, Xing P F, Luo X T. Ind. Eng. Chem. Res., 2014, 53(30): 12054.

doi: 10.1021/ie404427c
[23]
Krystad E, Tang K, Tranell G. JOM, 2012, 64(8): 968.

doi: 10.1007/s11837-012-0382-5
[24]
Zhang L, Tan Y, Li J Y, Liu Y, Wang D. Mater. Sci. Semicond. Process, 2013, 16(6): 1645.

doi: 10.1016/j.mssp.2013.04.012
[25]
Tang K, Øvrelid E J, Tranell G, Tangstad M. J. Occup. Med., 2009, 61(11): 49.
[26]
Wu J J, Wang F M, Chen Z J, Ma W H, Li Y L, Yang B, Dai Y N. Fluid Phase Equilibria, 2015, 404: 70.

doi: 10.1016/j.fluid.2015.06.040
[27]
Wu J J, Wang F M, Ma W H, Lei Y, Yang B. Metall. Mater. Trans. B, 2016, 47(3): 1796.

doi: 10.1007/s11663-016-0615-z
[28]
Nishimoto H, Kang Y, Yoshikawa T, Morita K. High Temp. Mater. Process., 2012, 31(4/5): 471.

doi: 10.1515/htmp-2012-0083
[29]
Wang Y, Morita K. J. Sustain. Metall., 2015, 1(2): 126.

doi: 10.1007/s40831-015-0015-7
[30]
Wang F M, Wu J J, Ma W H, Lei Y, Wei K X, Yang B. J. Chem. Thermodyn., 2018, 118: 215.

doi: 10.1016/j.jct.2017.11.018
[31]
Tanahashi M, Fujisawa T, Yamauchi C. Shigen-to-Sozai, 1998, 114(11): 807.

doi: 10.2473/shigentosozai.114.807
[32]
Inoue G, Yoshikawa T, Morita K. High Temp. Mater. Process., 2003, 22(3/4): 221.

doi: 10.1515/HTMP.2003.22.3-4.221
[33]
Yoshikawa T, Morita K. Mater. Trans., 2005, 46(6): 1335.

doi: 10.2320/matertrans.46.1335
[34]
Yoshikawa T, Morita K. Metall. Mater. Trans. B, 2005, 36(6): 731.

doi: 10.1007/s11663-005-0076-2
[35]
Khajavi L T, Morita K, Yoshikawa T, Barati M. J. Alloys Compd., 2015, 619: 634.

doi: 10.1016/j.jallcom.2014.09.062
[36]
Teixeira L A V, Morita K. ISIJ Int., 2009, 49(6): 783.

doi: 10.2355/isijinternational.49.783
[37]
Xu F M, Wu S R, Tan Y, Li J Y, Li Y Q, Liu Y. Sep. Sci. Technol., 2014, 49(2): 305.

doi: 10.1080/01496395.2013.817423
[38]
Hall R N. J. Phys. Chem., 1953, 57(8): 836.

doi: 10.1021/j150509a021
[39]
Esfahani S, Barati M. Met. Mater. Int., 2011, 17(6): 1009.

doi: 10.1007/s12540-011-6020-x
[40]
Zhao L X, Wang Z, Guo Z C, Li C Y. T. Nonfree. Metal. Soc., 2011, 21(5): 1185.
[41]
Yin Z, Oliazadeh A, Esfahani S, Johnston M, Barati M. Can. Metall. Q., 2011, 50(2): 166.

doi: 10.1179/000844311X12949307643551
[42]
Ren Y S, Morita K. ACS Sustain. Chem. Eng., 2020, 8(17): 6853.

doi: 10.1021/acssuschemeng.0c01785
[43]
Khattak C P, Joyce D B. National Renewable Energy Laboratory, 2001. 8.
[44]
Sortland Ø S, Tangstad M. Metall. Mater. Trans. E, 2014, 1(3): 211.
[45]
Khattak C P, Joyce D B, Schmid F. Sol. Energy Mater. Sol. Cells, 2002, 74(1/4): 77.

doi: 10.1016/S0927-0248(02)00051-X
[46]
Nordstrand E F, Tangstad M. Metall. Mater. Trans. B, 2012, 43(4): 814.

doi: 10.1007/s11663-012-9671-1
[47]
Altenberend J, Chichignoud G, Delannoy Y. Metall. Mater. Trans. E, 2017, 4(1): 41.
[48]
Lee B P, Lee H M, Park D H, Shin J S, Yu T U, Moon B M. Sol. Energy Mater. Sol. Cells, 2011, 95(1): 56.

doi: 10.1016/j.solmat.2010.02.011
[49]
Flamant G, Kurtcuoglu V, Murray J, Steinfeld A. Sol. Energy Mater. Sol. Cells, 2006, 90(14): 2099.

doi: 10.1016/j.solmat.2006.02.009
[50]
Wu J J, Ma W H, Yang B, Dai Y N, Morita K. Trans. Nonferrous Met. Soc. China, 2009, 19(2): 463.

doi: 10.1016/S1003-6326(08)60296-4
[51]
Wu J J, Li Y L, Ma W H, Liu K, Wei K X, Xie K Q, Yang B, Dai Y N. Silicon, 2014, 6(1): 79.

doi: 10.1007/s12633-013-9158-y
[52]
Suzuki K, Kumagai T, Sano N. ISIJ Int., 1992, 32(5): 630.

doi: 10.2355/isijinternational.32.630
[53]
Jones J A T, Bowman B, Lefrank P A. Making, Shaping, and Treating of Steel. Steelmaking and Refining Volume, The AISE Steel Foundation, Pittsburgh, PA, 1998. 281.
[54]
Jung E J, Moon B M, Seok S H, Min D J. Energy, 2014, 66: 35.

doi: 10.1016/j.energy.2013.08.010
[55]
Wu J J, Li Y L, Ma W H, Wei K X, Yang B, Dai Y N. Trans. Nonferrous Met. Soc. China, 2014, 24(4): 1231.

doi: 10.1016/S1003-6326(14)63183-6
[56]
Jakobsson L K, Tangstad M. Metall. Mater. Trans. B, 2015, 46(2): 595.

doi: 10.1007/s11663-014-0268-8
[57]
Luo D W, Liu N, Lu Y P, Zhang G L, Li T J. Trans. Nonferrous Met. Soc. China, 2011, 21(5): 1178.

doi: 10.1016/S1003-6326(11)60840-6
[58]
Li M, Utigard T, Barati M. Metall. Mater. Trans. B, 2015, 46(1): 74.

doi: 10.1007/s11663-014-0168-y
[59]
Johnston M D, Barati M. J. Non Cryst. Solids, 2011, 357(3): 970.

doi: 10.1016/j.jnoncrysol.2010.10.033
[60]
Jakobsson L K, Tangstad M. Metall. Mater. Trans. B, 2014, 45(5): 1644.

doi: 10.1007/s11663-014-0088-x
[61]
Li Y L, Wu J J, Ma W H, Yang B. Silicon, 2015, 7(3): 247.

doi: 10.1007/s12633-014-9222-2
[62]
Li M, Utigard T, Barati M. Metall. Mater. Trans. B, 2014, 45(1): 221.

doi: 10.1007/s11663-013-0011-x
[63]
Zhang L, Tan Y, Xu F M, Li J Y, Wang H Y, Gu Z. Sep. Sci. Technol., 2013, 48(7): 1140.

doi: 10.1080/01496395.2012.714438
[64]
Zhang L, Tan Y, Li J Y, Liu Y, Wang D K. Mater. Sci. Semicond. Process., 2013, 16(6): 1645.

doi: 10.1016/j.mssp.2013.04.012
[65]
Safarian J, Tranell G, Tangstad M. Metall. Mater. Trans. B, 2013, 44(3): 571.

doi: 10.1007/s11663-013-9823-y
[66]
Yin C H, Hu B F, Huang X M. J. Semicond., 2011, 32(9): 092003.

doi: 10.1088/1674-4926/32/9/092003
[67]
White J F, Du S C. Metall. Mater. Trans. B, 2014, 45(1): 96.

doi: 10.1007/s11663-013-0010-y
[68]
Wu J J, Xia Z F, Ma W H, Wang F M, Zhou Y Q, Wei K X. Mater. Sci. Semicond. Process., 2017, 57: 59.

doi: 10.1016/j.mssp.2016.10.001
[69]
Wang F M, Wu J J, Ma W H, Xu M, Lei Y, Yang B. Sep. Purif. Technol., 2016, 170: 248.

doi: 10.1016/j.seppur.2016.06.060
[70]
Wu J J, Zhou Y Q, Ma W H, Xu M, Yang B. Metall. Mater. Trans. B, 2017, 48(1): 22.

doi: 10.1007/s11663-016-0860-1
[71]
Xia Z F, Wu J J, Ma W H, Lei Y, Wei K X, Dai Y N. Sep. Purif. Technol., 2017, 187: 25.

doi: 10.1016/j.seppur.2017.06.037
[72]
Johnston M D, Khajavi L T, Li M, Sokhanvaran S, Barati M. JOM, 2012, 64(8): 935.

doi: 10.1007/s11837-012-0384-3
[73]
Benmansour M, Nikravech M, Morvan D, Amouroux J, Chapelle J. J. Phys. D: Appl. Phys., 2004, 37(21): 2966.

doi: 10.1088/0022-3727/37/21/005
[74]
Rousseau S, Benmansour M, Morvan D, Amouroux J. Sol. Energy Mater. Sol. Cells, 2007, 91(20): 1906.

doi: 10.1016/j.solmat.2007.07.010
[75]
Nakamura N, Baba H, Sakaguchi Y, Kato Y. Mater. Trans., 2004, 45(3): 858.

doi: 10.2320/matertrans.45.858
[76]
Yuge N, Baba H, Sakaguchi Y, Nishikawa K, Terashima H, Aratani F. Sol. Energy Mater. Sol. Cells, 1994, 34(1/4): 243.

doi: 10.1016/0927-0248(94)90046-9
[77]
Yuge N, Abe M, Hanazawa K, Baba H, Nakamura N, Kato Y, Sakaguchi Y, Hiwasa S, Aratani F. Prog. Photovolt: Res. Appl., 2001, 9(3): 203.

doi: 10.1002/pip.372
[78]
Díez M D, Fjeld M, Andersen E, Lie B. Chem. Eng. Sci., 2006, 61(1): 229.

doi: 10.1016/j.ces.2005.01.047
[79]
Pizzini S. Sol. Energy Mater., 1982, 6(3): 253.

doi: 10.1016/0165-1633(82)90035-1
[80]
Dietl J. Sol. Cells, 1983, 10(2): 145.

doi: 10.1016/0379-6787(83)90015-7
[81]
Sun Y H, Ye Q H, Guo C J, Chen H Y, Lang X, David F, Luo Q W, Yang C M. Hydrometallurgy, 2013, 139: 64.

doi: 10.1016/j.hydromet.2013.07.002
[82]
Lai H X, Huang L Q, Gan C H, Xing P F, Li J T, Luo X T. Hydrometallurgy, 2016, 164: 103.

doi: 10.1016/j.hydromet.2016.06.003
[83]
Shimpo T, Yoshikawa T, Morita K. Metall. Mater. Trans. B, 2004, 35(2): 277.

doi: 10.1007/s11663-004-0029-1
[84]
Yoshikawa T, Morita K. J. Electrochem. Soc., 2003, 150(8): G465.

doi: 10.1149/1.1588300
[85]
Ma X D, Yoshikawa T, Morita K. Metall. Mater. Trans. B, 2013, 44(3): 528.

doi: 10.1007/s11663-013-9812-1
[86]
Mitrašinović A M, Utigard T A. Silicon, 2009, 1(4): 239.

doi: 10.1007/s12633-009-9025-z
[87]
Li Y Q, Tan Y, Li J Y, Xu Q, Liu Y. J. Alloys Compd., 2014, 583: 85.

doi: 10.1016/j.jallcom.2013.08.145
[88]
Zhao L X, Wang Z, Guo Z C, Li C Y. Trans. Nonferrous Met. Soc. China, 2011, 21(5): 1185.

doi: 10.1016/S1003-6326(11)60841-8
[89]
Yoshikawa T, Morita K. J. Cryst. Growth, 2009, 311(3): 776.

doi: 10.1016/j.jcrysgro.2008.09.095
[90]
Yoshikawa T, Morita K. Sci. Technol. Adv. Mater., 2003, 4(6): 531.

doi: 10.1016/j.stam.2003.12.007
[91]
Zou Q C, Jie J C, Sun J L, Wang T M, Cao Z Q, Li T J. Sep. Purif. Technol., 2015, 142: 101.

doi: 10.1016/j.seppur.2015.01.005
[92]
Li Y L, Chen J, Dai S Y. J. Cryst. Growth, 2016, 453: 49.

doi: 10.1016/j.jcrysgro.2016.08.013
[93]
Ban B Y, Li J W, Bai X L, He Q X, Chen J, Dai S Y. J. Alloys Compd., 2016, 672: 489.

doi: 10.1016/j.jallcom.2016.02.198
[94]
Bai X L, Ban B Y, Li J W, Fu Z Q, Peng Z J, Wang C B, Chen J. Sep. Purif. Technol., 2017, 174: 345.

doi: 10.1016/j.seppur.2016.11.002
[95]
Li Y L, Chen J, Ban B Y, Zhang T T, Dai S Y. High Temp. Mater. Process., 2015, 34(1): 43.
[96]
Ban B Y, Li Y L, Zuo Q X, Zhang T T, Chen J, Dai S Y. J. Mater. Process. Technol., 2015, 222: 142.

doi: 10.1016/j.jmatprotec.2015.03.012
[97]
Yoshikawa T, Arimura K, Morita K. Metall. Mater. Trans. B, 2005, 36(6): 837.

doi: 10.1007/s11663-005-0085-1
[98]
Lei Y, Ma W H, Sun L E, Wu J J, Morita K. Sep. Purif. Technol., 2016, 162: 20.

doi: 10.1016/j.seppur.2016.02.014
[99]
Lei Y, Ma W H, Sun L E, Dai Y N, Morita K. Metall. Mater. Trans. B, 2016, 47(1): 27.

doi: 10.1007/s11663-015-0506-8
[100]
Lei Y, Ma W H, Sun L E, Wu J J, Dai Y N, Morita K. Sci. Technol. Adv. Mater., 2016, 17(1): 12.

doi: 10.1080/14686996.2016.1140303
[101]
Chen K, Chen X H, Lei Y, Ma W H, Han J X, Yang Z H. Sep. Purif. Technol., 2018, 203: 168.

doi: 10.1016/j.seppur.2018.03.067
[102]
Hopkins R H, Rohatgi A. J. Cryst. Growth, 1986, 75(1): 67.

doi: 10.1016/0022-0248(86)90226-5
[103]
Olesinski R W, Abbaschian G J. J. Phase Equilib., 1984, 5(3): 273.
[104]
Hu L, Wang Z, Gong X Z, Guo Z C, Zhang H. Metall. Mater. Trans. B, 2013, 44(4): 828.

doi: 10.1007/s11663-013-9850-8
[105]
Ren Y S, Wang H P, Morita K. Vacuum, 2018, 158: 86.

doi: 10.1016/j.vacuum.2018.09.044
[106]
Ren Y S, Wang H P, Morita K. Vacuum, 2019, 167: 319.

doi: 10.1016/j.vacuum.2019.06.029
[107]
Olesinski R W, Abbaschian G J. Bull. Alloy Phase Diagr., 1986, 7(2): 170.

doi: 10.1007/BF02881559
[108]
Huang L Q, Lai H X, Lu C H, Fang M, Ma W H, Xing P F, Li J T, Luo X T. Hydrometallurgy, 2016, 161: 14.

doi: 10.1016/j.hydromet.2016.01.013
[109]
Cai J, Li J T, Chen W H, Chen C, Luo X T. Trans. Nonferrous Met. Soc. China, 2011, 21(6): 1402.

doi: 10.1016/S1003-6326(11)60873-X
[110]
Jakobsson L K, Tangstad M. Metall. Mater. Trans. B, 2014, 45(5): 1644.

doi: 10.1007/s11663-014-0088-x
[111]
Zhang L, Tan Y, Xu F M, Li J Y, Wang H Y, Gu Z. Sep. Sci. Technol., 2013, 48(7): 1140.

doi: 10.1080/01496395.2012.714438
[112]
Suzuki K, Sano N, Tenth E C. Photovoltaic Solar Energy Conference. Dordrecht: Springer Netherlands, 1991. 273/275.
[113]
Huang L Q, Lai H X, Gan C H, Xiong H P, Xing P F, Luo X T. Sep. Purif. Technol., 2016, 170: 408.

doi: 10.1016/j.seppur.2016.07.004
[114]
Ren Y S, Ueda S, Morita K. ACS Sustain. Chem. Eng., 2019, 7(24): 20107.

doi: 10.1021/acssuschemeng.9b05986
[115]
Wu J J, Wang Z, Hu X J, Guo Z C. Chin. J. Process. Eng., 2014, 14: 64.
[116]
Khajavi L T, Morita K, Yoshikawa T, Barati M. Metall. Mater. Trans. B, 2015, 46(2): 615.

doi: 10.1007/s11663-014-0236-3
[117]
Morito H, Yamada T, Ikeda T, Yamane H. J. Alloys Compd., 2009, 480(2): 723.

doi: 10.1016/j.jallcom.2009.02.036
[118]
Morito H, Karahashi T, Uchikoshi M, Isshiki M, Yamane H. Silicon, 2012, 4(2): 121.

doi: 10.1007/s12633-011-9105-8
[119]
Morito H, Karahashi T, Yamane H. J. Cryst. Growth, 2012, 355(1): 109.

doi: 10.1016/j.jcrysgro.2012.06.032
[120]
Yamane H, Morito H, Uchikoshi M. J. Cryst. Growth, 2013, 377: 66.

doi: 10.1016/j.jcrysgro.2013.04.049
[121]
Li J W, Ban B Y, Li Y L, Bai X L, Zhang T T, Chen J. Silicon, 2017, 9(1): 77.

doi: 10.1007/s12633-014-9269-0
[122]
Olesinski R W, Kanani N, Abbaschian G J. Bull. Alloy Phase Diagr., 1985, 6(4): 362.

doi: 10.1007/BF02880523
[123]
Girault B, Chevrier F, Joullie A, Bougnot G. J. Cryst. Growth, 1977, 37(2): 169.

doi: 10.1016/0022-0248(77)90079-3
[124]
He F L, Zheng S S, Chen C. Metall. Mater. Trans. B, 2012, 43(5): 1011.

doi: 10.1007/s11663-012-9681-z
[125]
Meteleva-Fischer Y V, Yang Y X, Boom R, Kraaijveld B, Kuntzel H. Miner. Process. Extr. Metall., 2013, 122(4): 229.

doi: 10.1179/0371955313Z.00000000068
[126]
Lai H X, Huang L Q, Lu C H, Fang M, Ma W H, Xing P F, Li J T, Luo X T. Hydrometallurgy, 2015, 156: 173.

doi: 10.1016/j.hydromet.2015.06.012
[127]
Xi F S, Li S Y, Ma W H, Chen Z J, Wei K X, Wu J J. Hydrometallurgy, 2021, 201: 105553.

doi: 10.1016/j.hydromet.2021.105553
[128]
Li J Y, Cao P P, Ni P, Li Y Q, Tan Y. Sep. Sci. Technol., 2016, 51(9): 1598.
[129]
Li J Y, Liu Y, Tan Y, Li Y Q, Zhang L, Wu S R, Jia P J. J. Cryst. Growth, 2013, 371: 1.

doi: 10.1016/j.jcrysgro.2012.12.098
[130]
Xu F M, Wu S R, Tan Y, Li J Y, Li Y Q, Liu Y. Sep. Sci. Technol., 2014, 49(2): 305.

doi: 10.1080/01496395.2013.817423
[131]
Li Y Q, Li J Y, Tan Y, Zhang L F, Kazuki M. J. Inorg. Mater., 2016, 31(8): 791.

doi: 10.15541/jim20150649
[132]
Ma X D, Yoshikawa T, Morita K. J. Alloys Compd., 2012, 529: 12.

doi: 10.1016/j.jallcom.2012.03.057
[133]
Li Y Q. Doctoral Dissertation of Dalian University of Technology, 2015.
(李亚琼. 大连理工大学博士论文, 2015.).
[134]
Li Y Q, Tan Y, Li J Y, Morita K. J. Alloys Compd., 2014, 611: 267.

doi: 10.1016/j.jallcom.2014.05.138
[135]
Li Y, Tan Y, Cao P, Li J, Jia P, Liu Y. Mater. Res. Innov., 2015, 19(2): 81.

doi: 10.1179/1433075X13Y.0000000196
[136]
Obinata I, Komatsu N. J. Jpn. Inst. Met. Mater., 1954, 18(5): 279.
[137]
Yoshikawa T, Morita K. ISIJ Int., 2005, 45(7): 967.

doi: 10.2355/isijinternational.45.967
[138]
Gumaste J L, Mohanty B C, Galgali R K, Syamaprasad U, Nayak B B, Singh S K, Jena P K. Sol. Energy Mater., 1987, 16(4): 289.

doi: 10.1016/0165-1633(87)90077-3
[139]
Gu X, Yu X G, Yang D R. Sep. Purif. Technol., 2011, 77(1): 33.

doi: 10.1016/j.seppur.2010.11.016
[140]
Li J W, Guo Z C, Tang H Q, Wang Z, Sun S T. Trans. Nonferrous Met. Soc. China, 2012, 22(4): 958.

doi: 10.1016/S1003-6326(11)61270-3
[141]
Jie J C, Zou Q C, Wang H W, Sun J L, Lu Y P, Wang T M, Li T J. J. Cryst. Growth, 2014, 399: 43.

doi: 10.1016/j.jcrysgro.2014.04.003
[142]
Xue H Y, Lv G Q, Ma W H, Chen D T, Yu J. Metall. Mater. Trans. A, 2015, 46(7): 2922.

doi: 10.1007/s11661-015-2889-1
[143]
Fang M, Lu C H, Lai H X, Huang L Q, Chen J, Ma W H, Sheng Z L, Shen J N, Li J T, Luo X T. Mater. Sci. Technol., 2013, 29(7): 861.

doi: 10.1179/1743284713Y.0000000212
[144]
Zhang L F, Ma Y S, Li Y Q. Mat. Sci. Semicon. Proc., 2017, 71: 12.

doi: 10.1016/j.mssp.2017.06.044
[145]
Ma X D, Lei Y, Yoshikawa T, Zhao B J, Morita K. J. Cryst. Growth, 2015, 430: 98.

doi: 10.1016/j.jcrysgro.2015.08.001
[146]
Ma X D, Yoshikawa T, Morita K. Sep. Purif. Technol., 2014, 125: 264.

doi: 10.1016/j.seppur.2014.02.003
[147]
Hu L, Wang Z, Gong X Z, Guo Z C, Zhang H. Sep. Purif. Technol., 2013, 118: 699.

doi: 10.1016/j.seppur.2013.08.013
[148]
Li J Y, Jia P J, Li Y Q, Cao P P, Liu Y, Tan Y. J. Mater. Sci. Mater. Electron., 2014, 25(4): 1751.

doi: 10.1007/s10854-014-1794-5
[149]
Lei Y, Ma W H, Lv G Q, Wei K X, Li S Y, Morita K. Sep. Purif. Technol., 2017, 173: 364.

doi: 10.1016/j.seppur.2016.09.051
[150]
Zhang J, Li T J, Ma X D, Luo D W, Liu N, Liu D H. J. Semicond., 2009, 30(5): 053002.

doi: 10.1088/1674-4926/30/5/053002
[151]
Rousseau S, Benmansour M, Morvan D, Amouroux J. Sol. Energy Mater. Sol. Cells, 2007, 91(20): 1906.

doi: 10.1016/j.solmat.2007.07.010
[152]
Ma W H, Dai Y N, Yang B, Liu D C, Wang H. Advanced Materials Industry, 2006, (10): 12.
(马文会, 戴永年, 杨斌, 刘大春, 王华. 新材料产业, 2006, (10): 12.).
[1] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[2] Yifan Lei, Shengbin Lei, Lingyu Piao. Preparation of H2O2 By Photocatalytic Reduction of Oxygen [J]. Progress in Chemistry, 2021, 33(1): 66-77.
[3] Xingxing Guo, Hang Gao, Lifeng Yin, Siyu Wang, Yunrong Dai, Chuanping Feng. Photo-Thermal Conversion Materials and Their Application in Desalination [J]. Progress in Chemistry, 2019, 31(4): 580-596.
[4] Ningning Cao, Songtao Lu, Rui Yao, Huimin Li, Wei Qin, Xiaohong Wu. Solar Spectrum Selective Absorbing Coatings [J]. Progress in Chemistry, 2019, 31(4): 597-612.
[5] Yajing Chen, Xubing Li, Chenho Tung, Lizhu Wu. Artificial Photosynthesis for Hydrogen Production [J]. Progress in Chemistry, 2019, 31(1): 38-49.
[6] Zhang Lingfeng, Hu Zhongpan, Liu Xinying, Yuan Zhongyong. Noble-Metal-Free Co-Catalysts for TiO2-Based Photocatalytic H2-Evolution Half Reaction in Water Splitting [J]. Progress in Chemistry, 2016, 28(10): 1474-1488.
[7] Xu Jianhua, Tan Linghua, Kou Bo, Hang Zusheng, Jiang Wei, Jia Yongqiang. Modification of Graphtic Carbon Nitride Photocatalyst [J]. Progress in Chemistry, 2016, 28(1): 131-148.
[8] Zhang Jinshui, Wang Bo, Wang Xinchen. Carbon Nitride Polymeric Semiconductor for Photocatalysis [J]. Progress in Chemistry, 2014, 26(01): 19-29.
[9] Sang Lixia, Sun Biao, Li Yanxia, Wu Yuting, Ma Chongfang. Catalytically Active Absorber in Solar Reforming of Methane [J]. Progress in Chemistry, 2011, 23(11): 2233-2239.
[10] . Hydrogen Production by Two-Step Water-Splitting Thermochemical Cycle Based on Metal Oxide Redox System [J]. Progress in Chemistry, 2010, 22(05): 1010-1020.
[11] Wen Fuyu Yang Jinhui Zong Xu Ma Yi Xu Qian Ma Baojun Li Can. Progress on Photocatalytic Hydrogen Production Utilizing Solar Energy [J]. Progress in Chemistry, 2009, 21(11): 2285-2302.
[12] Wu Chuan,Zhang Huamin*,Yi Baolian. Recent Advances in Hydrogen Generation with Chemical Methods [J]. Progress in Chemistry, 2005, 17(03): 423-429.