中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (1): 38-49 DOI: 10.7536/PC181220 Previous Articles   Next Articles

• Review •

Artificial Photosynthesis for Hydrogen Production

Yajing Chen1,2, Xubing Li1,2, Chenho Tung1,2, Lizhu Wu1,2,**()   

  1. 1. Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
    2. School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received: Revised: Online: Published:
  • Contact: Lizhu Wu
  • About author:
    ** Corresponding author e-mail:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(91427303); The work was supported by the National Natural Science Foundation of China(21861132004); The work was supported by the National Natural Science Foundation of China(21603248S); The Ministry of Science and Technology of China Science and Technology of China and K.C.Wong Education Foundation(2017YFA0206903)
Richhtml ( 72 ) PDF ( 1672 ) Cited
Export

EndNote

Ris

BibTeX

Hydrogen (H2) gas acquires a high combustion calorific value (285.8 kJ/mol) and only produces water during combustion, so it is considered as an ideal energy carrier. Photocatalytic H2 evolution from water by simulating the structure and function of active center in natural photosynthesis is not only an important way to convert solar light into chemical energy but also an essential part of artificial photosynthesis. Here, we summarize the recent major progress of this field and forecast the development and potential applications of artificial photosynthetic H2 production in the near future.

Fig.1 Natural photosynthesis in green plants[1]. Copyright 2013, Elsevier Ltd.
Fig.2 The process of artificial photosynthesis for H2 production
Fig.3 The active site of natural [FeFe]-hydrogenase and the process of proton reduction[32]. Copyright 2011, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig.4 Photocatalytic H2 production based on CdTe QDs and water-soluble [FeFe]-hydrogenase mimics[32]. Copyright 2011, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig.5 Schematic diagram of photocatalytic hydrogen production based on water-soluble QDs and non-noble metal salts[51]. Copyright 2014, American Chemical Society
Fig.6 Photocatalytic hydrogen production from QDs/Pt NPs assembly[52]. Copyright 2017, American Chemical Society
Fig.7 The progress of TON value of solar hydrogen production
Fig.8 PEC water-splitting system[87]. Copyright 2018, MacMillan Publishers Limited, part of Springer Nature
Fig.9 Scheme of PEC cell based on IO-mesoITO/PSII photoanode and IO-mesoITO/H2ase photocathode[71]. Copyright 2015, American Chemical Society
Fig.10 Natural/artificial hybrid PEC system based on PSⅡ and Si PEC battery[72]. Copyright 2016, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheims
Fig.11 CdSe QDs sensitized NiO Photocathode for photoelectrochemical (PEC) H2 evolution from water[89]. Copyright 2018, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig.12 Schematic diagram of overall water splitting in SrTiO3:La,Rh/Au/BiVO4:Mo system[68]. Copyright 2016, MacMillan Publishers Limited
Fig.13 Cross-coupling hydrogen evolution reaction with eosin Y as photosensitizer and G-RuO2 as photocatalyst[94]. Copyright 2013, American Chemical Society
Fig.14 Photocatalytic asymmetric cross-dehydrogenative coupling reaction[99]. Copyright 2017, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig.15 Photocatalytic benzene C—H amination and hydroxylation with hydrogen production[100]. Copyright 2016, American Chemical Society
Fig.16 Mechanism diagram for the conversion of thiols to disulfides and H2 by CdSe QDs[102]. Copyright 2014, Wile1y-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig.17 Mechanism diagram of photocatalytic decomposition of alcohol by Ni/CdS[104]. Copyright 2016, American Chemical Society
Fig.18 (a) Ultrathin Ni/CdS nanosheets for photocatalytic biomass valorization with H2 production and (b) Oxidation reaction of furfural alcohol and 5-hydroxymethylfurfural to their corresponding aldehydes or acids[107]. Copyright 2017, American Chemical Society
[1]
Kim J H, Nam D H, Park C B . Curr. Opin. Biotechnol., 2014,28:1.
[2]
Lazarides T, Delor M, Sazanovich I V, McCormick T M, Georgakaki I, Charalambidis G, Weinstein J A, Coutsolelos A GS . Chem. Commun., 2014,50:521.
[3]
Leung C F, Ng S M, Ko C C, Man W L, Wu J S, Chen L J, Lau T C . Energy. Environ. Sci., 2012,5:7903.
[4]
Khnayzer R S, Thoi V S, Nippe M, King A E, Jurss J W, El Roz K A, Long J R, Chang C J, Castellano F N . Energy. Environ. Sci., 2014,7:1477.
[5]
Martindale B C M, Hutton G A M, Caputo C A, Reisner E . J. Am. Chem. Soc., 2015,137:6018.
[6]
Porcher J P, Fogeron T, Gomez-Mingot M, Derat E, Chamoreau L M, Li Y, Fontecave M . Angew. Chem. Int. Ed., 2015,54:14090.
[7]
Lazarides T, McCormick T, Du P W, Luo G G, Lindley B, Eisenberg R . J. Am. Chem. Soc., 2009,131:9192.
[8]
Le T T, Akhtar M S, Park D M, Lee J C, Yang O B . Appl. Catal. B -Environ., 2012,111:397.
[9]
Hartley C L, DiRisio R J, Screen M E, Mayer K J, McNamara W R . Inorg. Chem., 2016,55:8865.
[10]
Guo L, Yang Z, Marcus K, Li Z, Luo B, Zhou L, Wang X, Du Y, Yang Y . Energy. Environ. Sci., 2018,11:106.
[11]
Han Q, Cheng Z H, Wang B, Zhang H M, Qu L T . ACS Nano., 2018,12:5221.
[12]
Hao X Q, Jin Z L, Yang H, Lu G X, Bi Y P . Appl. Catal.B-Environ., 2017,210:45.
[13]
Pachfule P, Acharjya A, Roeser J, Langenhahn T, Schwarze M, Schomacker R, Thomas A, Schmidt J . J. Am. Chem. Soc., 2018,140:1423.
[14]
Quo Q, Liang F, Gao X Y, Gan Q C, Li X B, Li J, Lin Z S, Tung C H, Wu L Z . ACS Catal., 2018,8:5890.
[15]
Sandroni M, Gueret R, Wegner K D, Reiss P, Fortage J, Aldakov D, Collomb M N . Energy. Environ. Sci., 2018,11:1752.
[16]
Zeng D Q, Xu W J, Ong W J, Xu J, Ren H, Chen Y Z, Zheng H F, Peng D L . Appl. Catal.B-Environ., 2018,221:47.
[17]
Chen X B, Liu L, Yu P Y, Mao S S . Science., 2011,331:746.
[18]
Liu G, Yin L C, Wang J Q, Niu P, Zhen C, Xie Y P, Cheng H M . Energy. Environ. Sci., 2012,5:9603.
[19]
Xiao M, Luo B, Lyu M Q, Wang S C, Wang L Z . Adv. Energy Mater., 2018, 8: 180:2820.
[20]
Lubner C E, Knorzer P, Silva P J, Vincent K A, Happe T, Bryant D A, Golbeck J H . Biochemistry., 2010,49:10264.
[21]
Brown K A, Wilker M B, Boehm M, Dukovic G, King P W . J. Am. Chem. Soc., 2012,134:5627.
[22]
Greene B L, Joseph C A, Maroney M J, Dyer R B . J. Am. Chem. Soc., 2012,134:11108.
[23]
Brown K A, Dayal S, Ai X, Rumbles G, King P W . J. Am. Chem. Soc., 2010,132:9672.
[24]
Brown K A, Song Q, Mulder D W, King P W . ACS Nano, 2014,8:10790.
[25]
Caputo C A, Gross M A, Lau V W, Cavazza C, Lotsch B V, Reisner E . Angew. Chem. Int. Ed. Engl., 2014,53:11538.
[26]
Caputo C A, Wang L, Beranek R, Reisner E . Chem.Sci, 2015,6:5690.
[27]
Chica B, Wu C H, Liu Y, Adams M W W, Lian T Q, Dyer R B . Energy. Environ. Sci., 2017,10:2245.
[28]
Peters J W, Lanzilotta W N, Lemon B J, Seefeldt L C . Science, 1998,282:1853.
[29]
Nicolet Y, Piras C, Legrand P, Hatchikian C E, Fontecilla-Camps J C . Structure, 1999,7:13.
[30]
Cao W N, Wang F, Wang H Y, Chen B, Feng K, Tung C H, Wu L Z . Chem. Commun., 2012,48:8081.
[31]
Jian J X, Ye C, Wang X Z, Wen M, Li Z J, Li X B, Chen B, Tung C H, Wu L Z . Energy. Environ. Sci., 2016,9:2083.
[32]
Wang F, Wang W G, Wang X J, Wang H Y, Tung C H, Wu L Z . Angew. Chem. Int. Ed. Engl., 2011,50:3193.
[33]
Wang F, Wang W G, Wang H Y, Si G, Tung C H, Wu L Z . ACS. Catal., 2012,2:407.
[34]
Gloaguen F, Lawrence J D, Rauchfuss T B . J. Am. Chem. Soc., 2001,123:9476.
[35]
Song L C, Tang M Y, Su F H, Hu Q M . Angew. Chem. Int. Ed., 2006,45:1130.
[36]
Song L C, Wang L X, Tang M Y, Li C G, Song H B, Hu Q M . Organometallics., 2009,28:3834.
[37]
Na Y, Wang M, Pan J X, Zhang P, Akermark B, Sun L C . Inorg. Chem., 2008,47:2805.
[38]
Kluwer A M, Kapre R, Hartl F, Lutz M, Spek A L, Brouwer A M, van Leeuwen P W N M, Reek J N H . Proc. Natl. Acad. Sci. USA., 2009,106:10460.
[39]
Wang W G, Wang F, Wang H Y, Si G, Tung C H, Wu L Z . Chem. Asian J., 2010,5:1796.
[40]
Wang H Y, Si G, Cao W N, Wang W G, Li Z J, Wang F, Tung C H, Wu L Z . Chem. Commun., 2011,47:8406.
[41]
Wen F Y, Wang X L, Huang L, Ma G J, Yang J H, Li C . ChemSusChem., 2012,5:849.
[42]
Li C B, Li Z J, Yu S, Wang G X, Wang F, Meng Q Y, Chen B, Feng K, Tung C H, Wu L Z . Energy. Environ. Sci., 2013,6:2597.
[43]
Jian J X, Liu Q, Li Z J, Wang F, Li X B, Li C B, Liu B, Meng Q Y, Chen B, Feng K, Tung C H, Wu L Z . Nat. Commun., 2013,4:2695.
[44]
Wang F, Liang W J, Jian J X, Li C B, Chen B, Tung C H, Wu L Z . Angew. Chem. Int. Ed. Engl., 2013,52:8134.
[45]
Wen M, Li X B, Jian J X, Wang X Z, Wu H L, Chen B, Tung C H, Wu L Z . Sci. Rep., 2016,6:29851.
[46]
Gimbert-Surinach C, Albero J, Stoll T, Fortage J, Collomb M N, Deronzier A, Palomares E, Llobet A . J. Am. Chem. Soc., 2014,136:7655.
[47]
Yuan Y J, Chen D Q, Xiong M, Zhong J S, Wan Z Y, Zhou Y, Liu S, Yu Z T, Yang L X, Zou Z G . Appl.Catal.B-Environ., 2017,204:58.
[48]
Lv H J, Ruberu T P A, Fleischauer V E, Brennessel W W, Neidig M L, Eisenberg R. J. Am. Chem. Soc., 2016,138:11654.
[49]
Han Z, Qiu F, Eisenberg R, Holland P L, Krauss T D . Science, 2012,338:1321.
[50]
Li Z J, Li X B, Wang J J, Yu S, Li C B, Tung C H, Wu L Z . Energy. Environ. Sci., 2013,6:465.
[51]
Li Z J, Fan X B, Li X B, Li J X, Ye C, Wang J J, Yu S, Li C B, Gao Y J, Meng Q Y, Tung C H, Wu L Z . J. Am. Chem. Soc., 2014,136:8261.
[52]
Li X B, Gao Y J, Wang Y, Zhan F, Zhang X Y, Kong Q Y, Zhao N J, Guo Q, Wu H L, Li Z J, Tao Y, Zhang J P, Chen B, Tung C H, Wu L Z . J. Am. Chem. Soc., 2017,139:4789.
[53]
Liu M, Chen Y, Su J, Shi J, Wang X, Guo L J . Nat. Energy., 2016,1:16151.
[54]
Wu L Z, Chen B, Li Z J, Tung C H . Acc. Chem. Res., 2014,47:2177.
[55]
Pan C, Takata T, Nakabayashi M, Matsumoto T, Shibata N, Ikuhara Y, Domen K . Angew. Chem. Int. Ed. Engl., 2015,54:2955.
[56]
Maeda K, Takata T, Hara M, Saito N, Inoue Y, Kobayashi H, Domen K . J. Am. Chem. Soc., 2005,127:8286.
[57]
Mu L C, Zhao Y, Li A L, Wang S Y, Wang Z L, Yang J X, Wang Y, Liu T F, Chen R T, Zhu J, Fan F T, Li R G, Li C . Energy. Environ. Sci., 2016,9:2463.
[58]
Wang B, Shen S H, Guo L J . ChemCatChem., 2016,8:798.
[59]
Wang D A, Hisatomi T, Takata T, Pan C S, Katayama M, Kubota J, Domen K . Angew. Chem. Int. Ed., 2013,52:11252.
[60]
Takata T, Pan C S, Nakabayashi M, Shibata N, Domen K . J. Am. Chem. Soc., 2015,137:9627.
[61]
Bard A J . J. Photochem., 1979,10:59.
[62]
Abe R, Sayama K, Domen K, Arakawa H . Chem. Phys. Lett., 2001,344:339.
[63]
Maeda K, Higashi M, Lu D L, Abe R, Domen K . J. Am. Chem. Soc., 2010,132:5858.
[64]
Liu J, Ke J, Li Y, Liu B J, Wang L D, Xiao H N, Wang S B . Appl. Catal. B-Environ., 2018,236:396.
[65]
Abe R, Shinmei K, Koumura N, Hara K, Ohtani B . J. Am. Chem. Soc., 2013,135:16872.
[66]
Wang W, Chen J, Li C, Tian W . Nat.Commun, 2014,5:4647.
[67]
Zhu M, Sun Z, Fujitsuka M, Majima T . Angew. Chem. Int. Ed. Engl., 2018,57:2160.
[68]
Wang Q, Hisatomi T, Jia Q X, Tokudome H, Zhong M, Wang C Z, Pan Z H, Takata T, Nakabayashi M, Shibata N, Li Y B, Sharp I D, Kudo A, Yamada T, Domen K . Nat.Mater, 2016,15:611.
[69]
Wang Q, Hisatomi T, Suzuk Y, Pan Z, Seo J, Katayama M, Minegishi T, Nishiyama H, Takata T, Seki K, Kudo A, Yamada T, Domen K . J. Am. Chem. Soc., 2017,139:1675.
[70]
Fujishima A, Honda K . Nature, 1972,238:37.
[71]
Mersch D, Lee C Y, Zhang J Z, Brinkert K, Fontecilla-Camps J C, Rutherford A W, Reisner E . J. Am. Chem. Soc., 2015,137:8541.
[72]
Wang W, Wang H, Zhu Q, Qin W, Han G, Shen J R, Zong X, Li C . Angew. Chem. Int. Ed., 2016,55:9229.
[73]
Li Z, Wang W, Ding C, Wang Z, Liao S, Li C . Energy. Environ. Sci., 2017,10:765.
[74]
Sivula K, Zboril R, Le Formal F, Robert R, Weidenkaff A, Tucek J, Frydrych J, Graetzel M . J. Am. Chem. Soc., 2010,132:7436.
[75]
Kment S, Schmuki P, Hubicka Z, Machala L, Kirchgeorg R, Liu N, Wang L, Lee K, Olejnicek J, Cada M, Gregora I, Zboril R . ACS Nano, 2015,9:7113.
[76]
Luo Z, Li C, Liu S, Wang T, Gong J . Chem.Sci, 2017,8:91.
[77]
Tang P, Xie H, Ros C, Han L, Biset-Peiro M, He Y, Kramer W, Rodriguez A P, Saucedo E, Galan-Mascaros J R, Andreu T, Morante J R, Arbiol J Energy. Environ. Sci., 2017,10:2124.
[78]
Seabold J A, Choi K S . J. Am. Chem. Soc., 2012,134:2186.
[79]
Kim T W, Choi K S . Science, 2014,343:990.
[80]
Gao X, Li J, Du R, Zhou J, Huang M Y, Liu R, Li J, Xie Z, Wu L Z, Liu Z, Zhang J . Adv Mater, 2017,29:1605308.
[81]
Oh K, Meriadec C, Lassalle-Kaiser B, Dorcet V, Fabre B, Ababou-Girard S, Joanny L, Gouttefangeas F, Loget G . Energy. Environ. Sci., 2018,11:2590.
[82]
Kenney M J, Gong M, Li Y, Wu J Z, Feng J, Lanza M, Dai H . Science, 2013,342:836.
[83]
Mayer M T, Du C, Wang D . J. Am. Chem. Soc., 2012,134:12406.
[84]
Chandra D, Saito K, Yui T, Yagi M . Angew Chem. Int. Ed., 2013,52:12606.
[85]
Ma M, Zhang K, Li P, Jung M S, Jeong M J, Park J H . Angew Chem. Int. Ed., 2016,55:11819.
[86]
Solarska R, Bienkowski K, Zoladek S, Majcher A, Stefaniuk T, Kulesza P J, Augustynski J . Angew Chem. Int. Ed., 2014,53:14196.
[87]
Li X B, Tung C H, Wu L Z . Nat. Rev. Chem., 2018,2:160.
[88]
Nann T, Ibrahim S K, Woi P M, Xu S, Ziegler J, Pickett C J . Angew. Chem. Int. Ed. Engl., 2010,49:1574.
[89]
Wu H L, Li X B, Tung C H, Wu L Z . Adv. Sci., 2018,5:1700684.
[90]
Liu B, Li X B, Gao Y J, Li Z J, Meng Q Y, Tung C H, Wu L Z . Energy. Environ. Sci., 2015,8:1443.
[91]
Li X B, Liu B, Wen M, Gao Y J, Wu H L, Huang M Y, Li Z J, Chen B, Tung C H, Wu L Z . Adv. Sci., 2016,3:1500282.
[92]
Li J, Gao X, Liu B, Feng Q L, Li X B, Huang M Y, Liu Z F, Zhang J, Tung C H, Wu L Z . J. Am. Chem. Soc., 2016,138:3954.
[93]
Pan L F, Kim J H, Mayer M T, Son M K, Ummadisingu A, Lee J S, Hagfeldt A, Luo J S, Gratzel M . Nature Catalysis, 2018,1:412.
[94]
Meng Q Y, Zhong J J, Liu Q, Gao X W, Zhang H H, Lei T, Li Z J, Feng K, Chen B, Tung C H, Wu L Z . J. Am. Chem. Soc., 2013,135:19052.
[95]
Zhong J J, Meng Q Y, Liu B, Li X B, Gao X W, Lei T, Wu C J, Li Z J, Tung C H, Wu L Z . Org. Lett., 2014,16:1988.
[96]
Chen B, Wu L Z, Tung C H . Acc. Chem. Res., 2018,51:2512.
[97]
Wu C J, Meng Q Y, Lei T, Zhong J J, Liu W Q, Zhao L M, Li Z J, Chen B, Tung C H, Wu L Z . ACS Catal., 2016,6:4635.
[98]
Zhang G, Liu C, Yi H, Meng Q, Bian C, Chen H, Jian J X, Wu L Z, Lei A . J. Am. Chem. Soc., 2015,137:9273.
[99]
Yang Q, Zhang L, Ye C, Luo S, Wu L Z, Tung C H . Angew Chem. Int. Ed., 2017,56:3694.
[100]
Zheng Y W, Chen B, Ye P, Feng K, Wang W, Meng Q Y, Wu L Z, Tung C H . J. Am. Chem. Soc., 2016,138:10080.
[101]
Zheng Y W, Ye P, Chen B, Meng Q Y, Feng K, Wang W, Wu L Z, Tung C H . Org. Lett., 2017,19:2206.
[102]
Li X B, Li Z J, Gao Y J, Meng Q Y, Yu S, Weiss R G, Tung C H, Wu L Z . Angew. Chem. Int.Ed., 2014,53:2085.
[103]
Zhao L M, Meng Q Y, Fan X B, Ye C, Li X B, Chen B, Ramamurthy V, Tung C H, Wu L Z . Angew. Chem. Int. Ed. Engl., 2017,56:3020.
[104]
Chai Z G, Zeng T T, Li Q, Lu L Q, Xiao W J, Xu D S . J. Am. Chem. Soc., 2016,138:10128.
[105]
Liu H, Xu C Y, Li D D, Jiang H L . Angew. Chem. Int. Ed., 2018,57:5379.
[106]
Wang J J, Li Z J, Li X B, Fan X B, Meng Q Y, Yu S, Li C B, Li J X, Tung C H, Wu L Z . ChemSusChem., 2014,7:1468.
[107]
Han G Q, Jin Y H, Burgess R A, Dickenson N E, Cao X M, Sun Y J . J. Am. Chem. Soc., 2017,139:15584.
[108]
Kasap H, Achilleos D S, Huang A, Reisner E . J. Am. Chem. Soc., 2018,140:11604.
[1] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[2] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[3] Yi Zeng, Yongsheng Ren, Wenhui Ma, Hui Chen, Shu Zhan, Jing Cao. Boron Removal Method, Technology and Process for Producing Solar Grade Silicon by Metallurgical Method [J]. Progress in Chemistry, 2022, 34(4): 926-949.
[4] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[5] Shixiang Xue, Pan Wu, Liang Zhao, Yanli Nan, Wanying Lei. The Application of CoFe Layered Double Hydroxide-Based Materials in Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(12): 2686-2699.
[6] Chenliu Tang, Yunjie Zou, Mingkai Xu, Lan Ling. Photocatalytic Reduction of Carbon Dioxide with Iron Complexes [J]. Progress in Chemistry, 2022, 34(1): 142-154.
[7] Yanmei Ren, Jiajun Wang, Ping Wang. Molybdenum Disulfide as an Electrocatalyst for Hydrogen Evolution Reaction [J]. Progress in Chemistry, 2021, 33(8): 1270-1279.
[8] Andong Hu, Shungui Zhou, Jie Ye. The Mechanism, Progress and Prospect of Biohybrid Mediated Semi-Artificial Photosynthesis [J]. Progress in Chemistry, 2021, 33(11): 2103-2115.
[9] Yifan Lei, Shengbin Lei, Lingyu Piao. Preparation of H2O2 By Photocatalytic Reduction of Oxygen [J]. Progress in Chemistry, 2021, 33(1): 66-77.
[10] Xuqiang Zhang, Gongxuan Lu. Thin Film Protection Strategy of Ⅲ-Ⅴ Semiconductor Photoelectrode for Water Splitting [J]. Progress in Chemistry, 2020, 32(9): 1368-1375.
[11] Jining Zhang, Shuang Cao, Wenping Hu, Lingyu Piao. Hydrogen Production by Photoelectrocatalytic Seawater Splitting [J]. Progress in Chemistry, 2020, 32(9): 1376-1385.
[12] Xin Ni, Yang Zhou, Ruiqin Tan, Yongbo Kuang. Fabrication and Modification of Ferrite Photocathodes for Photoelectrochemical Water Splitting [J]. Progress in Chemistry, 2020, 32(10): 1515-1534.
[13] Xingxing Guo, Hang Gao, Lifeng Yin, Siyu Wang, Yunrong Dai, Chuanping Feng. Photo-Thermal Conversion Materials and Their Application in Desalination [J]. Progress in Chemistry, 2019, 31(4): 580-596.
[14] Ningning Cao, Songtao Lu, Rui Yao, Huimin Li, Wei Qin, Xiaohong Wu. Solar Spectrum Selective Absorbing Coatings [J]. Progress in Chemistry, 2019, 31(4): 597-612.
[15] Lishan Peng, Zidong Wei*. Design and Product Engineering of High-Performance Electrode Catalytic Materials for Water Electrolysis [J]. Progress in Chemistry, 2018, 30(1): 14-28.