中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (01): 19-29 DOI: 10.7536/PC130519 Previous Articles   Next Articles

• Review •

Carbon Nitride Polymeric Semiconductor for Photocatalysis

Zhang Jinshui, Wang Bo, Wang Xinchen*   

  1. Research Institute of Photocatalysis, College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350002, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the State Key Development Program for Basic Research of China (No. 2013CB632405) and the National Natural Science Foundation of China (No. 21033003, 21173043, J1103303)

PDF ( 6564 ) Cited
Export

EndNote

Ris

BibTeX

Semiconductor photocatalysis via sunlight-driven photoredox reactions to directly convert solar energy into chemical energy or to mineralize organic pollutants, is regarded as a long-term solution to address the global energy and environmental problems. Recently, graphitic carbon nitride (g-C3N4), a polymeric semiconductor has been widely used as a low-cost, stable and metal-free visible-light-active photocatalyst in the sustainable utilization of solar energy, such as water splitting, organic photosynthesis and environmental remediation. This has attracted worldwide attention from energy and environmental relative fields. In this review, some recent advances in g-C3N4 photocatalysis are present, including the theoretical research of chemical structure and features of g-C3N4, metal/non-mental doping of g-C3N4 to adjust the semiconductive electronic band structure, soft/hard templates assisted the synthesis of g-C3N4 nanoarchictures, surface modification of g-C3N4 to overcome the high kinetic barrier for water reduction/oxidation, and as well as the construction of g-C3N4 based heterojunctions and composite photocatalysts to promote the separation of energy-wasteful charge recombination. The prospects for the development of highly efficient g-C3N4 based photocatalysts are also discussed.

Contents
1 Introduction
2 Mechanism study of g-C3N4 photocatalyst
2.1 Semiconductive band structure of g-C3N4
2.2 Photocatalytic performance of g-C3N4
3 Development of g-C3N4 photocatalyst
3.1 Theoretical calculation of g-C3N4 photocatalyst
3.2 Synthesis optimization of g-C3N4 photocatalyst
3.3 Nanostructuring g-C3N4 photocatalyst
3.4 Synthesis of g-C3N4 photocatalyst by copolymeri-zation
3.5 Semiconductor doping of g-C3N4 photocatalyst
3.6 Surface modification of g-C3N4 photocatalyst
3.7 Sensitization of g-C3N4 photocatalyst
3.8 g-C3N4 based composite photocatalysts
4 Conclusion and outlook

CLC Number: 

[1] 中华人民共和国国务院新闻办公室(The Information Office of the State Council of the People's Republic of China). 资源与人居环境(Resources Inhabitant and Environment), 2008, (4): 18.
[2] 高彩玲(Gao C L), 赵英明(Zhao Y M), 黄正文(Huang Z W), 张斌(Zhang B). 环境科学与管理(Environmental Science and Management), 2007, 32: 31.
[3] 李金铠(Li J K). 中国市场(China Market), 2011, (33): 39.
[4] Chen X, Shen S, Guo L, Mao S. Chem. Rev., 2010, 110: 6503.
[5] Kudo A, Miseki Y. Chem. Soc. Rev., 2009, 38: 253.
[6] Osterloh M. Chem. Mater., 2008, 20: 35.
[7] Fox M, Dulay M. Chem. Rev., 1993, 93: 341.
[8] Hoffmann M, Martin S, Choi W, Bahneman D. Chem. Rev., 1995, 95: 69.
[9] Fujishima A, Honda K. Nature, 1972, 238: 37.
[10] Maeda K, Domen K. J. Phys. Chem. Lett., 2010, 1: 2655.
[11] Kato H, Asakura K, Kudo A. J. Am. Chem. Soc., 2003, 125: 3082.
[12] Maeda K, Teramura K, Lu D L, Takata T, Saito N, Inoue Y, Domen K. Nature, 2006, 440: 295.
[13] Maeda K, Higashi M, Lu D, Abe R, Domen K. J. Am. Chem. Soc., 2010, 132: 5858.
[14] Yan H, Yang J, Ma G, Wu G, Zong X, Lei Z, Shi J, Li C. J. Catal., 2009, 266: 165.
[15] Wang X, Blechert S, Antonietti M. ACS Catal., 2012, 2: 1596.
[16] Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J, Domen K, Antonietti M. Nat. Mater., 2009, 8: 76.
[17] Maeda K, Wang X, Nishihara Y, Lu D, Antonietti M, Domen K. J. Phys. Chem. C, 2009, 113: 4940.
[18] Zhang J, Chen X, Takanabe K, Maeda K, Domen K, Epping J, Fu X, Antonietti M, Wang X. Angew. Chem. Int. Ed., 2010, 49: 441.
[19] Cui Y, Ding Z, Liu P, Antonietti M, Fu X, Wang X. Phys. Chem. Chem. Phys., 2012, 14: 1455.
[20] Chen X, Zhang J, Fu X, Antonietti M, Wang X. J. Am. Chem. Soc., 2009, 131: 11658.
[21] Ding Z, Chen X, Antonietti M, Wang X. ChemSusChem, 2011, 4: 274.
[22] Yan S, Li Z, Zou Z. Langmuir, 2009, 25: 10397.
[23] Kiskan B, Zhang J, Wang X, Antonietti M, Yagci Y. ACS Macro Lett., 2012, 1: 546.
[24] Xu Y, Gao S. Int. J. Hydrogen Energ., 2012, 37: 11072.
[25] Wei W, Jacob T. Phys. Rev. B, 2013, 87: 085202.
[26] Pan H, Zhang Y, Shenoy V, Gao H. ACS Catal., 2011, 1: 99.
[27] Ma X, Lv Y, Xu J, Liu Y, Zhang R, Zhu Y. J. Phys. Chem. C, 2012, 116: 23485.
[28] Liu G, Niu P, Sun C, Smith S, Chen Z, Lu G, Cheng H. J. Am. Chem. Soc., 2010, 132: 11642.
[29] Dong G, Zhao K, Zhang L. Chem. Commun, 2012, 48: 6178.
[30] Chen G, Gao S. Chinese Phys. B, 2012, 21: 107101.
[31] Aspera S, David M, Kasai H. Jpn. J. Appl. Phys., 2010, 49: 115703.
[32] Aspera S, Kasai H, Kawai H. Surf. Sci., 2012, 606: 892.
[33] Xin G, Meng Y. J. Chem., 2013, 187912.
[34] Zhang J, Sun J, Maeda K, Domen K, Liu P, Antonietti M, Fu X, Wang X. Energy Environ. Sci., 2011, 4: 675.
[35] Cui Y, Zhang J, Zhang G, Huang J, Liu P, Antonietti M, Wang X. J. Mater. Chem., 2011, 21: 13032.
[36] Zhang G, Zhang J, Zhang M, Wang X. J. Mater. Chem., 2012, 22: 8083.
[37] Zhang J, Zhang M, Zhang G, Wang X. ACS Catal., 2012, 2: 940.
[38] Dong F, Wu L, Sun Y, Fu M, Wu Z, Lee S. J. Mater. Chem., 2011, 21: 15171.
[39] Liu J, Zhang T, Wang Z, Dawson G, Chen W. J. Mater. Chem., 2011, 21: 14398.
[40] Dong G, Zhang L. J. Mater. Chem., 2012, 22: 1160.
[41] Tyborski T, Merschjann C, Orthmann S, Yang F, Lux-Steine M. J. Phys. Conden. Matter, 2012, 24, 162201.
[42] 陈秀芳(Chen X F). 福州大学博士论文(Doctoral Dissertation of Fuzhou University), 2011.
[43] Ge L. Mater. Lett., 2011, 65: 2652.
[44] Yan H, Chen Y, Xu S. Int. J. Hydrogengy Energ., 2012, 37: 125.
[45] Zou X, Li G, Wang Y, Zhao J, Yan C, Guo M, Li L, Chen J. Chem. Commun., 2011, 47: 1066.
[46] Ham Y, Maeda K, Cha D, Takanabe K, Domen K. Chem. Asian J., 2013, 8: 218.
[47] Schwinghammer K, Tuffy B, Mesch M, Wirnhier E, Martineau C, Taulelle F, Schnick W, Senker J, Lotsch B V. Angew. Chem. Int. Ed., 2013, 52: 2435.
[48] Cui Y, Ding Z, Fu X, Wang X. Angew. Chem. Int. Ed., 2012, 51: 11814.
[49] Wang X, Maeda K, Chen X, Takanabe K, Domen K, Hou Y, Fu X, Antonietti M. J. Am. Chem. Soc., 2009, 131: 1680.
[50] Chen X, Jun Y, Takanabe K, Maeda K, Domen K, Fu X Z, Antonietti M, Wang X. Chem. Mater., 2009, 21: 4093.
[51] Zhang J, Guo F, Wang X. Adv. Funct. Mater., 2013, 23: 3008.
[52] Li X, Zhang J, Chen X, Fischer A, Thomas A, Antonietti M, Wang X. Chem. Mater., 2011, 23: 4344.
[53] Sun J, Zhang J, Zhang M, Antonietti M, Fu X, Wang X. Nat. Commun., 2012, 3: 1139.
[54] Jiang G, Zhou C, Xia X, Yang F, Tong D, Yu W, Liu S. Mater. Lett., 2010, 64: 2718.
[55] Wang Y, Wang X, Antonietti M, Zhang Y. ChemSusChem, 2010, 3: 435.
[56] Yan H. Chem. Commun., 2012, 48: 3430.
[57] Kailasam K, Epping J D, Thomas A, Losse S, Junge H. Energy Environ. Sci., 2011, 4: 4668.
[58] Niu P, Zhang L, Liu G, Cheng H M. Adv. Funct. Mater., 2012, 22: 4763.
[59] Yang S, Gong Y J, Zhang J, Zhan L, Ma L, Fang Z, Vajtai R, Wang X, Ajayan P. Adv. Mater., 2013, 25: 2452.
[60] Jun Y, Lee E, Wang X, Hong W, Stucky G, Thomas A. Adv. Funct. Mater., 2013, 23: 3661.
[61] Zhang J, Zhang G, Chen X, Lin S, Mhlmann L, Doga G, Lipner G, Antonietti M, Blechert S, Wang X. Angew. Chem. Int. Ed., 2012, 51: 3183.
[62] Zhang J, Zhang M, Lin S, Fu X, Wang X. J. Catal., 2013, DOI: 10.1016/j. jcat. 2013.01.008.
[63] 郑华荣(Zheng H R), 张金水(Zhang J S), 王心晨(Wang X C), 付贤智(Fu X Z). 物理化学学报(Acta Phys. Chim. Sin. ), 2012, 28: 2336.
[64] 张金龙(Zhang J L), 陈锋(Chen F), 何斌(He B). 光催化(Photocatalysis). 上海: 华东理工大学出版社(Shanghai: East China University of Science and Technology Press), 2004. 44.
[65] Wang X, Chen X, Thomas A, Fu X, Antonietti M. Adv. Mater., 2009, 21: 1609.
[66] Yue B, Li Q, Iwai H, Kako T, Ye J. Sci. Technol. Adv. Mater., 2011, 12: 34401.
[67] Yan S C, Li Z, Zou Z. Langmuir, 2010, 26: 3894.
[68] Zhang Y, Mori T, Ye J H, Antonietti M. J. Am. Chem. Soc., 2010, 132: 6294.
[69] Li J, Shen B, Hong Z, Lin B, Gao B, Chen Y. Chem. Commun., 2012, 48: 12017.
[70] Wang Y, Di Y, Antonietti M, Li H, Chen X, Wang X. Chem. Mater., 2010, 22: 5119.
[71] Di Y, Wang X, Thomas A, Antonietti M. ChemCatChem, 2010, 2: 834.
[72] Meng Y, Shen J, Chen D, Xin G. Rare Metals, 2011, 30: 276.
[73] Ge L, Han C, Liu J, Li Y. Appl. Catal. A: General, 2011, 409/410: 215.
[74] Li X, Wang X, Antonietti M. Chem. Sci., 2012, 3: 2170.
[75] Liu J, Zhang Y, Lu L, Wu G, Chen W. Chem. Commun., 2012, 48: 8826.
[76] Guo Y, Chu S, Yan S, Wang Y, Zou Z. Chem. Commun., 2010, 46: 7325.
[77] Takanabe K, Kamata K, Wang X, Antonietti M, Kubota J, Domen K. Phys. Chem. Chem. Phys., 2010, 12: 13020.
[78] Min S, Lu G. J. Phys. Chem. C, 2012, 116: 19644.
[79] Wang Y, Hong J, Zhang W, Xu R. Catal. Sci. Technol., 2013, 3: 1703.
[80] He Y, Cai J, Li T, Wu Y, Yi Y, Luo M, Zhao L. Ind. Eng. Chem. Res., 2012, 51: 14729.
[81] Bledowski M, Wang L, Ramakrishnan A, Khavryuchenko O, Khavryuchenko V, Ricci P, Strunk J, Cremer T, Kolbeck C, Beranek R. Phys. Chem. Chem. Phys., 2011, 13: 21511.
[82] Mitoraj D, Beranek R, Kisch H. Photochem. Photobiol. Sci., 2010, 9: 31.
[83] Yan H, Yang H. J. Alloy. Compd., 2011, 509: L26.
[84] Ang T, Chan Y. J. Phys. Chem. C, 2011, 115: 15965.
[85] Yang N, Li G, Wang W, Yang X, Zhang W. J. Phys. Chem. Solids, 2011, 72: 1319.
[86] Zhou X, Jin B, Li L, Peng F, Wang H, Yu H, Fang Y. J. Mater. Chem., 2012, 22: 17900.
[87] Wang L, Bledowski M, Ramakrishnan A, König D, Ludwig A, Beranek R. J. Electrochem. Soc., 2012, 159: H616.
[88] Chai B, Peng T, Mao J, Li K, Zan L. Phys. Chem. Chem. Phys., 2012, 14: 16745.
[89] Wang J, Zhang W. Electrochim. Acta, 2012, 71: 10.
[90] Zhao S, Chen S, Yu H, Quan X. Sep. Sci. Technol., 2012, 99: 50.
[91] Liu W, Wang M, Xu C, Chen S. Chem. Eng. J., 2012, 209: 386.
[92] Wang Y, Shi R, Lin J, Zhu Y. Energy Environ. Sci., 2011, 4: 2922.
[93] Sun J, Yuan Y, Qiu L, Jiang X, Xie A, Shen Y, Zhu J. Dalton Trans., 2012, 41: 6756.
[94] Li G, Yang N, Wang W, Zhang W. J. Phys. Chem. C, 2009, 113: 14829.
[95] Li Q Y, Yue B, Iwai H, Kako T, Ye J. J. Phys. Chem. C, 2010, 114: 4100.
[96] Xu X, Liu G, Randorn C, Irvine J. Int. J. Hydrogen Energy, 2011, 36: 13501.
[97] Kang H W, Lim S, Song D, Park S. Int. J. Hydrogen Energy, 2012, 37: 11602.
[98] Pan C, Xu J, Wang Y, Li D, Zhu Y. Adv. Funct. Mater., 2012, 22: 1518.
[99] Ge L, Han C, Liu J. Appl. Catal. B: Environ., 2011, 108/109: 100.
[100] Wang Y, Bai X, Pan C, He J, Zhu Y. J. Mater. Chem., 2012, 22: 11568.
[101] Sun L, Zhao X, Jia C, Zhou Y, Cheng X, Li P, Liu L, Fan W. J. Mater. Chem., 2012, 22: 23428.
[102] Pan H, Li X, Zhuang Z, Zhang C. J. Mol. Catal. A: Chem., 2011, 345: 90.
[103] Yan S, Lv S, Li Z, Zou Z. Dalton Trans., 2010, 39: 1488.
[104] Yang F, Lublow M, Orthmann S, Merschjann C, Tyborski T, Rusu M, Kubala S, Thomas A, Arrigo R, Hävecker M, Schedel-Niedrig M. ChemSusChem, 2012, 5: 1227.
[105] Hou Y, Laursen A, Zhang J, Zhang G, Zhu Y, Wang X, Dahl S, Chorkendorff I. Angew. Chem. Int. Ed., 2013, 52: 3621.
[106] Zhang J, Grzelczak M, Hou Y, Maeda K, Domen K, Fu X, Antonietti M, Wang X. Chem. Sci., 2012, 3: 443.
[107] Yang M, Huang Q, Jing X. Mater. Sci. Eng. B, 2012, 177: 600.
[108] Fu J, Tian Y, Chang B, Xi F, Dong X. J. Mater. Chem., 2012, 22: 21159.
[109] Xu H, Yan J, Xu Y, Song Y, Li H, Xia J, Huang C, Wan H. Appl. Catal. B: Environ., 2013, 129: 182.
[110] Xiang Q, Yu J, Jaroniec M. J. Phys. Chem. C, 2011, 115: 7355.
[111] Zhang Y, Mori T, Niu L, Ye J. Energy Environ. Sci., 2011, 4: 4517.
[112] Liao G, Chen S, Quan X, Yu H, Zhao H. J. Mater. Chem., 2012, 22: 2721.
[113] Ge L, Han C. Appl. Catal. B: Environ., 2012, 117/118: 268.
[114] Suryawanshi A, Dhanasekaran P, Mhamane D, Kelkar S, Patil S, Gupta N, Ogale S. Int. J. Hydrogen Energ., 2012, 37: 9584.
[115] Yan H, Huang Y. Chem. Commun., 2011, 47: 4168.
[116] Zhang J, Zhang M, Sun R, Wang X. Angew. Chem. Int. Ed., 2012, 51: 10145.
[117] Ge L, Han C, Liu J. J. Mater. Chem., 2012, 22: 11843.
[118] Gawande S, Thakare S. ChemCatChem, 2012, 4: 1759.
[119] Hong J, Xia X, Wang Y, Xu R. J. Mater. Chem., 2012, 22: 15006.
[120] Lin Z, Wang X. Angew. Chem. Int. Ed., 2013, 52: 1735.
[121] Wang Y, Wang X, Antonietti M. Angew. Chem. Int. Ed., 2012, 51: 68.

[1] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[2] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[3] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[4] Yi Zeng, Yongsheng Ren, Wenhui Ma, Hui Chen, Shu Zhan, Jing Cao. Boron Removal Method, Technology and Process for Producing Solar Grade Silicon by Metallurgical Method [J]. Progress in Chemistry, 2022, 34(4): 926-949.
[5] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[6] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[7] Wenjing Wang, Di Zeng, Juxue Wang, Yu Zhang, Ling Zhang, Wenzhong Wang. Synthesis and Application of Bismuth-Based Metal-Organic Framework [J]. Progress in Chemistry, 2022, 34(11): 2405-2416.
[8] Chenliu Tang, Yunjie Zou, Mingkai Xu, Lan Ling. Photocatalytic Reduction of Carbon Dioxide with Iron Complexes [J]. Progress in Chemistry, 2022, 34(1): 142-154.
[9] Ming Ge, Zheng Hu, Quanbao He. Application of Spinel Ferrite-Based Advanced Oxidation Processes in Organic Wastewater Treatment [J]. Progress in Chemistry, 2021, 33(9): 1648-1664.
[10] Yifan Zhao, Qiyun Mao, Xiaoya Zhai, Guoying Zhang. Structural Defects Regulation of Bismuth Molybdate Photocatalyst [J]. Progress in Chemistry, 2021, 33(8): 1331-1343.
[11] Xiaoping Chen, Qiaoshan Chen, Jinhong Bi. Photocatalytic Degradation of Polycyclic Aromatic Hydrocarbon in Soil [J]. Progress in Chemistry, 2021, 33(8): 1323-1330.
[12] Hongfei Bi, Jinsong Liu, Zhengying Wu, He Suo, Xueliang Lv, Yunlong Fu. Modified Synthesis and Photocatalytic Properties of Indium Zinc Sulfide [J]. Progress in Chemistry, 2021, 33(12): 2334-2347.
[13] Hanqiang Zhou, Mingfei Yu, Qiaoshan Chen, Jianchun Wang, Jinhong Bi. Synthesis, Modification of Bismuth Oxyiodide Photocatalyst for Purification of Nitric Oxide [J]. Progress in Chemistry, 2021, 33(12): 2404-2412.
[14] Jingchen Tian, Gongde Wu, Yanjun Liu, Jie Wan, Xiaoli Wang, Lin Deng. Application of Supported Non-Noble Metal Catalysts for Formaldehyde Oxidation at Low Temperature [J]. Progress in Chemistry, 2021, 33(11): 2069-2084.
[15] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.