中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (1): 131-141 DOI: 10.7536/PC201242 Previous Articles   Next Articles

• Review •

Renewable Aromatic Production from Biomass-Derived Furans

Di Zeng1,2, Xuechen Liu1, Yuanyi Zhou1,2, Haipeng Wang1,2, Ling Zhang1,2(), Wenzhong Wang1,2,3()   

  1. 1 State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences,Shanghai 200050, China
    2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences,Beijing 100049, China
    3 School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences,Hangzhou 310024, China
  • Received: Revised: Online: Published:
  • Contact: Ling Zhang, Wenzhong Wang
  • Supported by:
    National Natural Science Foundation of China(51972327); National Natural Science Foundation of China(51772312); National Natural Science Foundation of China(51961165107)
Richhtml ( 80 ) PDF ( 736 ) Cited
Export

EndNote

Ris

BibTeX

As one of the most important renewable chemicals, aromatic compounds are closely related to human production and life. Increasing concerns about diminishing oil resources and the relevant environmental pollution have gradually motivated interests in exploring new green chemistry routes towards aromatic hydrocarbons synthesis. Prized for the low cost and molecular diversity, biomass-derived furans arise as vital candidate raw materials for the production of aromatic compounds in the new century. Through Diels-Alder cycloaddition and the subsequent dehydration, furans could react with enophiles (such as ethylene and propylene) to obtain value-added aromatics including para-xylene. To our knowledge there exist broad industrial application prospects and economic benefits, and the catalytic reation of biomass-derived furans can effectively utilize renewable, abundant, sustainable energy. However, most of the reported catalytic conversion requires elevated temperature and high pressure, and the one-pot method usually results in multifarious and unrestricted side effects, such as hydrolysis, alkylation, isomerization and oligomerization. In this review, we summarize recent developments in the research achievements and issues of aromatic synthesis based on different biomass-derived furan molecules. The mechanism of Diels-Alder cycloaddition reaction is briefly introduced, followed by its influencing factors: catalyst composition, solvent effect and enophile. Then, perspectives and challenges for biomass-based aromatic synthesis are discussed.

Contents

1 Introduction

2 The mechanism of catalytic conversion

2.1 The mechanism of reaction

2.2 Possible side reactions

3 Influence factors

3.1 Solid acid catalyst composition

3.2 Solvents effect

3.3 Dienophile

4 From biomass-derived furans to aromatic hydrocarbons

4.1 By 2,5-dimethylfuran

4.2 By 2-methylfuran

4.3 By 5-hydroxymethylfurfural

4.4 By furfural

4.5 By other biomass-derived furans

5 Conclusion and outlook

Table 1 Basic physical properties of biomass-derived furans
Fig. 1 Schematic representations of the reaction network of the production of aromatic from furan compounds
Fig. 2 Possible side reactions of the reaction of DMF and ethylene
Fig. 3 Catalytic performance of various catalysts for the p-xylene production from the reaction of DMF with ethylene[27]
Fig. 4 Furan with the co-feeding of propane proposed to follow a cascade reaction scheme[46]
Table 2 Catalytic performances of various catalysts for the cycloaddition of biomass-derived furans
Fig. 5 Proposed reaction chemistry for the coupling conversion of MF and methanol[70]
Fig. 6 Pathway to meta-xylylenediamine from furfural and acrylonitrile[60]
[1]
Li N, Shi M J, Zhou S L, L. Z X . Resour. Conserv. Recycl., 2016,121: 11.

doi: 10.1016/j.resconrec.2016.03.016
[2]
Vispute T P, Zhang H Y, Sanna A, Xiao R, Huber G W. Science, 2010,330(6008): 1222.

doi: 10.1126/science.1194218 pmid: 21109668
[3]
Gao P, Xu J, Qi G D, Wang C, Wang Q, Zhao Y X, Zhang Y H, Feng N D, Zhao X L, Li J L, Deng F. ACS Catal., 2018,8(10): 9809.

doi: 10.1021/acscatal.8b03076
[4]
Xu Y B, Wang T, Shi C M, Liu B, Jiang F, Liu X H. Ind. Eng. Chem. Res., 2020,59(18): 8581.

doi: 10.1021/acs.iecr.0c00992
[5]
Shen D K, Zhao J, Xiao R. Energy Convers. Manag., 2016,124: 61.

doi: 10.1016/j.enconman.2016.06.067
[6]
Lyons T W, Guironnet D, Findlater M, Brookhart M. J. Am. Chem. Soc., 2012,134(38): 15708.

doi: 10.1021/ja307612b
[7]
Wang Y, Gao W Z, Kazumi S, Li H J, Yang G H, Tsubaki N. Chem. Eur. J., 2019,25(20): 5149.

doi: 10.1002/chem.v25.20
[8]
Tanaka K, Omata D, Asada Y, Hoshino Y, Honda K. J. Org. Chem., 2019,84(17): 10669.

doi: 10.1021/acs.joc.9b01156 pmid: 31322873
[9]
Lee J S, Kim S Y, Kwon S J, Kim T W, Jeong S Y, Kim C U, Lee K Y. J. Nanosci. Nanotechnol., 2018,18(2): 1419.

doi: 10.1166/jnn.2018.14893
[10]
Chen S, Wojcieszak R, Dumeignil F, Marceau E, Royer S. Chem. Rev., 2018,118(22): 11023.

doi: 10.1021/acs.chemrev.8b00134
[11]
Sun Y, Wang Z, Liu Y, Meng X H, Qu J B, Liu C Y, Qu B. Energies, 2019,13(1): 21.

doi: 10.3390/en13010021
[12]
Dissanayake I, Hart J D, Becroft E C, Sumby C J, Newton C G. J. Am. Chem. Soc., 2020,142(31): 13328.

doi: 10.1021/jacs.0c06306 pmid: 32686408
[13]
Yu J Y, Zhu S Y, Dauenhauer P J, Cho H J, Fan W, Gorte R J. Catal. Sci. Technol., 2016,6(14): 5729.

doi: 10.1039/C6CY00501B
[14]
Chang C C, Je Cho H, Yu J Y, Gorte R J, Gulbinski J, Dauenhauer P, Fan W. Green Chem., 2016,18(5): 1368.

doi: 10.1039/C5GC02164B
[15]
Yin J B, Shen C, Feng X Q, Ji K Y, Du L. ACS Sustainable Chem. Eng., 2018,6(2): 1891.

doi: 10.1021/acssuschemeng.7b03297
[16]
Zhao R R, Zhao Z C, Li S K, Parvulescu A N, Müller U, Zhang W P. ChemSusChem, 2018,11(21): 3803.

doi: 10.1002/cssc.v11.21
[17]
Nikbin N, Feng S T, Caratzoulas S, Vlachos D G. J. Phys. Chem. C, 2014,118(42): 24415.

doi: 10.1021/jp506027f
[18]
Wijaya Y P, Kristianto I, Lee H, Jae J. Fuel, 2016,182: 588.

doi: 10.1016/j.fuel.2016.06.010
[19]
Do P T M, McAtee J R, Watson D A, Lobo R F. ACS Catal., 2013,3(1): 41.

doi: 10.1021/cs300673b
[20]
Espindola J S, Gilbert C J, Perez-Lopez O W, Trierweiler J O, Huber G W. Fuel Process. Technol., 2020,201: 106319.

doi: 10.1016/j.fuproc.2019.106319
[21]
Li Y P, Martin H G, Alexis B T. J. Phys. Chem. C, 2014,118: 22090.

doi: 10.1021/jp506664c
[22]
Patet R E, Koehle M, Lobo R F, Caratzoulas S, Vlachos D G. J. Phys. Chem. C, 2017,121(25): 13666.

doi: 10.1021/acs.jpcc.7b02344
[23]
Kim J C, Kim T W, Kim Y, Ryoo R, Jeong S Y, Kim C U. Appl. Catal. B: Environ., 2017,206: 490.

doi: 10.1016/j.apcatb.2017.01.031
[24]
Williams C L, Chang C C, Do P, Nikbin N, Caratzoulas S, Vlachos D G, Lobo R F, Fan W, Dauenhauer P J. ACS Catal., 2012,2(6): 935.

doi: 10.1021/cs300011a
[25]
Li S K, Zhao Z C, Zhao R R, Zhou D H, Zhang W P. ChemCatChem, 2017,9(8): 1494.

doi: 10.1002/cctc.201601623
[26]
Gulbinski J, Ren L M, Vattipalli V, Chen H Y, Delaney J, Bai P, Dauenhauer P, Tsapatsis M, Abdelrahman O A, Fan W. Ind. Eng. Chem. Res., 2020,59(51): 22049.

doi: 10.1021/acs.iecr.0c04493
[27]
Cho H J, Ren L M, Vattipalli V, Yeh Y H, Gould N, Xu B J, Gorte R J, Lobo R, Dauenhauer P J, Tsapatsis M, Fan W. ChemCatChem, 2017,9(3): 398.

doi: 10.1002/cctc.v9.3
[28]
Kasipandi S, Cho J M, Park K S, Shin C H, Bae J W. J. Catal., 2020,385: 10.

doi: 10.1016/j.jcat.2020.02.026
[29]
Rohling R Y, Uslamin E, Zijlstra B, Tranca I C, Filot I A W, Hensen E J M, Pidko E A. ACS Catal., 2018,8(2): 760.

doi: 10.1021/acscatal.7b03343
[30]
Mendoza Mesa J A, Brandi F, Shekova I, Antonietti M, Al-Naji M. Green Chem., 2020,22(21): 7398.

doi: 10.1039/D0GC01517B
[31]
Gao Z B, Feng Y C, Zhang L Q, Zeng X H, Sun Y, Tang X, Lei T Z, Lin L. ChemistrySelect, 2020,5(8): 2449.

doi: 10.1002/slct.v5.8
[32]
Feng X Q, Cui Z H, Ji K Y, Shen C, Tan T W. Appl. Catal. B: Environ., 2019,259: 118108.

doi: 10.1016/j.apcatb.2019.118108
[33]
Ni L L, Xin J Y, Dong H X, Lu X M, Liu X M, Zhang S J. ChemSusChem, 2017,10(11): 2394.

doi: 10.1002/cssc.201700020
[34]
Wijaya Y P, Winoto H P, Park Y K, Suh D J, Lee H, Ha J M, Jae J. Catal. Today, 2017,293/294: 167.

doi: 10.1016/j.cattod.2016.12.032
[35]
Fikri Z A, Ha J M, Park Y K, Lee H, Suh D J, Jae J. Catal. Today, 2020,351: 37.

doi: 10.1016/j.cattod.2019.01.063
[36]
Li Y, Cheng H Y, Lin W W, Zhang C, Wu Q F, Zhao F Y, Arai M. Catal. Sci. Technol., 2018,8(14): 3580.

doi: 10.1039/C8CY00943K
[37]
Walker T W, Chew A K, Li H X, Demir B, Zhang Z C, Huber G W, van Lehn R C, Dumesic J A. Energy Environ. Sci., 2018,11(6): 1639.

doi: 10.1039/C8EE90031K
[38]
Salavati-fard T, Caratzoulas S, Doren D J. J. Phys. Chem. A, 2015,119(38): 9834.

doi: 10.1021/acs.jpca.5b05060 pmid: 26331220
[39]
Wijaya Y P, Suh D J, Jae J. Catal. Commun., 2015,70: 12.

doi: 10.1016/j.catcom.2015.07.008
[40]
Chang C C, Green S K, Williams C L, Dauenhauer P J, Fan W. Green Chem., 2014,16(2): 585.

doi: 10.1039/C3GC40740C
[41]
Xiong R C, Sandler S I, Vlachos D G, Dauenhauer P J. Green Chem., 2014,16(9): 4086.

doi: 10.1039/C4GC00727A
[42]
Song Y, He X, Yu B, Li H R, He L N. Chin. Chem. Lett., 2020,31(3): 667.

doi: 10.1016/j.cclet.2019.07.053
[43]
Bini R, Chiappe C, Mestre V L, Pomelli C S, Welton T. Theor. Chem. Acc., 2009,123(3/4): 347.

doi: 10.1007/s00214-009-0525-0
[44]
Uslamin E A, Luna-Murillo B, Kosinov N, Bruijnincx P C A, Pidko E A, Weckhuysen B M, Hensen E J M. Chem. Eng. Sci., 2019,198: 305.

doi: 10.1016/j.ces.2018.09.023
[45]
Cheng Y T, Huber G W. Green Chem., 2012,14(11): 3114.

doi: 10.1039/c2gc35767d
[46]
Qi X D, Fan W. ACS Catal., 2019,9(3): 2626.

doi: 10.1021/acscatal.8b04859
[47]
Sedighi M, Ghasemi M, Sadeqzadeh M, Hadi M. Powder Technol., 2016,291: 131.

doi: 10.1016/j.powtec.2015.11.066
[48]
Teixeira I F, Lo B T W, Kostetskyy P, Ye L, Tang C C, Mpourmpakis G, Tsang S C E. ACS Catal., 2018,8(3): 1843.

doi: 10.1021/acscatal.7b03952
[49]
Zhu L J, Fan M H, Wang Y L, Wang S F, He Y T, Li Q X. J. Chem. Technol. Biotechnol., 2019,94(9): 2876.
[50]
Wang C G, Si Z, Wu X P, Lv W, Bi K, Zhang X H, Chen L G, Xu Y, Zhang Q, Ma L L. J. Anal. Appl. Pyrolysis, 2019,139: 87.

doi: 10.1016/j.jaap.2019.01.013
[51]
Noorizadeh S, Maihami H. J. Mol. Struct.: THEOCHEM, 2006,763(1/3): 133.

doi: 10.1016/j.theochem.2006.01.022
[52]
Xia Y, Yin D L, Rong C Y, Xu Q, Yin D H, Liu S B. J. Phys. Chem. A, 2008,112(40): 9970.

doi: 10.1021/jp805410c
[53]
Salavati-fard T, Vasiliadou E S, Jenness G R, Lobo R F, Caratzoulas S, Doren D J. ACS Catal., 2019,9(1): 701.

doi: 10.1021/acscatal.8b03664
[54]
Shiramizu M, Toste F D. Chem. Eur. J., 2011,17(44): 12452.

doi: 10.1002/chem.v17.44
[55]
Bozell J J, Petersen G R. Green Chem., 2010,12(4): 539.

doi: 10.1039/b922014c
[56]
Feng X Q, Shen C, Ji K Y, Yin J B, Tan T W. Catal. Sci. Technol., 2017,7(23): 5540.

doi: 10.1039/C7CY01530E
[57]
Qiang F X, Chun S, Chen T C, Wei T T. Ind. Eng. Chem. Res., 2017,56: 5852.

doi: 10.1021/acs.iecr.7b00975
[58]
Green S K, Patet R E, Nikbin N, Williams C L, Chang C C, Yu J Y, Gorte R J, Caratzoulas S, Fan W, Vlachos D G, Dauenhauer P J. Appl. Catal. B: Environ., 2016,180: 487.

doi: 10.1016/j.apcatb.2015.06.044
[59]
Pacheco J J, Davis M E. Proc. Natl. Acad. Sci. U. S. A., 2014,111: 8363.

doi: 10.1073/pnas.1408345111 pmid: 24912153
[60]
Scodeller I, Mansouri S, Morvan D, Muller E, De Oliveira Vigier K, Wischert R, JÉrôme F. Angew. Chem. Int. Ed., 2018,57(33): 10510.

doi: 10.1002/anie.v57.33
[61]
Uslamin E A, Kosinov N, Filonenko G A, Mezari B, Pidko E, Hensen E J M. ACS Catal., 2019,9(9): 8547.

doi: 10.1021/acscatal.9b02259
[62]
Lancefield C S, Fölker B, Cioc R C, Stanciakova K, Bulo R E, Lutz M, Crockatt M, Bruijnincx P C A. Angew. Chem. Int. Ed., 2020,59(52): 23480.

doi: 10.1002/anie.v59.52
[63]
Saha B, Abu-Omar M M. ChemSusChem, 2015,8(7): 1133.

doi: 10.1002/cssc.v8.7
[64]
Song S, Wu G J, Dai W L, Guan N J, Li L D. J. Mol. Catal. A: Chem., 2016,420: 134.

doi: 10.1016/j.molcata.2016.04.023
[65]
Zhao R R, Xu L L, Huang S J, Zhang W P. Catal. Sci. Technol., 2019,9(20): 5676.

doi: 10.1039/C9CY01113G
[66]
Salavati-fard T, Caratzoulas S, Doren D J. Chem. Phys., 2017,485/486: 118.

doi: 10.1016/j.chemphys.2017.01.010
[67]
Yeh J Y, Chen S S, Li S C, Chen C H, Shishido T, Tsang D C W, Yamauchi Y, Li Y P, Wu K C W. Angew. Chem. Int. Ed., 2021,60(2): 624.

doi: 10.1002/anie.v60.2
[68]
Corma A, De la Torre O, Renz M, Villandier N. Angew. Chem. Int. Ed., 2011,50(10): 2375.

doi: 10.1002/anie.201007508
[69]
Wang D, Osmundsen C M, Taarning E, Dumesic J A. ChemCatChem, 2013,5(7): 2044.

doi: 10.1002/cctc.v5.7
[70]
Zheng A Q, Zhao Z L, Chang S, Huang Z, Zhao K, Wu H X, Wang X B, He F, Li H B. Green Chem., 2014,16(5): 2580.

doi: 10.1039/c3gc42251h
[71]
Thiyagarajan S, Genuino H C, Śliwa M, van der Waal J C, De Jong E, Van Haveren J, Weckhuysen B M, Bruijnincx P C A, Van Es D S. ChemSusChem, 2015,8(18): 3052.

doi: 10.1002/cssc.201500511 pmid: 26235971
[72]
Xia H A, Xu S Q, Hu H, An J H, Li C Z. RSC Adv., 2018,8(54): 30875.

doi: 10.1039/C8RA05308A
[73]
Megías-Sayago C, Lolli A, Bonincontro D, Penkova A, Albonetti S, Cavani F, Odriozola J A, Ivanova S. ChemCatChem, 2020,12(4): 1177.

doi: 10.1002/cctc.v12.4
[74]
Esteves L M, Brijaldo M H, Oliveira E G, Martinez J J, Rojas H, Caytuero A, Passos F B. Fuel, 2020,270: 117524.

doi: 10.1016/j.fuel.2020.117524
[75]
McGlone J, Priecel P, da Vià L, Majdal L, Lopez-Sanchez J. Catalysts, 2018,8(6): 253.

doi: 10.3390/catal8060253
[76]
Tao L, Yan T H, Li W Q, Zhao Y, Zhang Q, Liu Y M, Wright M M, Li Z H, He H Y, Cao Y. Chem, 2018,4(9): 2212.

doi: 10.1016/j.chempr.2018.07.007
[77]
Jia W L, Sun Y, Zuo M, Feng Y C, Tang X, Zeng X H, Lin L. ChemSusChem, 2020,13(3): 640.

doi: 10.1002/cssc.v13.3
[78]
Ogunjobi J K, Farmer T J, McElroy C R, Breeden S W, MacQuarrie D J, Thornthwaite D, Clark J H. ACS Sustainable Chem. Eng., 2019,7(9): 8183.

doi: 10.1021/acssuschemeng.8b06196
[79]
Pacheco J J, Labinger J A, Sessions A L, Davis M E. ACS Catal., 2015,5(10): 5904.

doi: 10.1021/acscatal.5b01309
[80]
Cho H J, Kim D, Li J, Su D, Xu B J. J. Am. Chem. Soc., 2018,140(41): 13514.

doi: 10.1021/jacs.8b09568
[81]
Nakagawa Y, Tamura M, Tomishige K. ACS Catal., 2013,3(12): 2655.

doi: 10.1021/cs400616p
[82]
Mariscal R, Maireles-Torres P, Ojeda M, Sádaba I, LÓpez Granados M. Energy Environ. Sci., 2016,9(4): 1144.

doi: 10.1039/C5EE02666K
[83]
Fanchiang W L, Lin Y C. Appl. Catal. A: Gen., 2012,419/420: 102.

doi: 10.1016/j.apcata.2012.01.017
[84]
Kim M, Su Y Q, Fukuoka A, Hensen E J M, Nakajima K. Angew. Chem. Int. Ed., 2018,57(27): 8235.

doi: 10.1002/anie.v57.27
[85]
Kim M, Su Y Q, Aoshima T, Fukuoka A, Hensen E J M, Nakajima K. ACS Catal., 2019,9(5): 4277.

doi: 10.1021/acscatal.9b00450
[86]
Scodeller I, de Oliveira Vigier K, Muller E, Ma C R, GuÉgan F, Wischert R, JÉrôme F. ChemSusChem, 2021,14(1): 313.

doi: 10.1002/cssc.v14.1
[87]
Tachibana Y, Kimura S, Kasuya K I. Sci. Rep., 2015,5(1): 1.
[88]
Mahmoud E, Watson D A, Lobo R F. Green Chem., 2014,16(1): 167.

doi: 10.1039/C3GC41655K
[89]
Cheng Y T, Wang Z P, Gilbert C J, Fan W, Huber G W. Angew. Chem. Int. Ed., 2012,51(44): 11097.

doi: 10.1002/anie.201205230
[90]
Cheng Y T, Huber G W. ACS Catal., 2011,1(6): 611.

doi: 10.1021/cs200103j
[1] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[2] Zonghan Xue, Nan Ma, Weigang Wang. Nitrated Mono-Aromatic Hydrocarbons in the Atmosphere [J]. Progress in Chemistry, 2022, 34(9): 2094-2107.
[3] Xiaoping Chen, Qiaoshan Chen, Jinhong Bi. Photocatalytic Degradation of Polycyclic Aromatic Hydrocarbon in Soil [J]. Progress in Chemistry, 2021, 33(8): 1323-1330.
[4] Qiu Jianhao, He Ming, Jia Mingmin, Yao Jianfeng. Metal Organic Frameworks for Bi- and Multi-Metallic Catalyst and Their Applications [J]. Progress in Chemistry, 2016, 28(7): 1016-1028.
[5] Xue Lijun, Zhang Di, Wei Jie, Liu Xinmei. Pore Confinement Effects of Catalysts [J]. Progress in Chemistry, 2016, 28(4): 450-458.
[6] Peng Peng, Zhang Zhanquan, Wang Youhe, Fazle Subhan, Yan Zifeng. Hierarchical Molecular Sieves:Synthesis and Catalytic Applications [J]. Progress in Chemistry, 2013, 25(12): 2028-2037.
[7] . Methods of Creating Active sites in MOF and Catalytic Explorations [J]. Progress in Chemistry, 2010, 22(11): 2089-2098.
[8] Xu Jianhua|Chen Qinglin|Ji Hongbing**. Application of In Situ DRIFTS in the Investigation of Reaction Mechanisms for Gas Solid Catalytic Reactions [J]. Progress in Chemistry, 2008, 20(06): 811-820.
[9] Hongyun Niu, Yaqi Cai, Fusheng Wei, Shifen Mou, Guibin Jiang. Hydroxyl Polycyclic Aromatic Hydrocarbons in Human Urine as Biomarkers of Exposure to PAHs [J]. Progress in Chemistry, 2006, 18(10): 1381-1390.
[10] Shasha Zeng1|Ruiren Tang1*|Artem Melman2,Kelong Huang1 . Progress of the Chiral Phase Transfer Catalysts and the Applications in Asymmetric Catalytical Reaction [J]. Progress in Chemistry, 2006, 18(06): 743-751.
[11]

Shi Jun, Xu Nanping

. Inorganic Membranes and Inorganic Membrane Catalytic Reactions [J]. Progress in Chemistry, 1995, 7(03): 167-.