中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (7): 1016-1028 DOI: 10.7536/PC160201 Previous Articles   Next Articles

• Review and comments •

Metal Organic Frameworks for Bi- and Multi-Metallic Catalyst and Their Applications

Qiu Jianhao1, He Ming2, Jia Mingmin1, Yao Jianfeng1*   

  1. 1. College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China;
    2. College of Science, Nanjing Forestry University, Nanjing 210037, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the Natural Science Key Project of Jiangsu Higher Education Institutions (No.15KJA220001).
PDF ( 1927 ) Cited
Export

EndNote

Ris

BibTeX

Metal organic frameworks (MOFs) are very popular materials and have been largely researched in recent years. They have extremely wide ranges of applications in catalysis because of their variety of excellent properties. However, the research of MOFs themselves as catalysts is limited, the regularly porous structure and large surface area of MOFs can provide a natural physical space for loading highly dispersed metal nanocatalyst, which prevents the aggregation and leaching of metal nanoparticals. This has also been the major research direction of MOF catalysts in the last few years. This review reports the preparation methods of loading metal nanoparticles on MOFs to form bi- and multi-metallic catalysts and their applications in catalysis. The preparation methods,such as one pot synthesis, adsorption-reduction method, metal organic chemical vapor deposition method and solid grinding method are highlighted, and their applications in oxidation (the oxidation of alcohols, alkanes, alkenes and CO), hydrogenation (the hydrogenation of carbonyl compounds and olefinic compounds), Knoevenagel condensation and photocatalytic reaction (photocatalytic degradation of organic compounds and light-driven water splitting to produce hydrogen) are discussed in detail. In addition,the existing problems and the development prospects of such bi- and multi-metallic catalysts are also addressed in this review.

Contents
1 Introduction
2 The preparation methods of bi- or multi-metallic catalyst
2.1 One pot synthesis
2.2 Adsorption-reduction method
2.3 Metal organic chemical vapor deposition
2.4 Solid Grinding
2.5 Other methods
3 The applications of bimetallic or multi-metal catalyst
3.1 Oxidation reaction
3.2 Hydrogenation reaction
3.3 Knoevenagel condensation
3.4 Photocatalytic reaction
4 Conclusion and outlook

CLC Number: 

[1] James S L. Chem. Soc. Rev., 2003, 32:276.
[2] Janiak C. Dalton Trans., 2003:2781.
[3] Rowsell J L C, Yaghi O M. Microporous Mesoporous Mater., 2004, 73:3.
[4] Ferey G. Chem. Soc. Rev., 2008, 37:191.
[5] Millward A R, Yaghi O M. J. Am. Chem. Soc., 2005, 127:17998.
[6] Yazaydin A O, Snurr R Q, Park T H, Koh K, Liu J, LeVan M D, Benin A I, Jakubczak P, Lanuza M, Galloway D B, Low J J, Willis R R. J. Am. Chem. Soc., 2009, 131:18198.
[7] Yao J F, Wang H T. Chem. Soc. Rev., 2014, 43:4470.
[8] Yao J F, Dong D H, Li D, He L, Xu G S, Wang H T. Chem. Commun., 2011, 47:2559.
[9] He M, Yao J F, Low Z X, Yu D B, Feng Y, Wang H T. RSC Adv., 2014, 4:7634.
[10] Xu G S, Yao J F, Wang K, He L, Webley P A, Chen C S, Wang H T. J. Membr. Sci., 2011, 385:187.
[11] Corma A, Garcia H, Xamena F X L I. Chem. Rev., 2010, 110:4606.
[12] Farrusseng D, Aguado S, Pinel C. Angew. Chem. Int. Ed., 2009, 48:7502.
[13] Dhakshinamoorthy A, Garcia H. Chem. Soc. Rev., 2012, 41:5262.
[14] Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, Eubank J F, Heurtaux D, Clayette P, Kreuz C, Chang J S, Hwang Y K, Marsaud V, Bories P-N, Cynober L, Gil S, Ferey G, Couvreur P, Gref R. Nat. Mater., 2010, 9:172.
[15] Kreno L E, Leong K, Farha O K, Allendorf M, Van Duyne R P, Hupp J T. Chem. Rev., 2012, 112:1105.
[16] Lu Z Z, Zhang R, Li Y Z, Guo Z J, Zheng H G. J. Am. Chem. Soc., 2011, 133:4172.
[17] 张慧(Zhang H), 周雅静(Zhou Y J), 宋肖锴(Song X K). 化学进展(Progress in Chemistry), 2015, 2:174.
[18] Liu Q, Low Z X, Li L X, Razmjou A, Wang K, Yao J F, Wang H T. J. Mater. Chem. A, 2013, 1:11563.
[19] Liu Q, Low Z X, Feng Y, Leong S, Zhong Z X, Yao J F, Hapgood K, Wang H T. Microporous Mesoporous Mater., 2014, 194:1.
[20] Yao J F, He M, Wang K, Chen R Z, Zhong Z X, Wang H T. Crystengcomm, 2013, 15:3601.
[21] He M, Yao J F, Liu Q, Zhong Z X, Wang H T. Dalton Trans., 2013, 42:16608.
[22] Fujita M, Kwon Y J, Washizu S, and Ogura K. J. Am. Chem. Soc., 1994, 116:1151.
[23] Lee J, Farha O K, Roberts J, Scheidt K A, Nguyen S T, Hupp J T. Chem. Soc. Rev., 2009, 38:1450.
[24] Gao J, Miao J, Li P Z, Teng W Y, Yang L, Zhao Y, Liu B, Zhang Q. Chem. Commun., 2014, 50:3786.
[25] Junghans U, Suttkus C, Lincke J, Laessig D, Krautscheid H, Glaeser R. Microporous Mesoporous Mater., 2015, 216:151.
[26] Seo J S, Whang D, Lee H, Jun S I, Oh J, Jeon Y J, Kim K. Nature, 2000, 404:982.
[27] Hasegawa S, Horike S, Matsuda R, Furukawa S, Mochizuki K, Kinoshita Y, Kitagawa S. J. Am. Chem. Soc., 2007, 129:2607.
[28] Meilikhov M, Yusenko K, Esken D, Turner S, van Tendeloo G, Fischer R A. Eur. J. Inorg. Chem., 2010:3701.
[29] Arnanz A, Pintado-Sierra M, Corma A, Iglesias M, Sanchez F. Adv. Synth. Catal., 2012, 354:1347.
[30] Bhattacharjee S, Lee Y R, Puthiaraj P, Cho S M, Ahn W S. Catal. Surv. Asia, 2015, 19:203.
[31] Ferey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surble S, Margiolaki I. Science, 2005, 309:2040.
[32] Kim J, Cho H Y, Ahn W S. Catal. Surv. Asia, 2012, 16:106.
[33] D'Souza D M, Mueller T J J. Chem. Soc. Rev., 2007, 36:1095.
[34] Sankar M, Dimitratos N, Miedziak P J, Wells P P, Kiely C J, Hutchings G J. Chem. Soc. Rev., 2012, 41:8099.
[35] Yu X, Cohen S M. Chem. Commun., 2015, 51:9880.
[36] Huang Y, Zhang Y, Chen X, Wu D, Yi Z, Cao R. Chem. Commun., 2014, 50:10115.
[37] 魏文英(Wei W Y),方键(Fang J),孔海宁(Kong H N),韩金玉(Han J Y),常贺英(Chang H Y). 化学进展(Progress in Chemistry). 2005, 17:1110.
[38] Juan-Alcaniz J, Ramos-Fernandez E V, Lafont U, Gascon J, Kapteijn F. J. Catal., 2010, 269:229.
[39] Yang X L, Qiao L M, Dai W L. Microporous Mesoporous Mater., 2015, 211:73.
[40] Roesler C, Esken D, Wiktor C, Kobayashi H, Yamamoto T, Matsumura S, Kitagawa H, Fischer R A. Eur. J. Inorg. Chem., 2014:5514.
[41] Liu H, Liu Y, Li Y, Tang Z, Jiang H. J. Phys. Chem. C, 2010, 114:13362.
[42] Chen L, Chen H, Li Y. Chem. Commun., 2014, 50:14752.
[43] Liu H, Chang L, Chen L, Li Y. J. Mater. Chem. A, 2015, 3:8028.
[44] Pastoriza-Santos I, Liz-Marzan L M. Adv. Funct. Mater., 2009, 19:679.
[45] Aguirre M E, Rodriguez H B, San Roman E, Feldhoff A, Grela M A. J. Phys. Chem. C, 2011, 115:24967.
[46] Yamamoto H, Yano H, Kouchi H, Obora Y, Arakawa R, Kawasaki H. Nanoscale, 2012, 4:4148.
[47] Shen L J, Wu W M, Liang R W, Lin R, Wu L. Nanoscale, 2013, 5:9374.
[48] Sabo M, Henschel A, Froede H, Klemm E, Kaskel S. J. Mater. Chem., 2007, 17:3827.
[49] Henschel A, Gedrich K, Kraehnert R, Kaskel S. Chem. Commun., 2008:4192.
[50] Choi K M, Na K, Somorjai G A, Yaghi O M. J. Am. Chem. Soc., 2015, 137:7810.
[51] Pan Y, Yuan B, Li Y, He D. Chem. Commun., 2010, 46:2280.
[52] Puthiaraj P, Ahn W S. Catal. Commun., 2015, 65:91.
[53] Qi Y, Luan Y, Peng X, Yang M, Hou J, Wang G. Eur. J. Inorg. Chem., 2015:5099.
[54] Zhu Q L, Li J, Xu Q. J. Am. Chem. Soc., 2013, 135:10210.
[55] Bhattacharjee S, Kim J, Ahn W-S. J. Nanosci. Nanotechnol., 2014, 14:2546.
[56] Yiping Zhang Z Y, and Richard J. Puddephatt. Chem. Mater., 1998, 10:2293.
[57] David B. Beach F K L, and, Hu C-K. Chem. Mater., 1990, 2:216.
[58] Mueller M, Hermes S, Kaehler K, van den Berg M W E, Muhler M, Fischer R A. Chem. Mater., 2008, 20:4576.
[59] Okumura M, Tsubota S, Haruta M. J. Mol. Catal. A, 2003, 199:73.
[60] Hermes S, Schroter M K, Schmid R, Khodeir L, Muhler M, Tissler A, Fischer R W, Fischer R A. Angew. Chem. Int. Ed., 2005, 44:6237.
[61] Hermes S, Schroder F, Amirjalayer S, Schmid R, Fischer R A. J. Mater. Chem., 2006, 16:2464.
[62] Esken D, Turner S, Lebedev O I, Van Tendeloo G, Fischer R A. Chem. Mater., 2010, 22:6393.
[63] Hermannsdoerfer J, Friedrich M, Miyajima N, Albuquerque R Q, Kuemmel S, Kempe R. Angew. Chem. Int. Ed., 2012, 51:11473.
[64] Luz I, Rosler C, Epp K, Xamena F, Fischer R A. Eur. J. Inorg. Chem., 2015:3904.
[65] Ishida T, Nagaoka M, Akita T, Haruta M. Chem. Eur. J., 2008, 14:8456.
[66] Jiang H L, Liu B, Akita T, Haruta M, Sakurai H, Xu Q. J. Am. Chem. Soc., 2009, 131:11302.
[67] El-Shall M S, Abdelsayed V, Khder A E R S, Hassan H M A, El-Kaderi H M, Reich T E. J. Mater. Chem., 2009, 19:7625.
[68] Martis M, Mori K, Fujiwara K, Ahn W-S, Yamashita H. J. Phys. Chem. C, 2013, 117:22805.
[69] Hou J, Luan Y, Tang J, Wensley A M, Yang M, Lu Y. J. Mol. Catal. A:Chem., 2015, 407:53.
[70] Liu H, Li Y, Jiang H, Vargas C, Luque R. Chem. Commun., 2012, 48:8431.
[71] Long J, Liu H, Wu S, Liao S, Li Y. ACS Catal., 2013, 3:647.
[72] Maksimchuk N V, Timofeeva M N, Melgunov M S, Shmakov A N, Chesalov Y A, Dybtsev D N, Fedin V P, Kholdeeva O A. J. Catal., 2008, 257:315.
[73] 谭海燕(Tan H Y), 吴金平(Wu J P). 物理化学学报(Acta Phys. -Chim. Sin.),2014, 30:715.
[74] Opelt S, Tuerk S, Dietzsch E, Henschel A, Kaskel S, Klemm E. Catal. Commun., 2008, 9:1286.
[75] Wan Y, Chen C, Xiao W, Jian L, Zhang N. Microporous Mesoporous Mater., 2013, 171:9.
[76] Hongli Liu R F, Zhong Li, Yingwei Li. Chem. Eng. Sci., 2015, 122:350.
[77] Wang C, Zhang H, Feng C, Gao S, Shang N, Wang Z. Catal. Commun., 2015, 72:29.
[78] Faustini M, Kim J, Jeong G Y, Kim J Y, Moon H R, Ahn W S, Kim D P. J. Am. Chem. Soc., 2013, 135:14619.
[79] Abdelhameed R M, Simoes M M Q, Silva A M S, Rocha J. Chem. Eur. J., 2015, 21:11072.
[80] Sha Z, Wu J. RSC Adv., 2015, 5:39592.
[81] He J, Wang J Q, Chen Y J, Zhang J P, Duan D L, Wang Y, Yan Z Y. Chem. Commun., 2014, 50:7063.
[82] Pascanu V, Yao Q, Gomez A B, Gustafsson M, Yun Y, Wan W, Samain L, Zou X, Martin-Matute B. Chem. Eur. J., 2013, 19:17483.
[83] Carson F, Pascanu V, Gomez A B, Zhang Y, Platero-Prats A E, Zou X D, Martin-Matute B. Chem. Eur. J., 2015, 21:10896.
[84] Kim S N, Yang S T, Kim J, Park J E, Ahn W S. Crystengcomm, 2012, 14:4142.
[85] Dai H, Xia B, Wen L, Du C, Su J, Luo W, Cheng G. Appl.Catal. B-Environ., 2015, 165:57.
[86] 郝志谋(Hao Z M), 李季(Li J). 化学进展(Progress in Chemistry), 2012, 24:1506.
[87] Shilov A E, Shul'pin G B. Chem. Rev., 1997, 97:2879.
[88] Kesavan L, Tiruvalam R, Ab Rahim M H, bin Saiman M I, Enache D I, Jenkins R L, Dimitratos N, Lopez-Sanchez J A, Taylor S H, Knight D W, Kiely C J, Hutchings G J. Science, 2011, 331:195.
[89] Schroeder F, Henke S, Zhang X, Fischer R A. Eur. J. Inorg. Chem., 2009:3131.
[90] Li H L, Eddaoudi M, O'Keeffe M, Yaghi O M. Nature, 1999, 402:276.
[91] 童敏曼(Tong M M),赵旭东(Zhao X D),解丽婷(Xie L T),刘大欢(Liu D H),阳庆元(Yang Q Y),仲崇立(Zhong C L). 化学进展(Progress in Chemistry), 2012, 24:1646.
[92] Hashimoto K, Irie H, Fujishima A. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 2005, 44:8269.
[93] Lu H Q, Zhao B B, Zhang D, Lv Y L, Shi B P, Shi X C, Wen J, Yao J F, Zhu Z P. J. Photochem. Photobiol. A-Chem., 2013, 272:1.
[94] Lu H Q, Zhao B B, Pan R L, Yao J F, Qiu J H, Luo L, Liu Y C. RSC Adv., 2014, 4:1128.
[95] Li H, Hao Y, Lu H, Liang L, Wang Y, Qiu J, Shi X, Wang Y, Yao J. Appl. Surf. Sci., 2015, 344:112.
[96] Wang Y, Lu H, Wang Y, Qiu J, Wen J, Zhou K, Chen L, Song G, Yao J. RSC Adv., 2016, 6:1860.
[1] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[2] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[3] Xiaozhu Zhao, Wen Li, Xuerui Zhao, Naipu He, Chao Li, Xuehui Zhang. Controlled Growth of MOFs in Emulsion [J]. Progress in Chemistry, 2023, 35(1): 157-167.
[4] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[5] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[6] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[7] Wei Zhang, Kang Xie, Yunhao Tang, Chuan Qin, Shan Cheng, Ying Ma. Application of Transition Metal Based MOF Materials in Selective Catalytic Reduction of Nitrogen Oxides [J]. Progress in Chemistry, 2022, 34(12): 2638-2650.
[8] Dandan Zhang, Qi Wu, Guangbo Qu, Jianbo Shi, Guibin Jiang. Quantitative Analysis of Metal Nanoparticles in Unicellular Aquatic Organisms [J]. Progress in Chemistry, 2022, 34(11): 2331-2339.
[9] Di Zeng, Xuechen Liu, Yuanyi Zhou, Haipeng Wang, Ling Zhang, Wenzhong Wang. Renewable Aromatic Production from Biomass-Derived Furans [J]. Progress in Chemistry, 2022, 34(1): 131-141.
[10] Xiangkang Cao, Xiaoguang Sun, Guangyi Cai, Zehua Dong. Durable Superhydrophobic Surfaces: Theoretical Models, Preparation Strategies, and Evaluation Methods [J]. Progress in Chemistry, 2021, 33(9): 1525-1537.
[11] Zhen Zhang, Shuang Zhao, Guobing Chen, Kunfeng Li, Zhifang Fei, Zichun Yang. Preparation and Applications of Silicon Carbide Monolithic Aerogels [J]. Progress in Chemistry, 2021, 33(9): 1511-1524.
[12] Jinzhao Li, Zheng Li, Xupin Zhuang, Jixian Gong, Qiujin Li, Jianfei Zhang. Preparation of Cellulose Nanocrystallines and Their Applications in CompositeMaterials [J]. Progress in Chemistry, 2021, 33(8): 1293-1310.
[13] Lizhong Chen, Qiaobin Gong, Zhe Chen. Preparation and Application of Ultra-Thin Two Dimensional MOF Nanomaterials [J]. Progress in Chemistry, 2021, 33(8): 1280-1292.
[14] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[15] Huipeng Hou, Axin Liang, Bo Tang, Zongkun Liu, Aiqin Luo. Fabrication and Application of Photonic Crystal Biochemical Sensor [J]. Progress in Chemistry, 2021, 33(7): 1126-1137.