中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (10): 1766-1779 DOI: 10.7536/PC200853 Previous Articles   Next Articles

• Review •

Advances of In Vitro Inhalation Bioaccessibility for the Contaminants in Atmospheric Particulate Matters

Laijin Zhong, Zhijie Tang, Xin Hu(), Hongzhen Lian()   

  1. State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Centre of Materials Analysis, Nanjing University,Nanjing 210023, China
  • Received: Revised: Online: Published:
  • Contact: Xin Hu, Hongzhen Lian
  • Supported by:
    National Natural Science Foundation of China(91543129); National Natural Science Foundation of China(91643105); National Natural Science Foundation of China(21874065); Natural Science Foundation of Jiangsu Province(BK20181261); Natural Science Foundation of Jiangsu Province(BK20171335)
Richhtml ( 20 ) PDF ( 312 ) Cited
Export

EndNote

Ris

BibTeX

Exposure to toxic elements or organic contaminants associated with atmospheric particulate matters(APM) via inhalation may result in potential health risks to human. Up to day, various inhalation bioaccessibility procedures(IBAcP) have been advocated to investigate the bioaccessible concentrations of these contaminants in APM for the easy and fast risk-based assessment. In this review, the inhalation bioaccessibility of the toxic elements and organic contaminants in APM and the current IBAcP for the hazards assessment are reviewed and evaluated. In addition, the defects and challenges existed in current IBAcP are disclosed and the possible solutions are proposed.

Contents

1 Introduction

2 Main procedures for inhalation bioaccessibility

3 Inhalation bioaccessibility of inorganic and organic contaminants

3.1 Inhalation bioaccessibility of inorganic toxic elements

3.2 Inhalation bioaccessibility of organic contaminants

4 Validation of inhalation bioaccessibility procedures via in-vivo correlation

5 Challenge and prospective

Fig. 1 Bioaccessibility and bioavailability of contaminants of APM in alveoli
Table 1 Components of IBAcP(g·L-1)
Fig. 2 Basic operational procedure for IBAcP
Table 2 Inhalation bioaccessibility of toxic elements in APM with various IBAcP
APM IBAcP Bioaccessibility ref
Sites/Sources Size (μm) Toxic elements Concentration in total Simulated biofluids Solid to liquid ratio (g·mL-1) Time Simulated movements (%)
NIST-SRM∶ NIES 8

(Vehicle-exhaust,
Japan)
nd Pb 219±9 mg·kg-1 J-GS 1∶20 000 24 h 40 cycle min-1 45.2±3.5 6
Zn 1040±50 mg·kg-1 1∶20 000 92.5±2.5
1∶30 78.9±2.6
Cd 1.1±0.1 mg·kg-1 1∶20 000 74.3±4.6
NIST-SRM∶ BCR 038
(fly ash,Britain)
nd Pb 262±11 mg·kg-1 1∶20 000 3.3±0.2
Zn 581±29 mg·kg-1 1∶20 000 21.2±3.3
Cd 5.0±0.3 mg·kg-1 1∶20 000 11.2±0.6
Outdoor/indoor, 2015
winter and 2016
spring, Nanjing,
Jiangsu(W/I, W/O,
S/I, S/O)
<3.3 Mn nd SLF nd 24 h Shaken, 200 rpm W/I: 5.7±1.2, W/O: 22.6±6.5, S/I: 19.0±5.1, S/O: 11.4±1.4 41
Pb W/I: 0.9±0.2, W/O: 0.8±0.3, S/I: 4.3±1.2, S/O: 2.1±1.0
Zn W/I: 1.4±0.5, W/O: 1.5±0.7, S/I: 4.5±0.6, S/O: 2.2±1.6
2015, Nanjing,
Jiangsu
TSP Pb 132±95 ng·m-3 ALF nd 24 h Shaken, 200 rpm 17.8±5.2 42
PM2.5 Pb 69.4±30.9 ng·m-3 SLF/ALF 48 h 45.1±15.8
PM2.5(quartz) Cu 72.5±40.1 ng·m-3 SLF/ALF 72 h 25.8±5.0/40.6±9.1
PM2.5 (PTFE) Co 0.50±0.28 ng·m-3 SLF/ALF 48 h 19.9±7.2/33.2±4.4
TSP(PTFE) Cu 150±12 ng·m-3 SLF/ALF 72 h 14.9±6.0/14.9±4.2
Co 9.82±1.94 ng·m-3 SLF 1.64±0.71/1.86±0.26
Ni 15.6±8.8 ng·m-3 11.3±5.0
Sr 43.0±20.3 ng·m-3 19.0±8.2
27.3±5.8
40.0±6.2
Frankford, German PM10 As 1.7(0.8~4.4) ng·m-3 ALF/GS 1∶1162 24 h Shaken, few times per day 89(85~93)/57(27~73) 51
PM2.5 As 1.0(0.4~1.8) ng·m-3 ALF/GS 81(75~85)/57(27~73)
PM1 As 0.6(0.3~1.5) ng·m-3 ALF/GS 82(77~86)/80(69~95)
The-Youth-Olympic (2014), Nanjing, Jiangsu PM2.5 Pb 530~1332 mg·kg-1 ALF/J-GS 1∶2400-1∶14000 24 h 10 min/4 h,
50 rpm
59~79/55~87
11~29/5.3~21
61
Before/after The-Youth-Olympic PM2.5 Pb 410~1046 mg·kg-1 ALF/J-GS
Port Piri(PP)
York-Peninsula (SH15)
Victoria (CMW), Australian
PM10 Pb As PP: 6968±498, SH15: 1267±21, CMW: 1302±85 mg·kg-1 GS 1∶5000 120 h Magnetic stirring (1.5) PP: 1.69±0.22, SH15: 0.88±0.07, CMW: 1.18±0.19 62
PP: 36.4±2.3, SH15: 2042±24, CMW: 18,494±834 mg·kg-1 up and down (45 rpm) PP: 1.75±0.05, SH15: 0.67±0.02, CMW: 0.39±0.08
Magnetic stirring (1.5) PP: 70.9±8.9, SH15: 27.6±1.1, CMW: 18.6±0.3
Up and down (45 rpm) PP: 25±1.4, SH15: 20.3±0.4, CMW: 9.28±0.24
江苏南京 PM2.5 Pb 3518±58 mg·kg-1 W-GS 1∶100 48 h Shaken, 200 rpm 19.1±0.3 63
SLF 1∶1000 76.1±0.9
SELF 1∶100 (8.30±0.80)×10-2
ALF (3.04±0.50)×10-2
(13.2±1.0)×10-2
Table 3 Summaries of recent researches on the inhalation bioaccessibility of organic contaminants in APM
APM IBAcP Bioaccessibility Ref
Size (μm) Compounds Concentration in total Simulated biofluids Solid to liquid
ratio(g·
mL-1)
Time Simulated movements (%)
Capital (P)/ Energy (E)/ Forest (F)/ Agriculture (A)/ city of north of China PM2.5 12 PAH ΣPAH12: 136±88.6(P), 91.3±43.2(E), 28.2±6.89(F), 38.2±10.7(A) ng·m-3 ALF/GS nd nd nd ΣPAH12-GS: 6.19±4.55(P), 7.62±3.6(E), 29.4±13.5(F), 16.7±5.9(A);
ΣPAH12-ALF: 4.04±2.99(P), 5.42±2.64(E), 20.6±7.7(F), 12.0±5.5(A)
67
Nonheating/heating season,
2016, Ha'erbin,
Heilongjiang
PM2.5 9 PAH ΣPAH9: 289±164(H), 33.5±12.6(N);
ΣPAH9-BaPe q a ): 256±105(H), 41.7±10.4(N) ng·m-3
ALF/GS 1/4 quartz film: 25 mL 24 h Shaken ΣPAH9-BaPeq-GS: 6.8±2.7(H), 9.2±6(N);
ΣPAH9-BaPeq-ALF: 2.3±1.6(H), 5.5±1.9(N)
68
Biochar with PAH nd Phe, Pyr 10 μg·g-1 ALF/GS nd nd nd Phe-ALF: 0.35~1.31, Pyr-ALF: 0.34~1.09, Phe-GS: 0.47~1.49, Pyr-GS: 0.43~1.12 69
50 μg·g-1
100 μg·g-1 Phe-GS: 1.44~2.67, Pyr-GS: 0.55~1.10
Phe-GS: 1.10~1.72, Pyr-GS: 0.70~1.22
Nanjing, Jiangsu (2015.10.16-2016.04.07) PM2.5 19PAH ΣPAH19: 38.0(4.03~102) ng·m-3 SELF 1∶600~1∶4000 24 h 100 rpm 3.21(BcF)~44.2(Acl) 70
China PM2.5 12 OPFR,
16 PAH
OPFRs: 86.9(50.4~158), PAHs: 132(17.5~456) μg·g-1 ALF/J-GS 1∶1000 1~15 d 10 min·d-1,
50 r·min-1
1-day: PAHs: 2.5(0.03~24);
15-day: OPFRs: 1.2(EHDPP)~97(TPhP), PAHs: 6.5(0.7~24.5)
71
E-waste incinerates,
Foshan, Guangzhou
0.056~0.18 2PAH nd 200 ml ALF/X-GS+1 g Tenax (Bar) 1∶10 000 0.5~14 d 150 rpm ALF: 2.8(BghiP)~93(Flu);
X-GS: 3.1(DahA)~54.7(Flu)
60
1.8~5.6
ALF: 17.2(BghiP)~92.4(Flu);
X-GS: 20.9(DahA)~77.5(Flu)
Indoor dust, Norway <63 9PE 0.41(DMP)~401.9(DiNP) μg·g-1 ALF/GS 1∶100 96 h 60 rpm ALF: 2.0(DEHP)~89.5(DMP);
GS: 3.1(DEHP)~89.9(DMP)
55
Air-liquid-particle phase partitioning
residential area, France PM0.5 72SVOC Bioaccessibility (%): PEs: 62~100, PBDEs: 71~79, PCBs: 48~56, PAHs: 48~90 74
Fig. 3 IBAc of Pb in mice of instillation with PM2.5 was used to screen out and optimize four common IBAcP(SLF, SELF, ALF and GS).(a) In vivo-in vitro correlation of Pb-BAc with Pb-RBA.(b) The metabolic kinetics of Pb in lungs during 7-days exposure to simulated PM2.5.(c) The dose dependent of Pb in kidneys of mice in 2-days exposure.(d) The Pb-BAc from GS at different solid to liquid ratio of correlations with Pb-RBA in the simulated PM2.5[63]
[1]
Madsen A M, Matthiesen C B, Frederiksen M W, Frederiksen M, Frankel M, Spilak M, Gunnarsen L, Timm M. J. Environ. Monit., 2012, 14(12): 3230.

doi: 10.1039/c2em30699a
[2]
Mukhtar A, Limbeck A. E3S Web Conf., 2013, 1: 05001.
[3]
Seinfeld J H, Pankow J F. Annu. Rev. Phys. Chem., 2003, 54(1): 121.

doi: 10.1146/physchem.2003.54.issue-1
[4]
Particulate MatterPM 2013. United State Environmental Protection Agency(U.S. EPA), 2015.
[5]
Brown J S, Gordon T, Price O, Asgharian B. Part. Fibre Toxicol., 2013, 10(1): 1.

doi: 10.1186/1743-8977-10-1
[6]
Julien C, Esperanza P, Bruno M, Alleman L Y. J. Environ. Monit., 2011, 13(3): 621.

doi: 10.1039/c0em00439a
[7]
Midander K, Pan J, Odnevall Wallinder I, Leygraf C. J. Environ. Monit., 2007, 9(1): 74.

doi: 10.1039/B613919A
[8]
Geiser M, Kreyling W G. Part. Fibre Toxicol., 2010, 7(1): 1.

doi: 10.1186/1743-8977-7-1
[9]
Wallenborn J G, McGee J K, Schladweiler M C, Ledbetter A D, Kodavanti U P. Toxicol. Sci., 2007, 98(1): 231.

pmid: 17434951
[10]
Framework for metals risk assessment. United State Environmental Protection Agency (U.S. EPA), 2007.
[11]
Ansoborlo E, HengÉ-Napoli M H, Chazel V, Gibert R, Guilmette R A. Heal. Phys., 1999, 77(6): 638.

doi: 10.1097/00004032-199912000-00007
[12]
Oberdorster G. Regul. Toxicol. Pharmacol., 1995, 21(1): 123.

doi: 10.1006/rtph.1995.1017
[13]
Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H B, Yeh J I, Zink J I, Nel A E. ACS Nano, 2008, 2(10): 2121.

doi: 10.1021/nn800511k
[14]
Utembe W, Potgieter K, Stefaniak A B, Gulumian M. Part. Fibre Toxicol., 2015, 12(1): 1.
[15]
Costa D L, Dreher K L. Environ. Heal. Perspect., 1997, 105(suppl 5): 1053.
[16]
Landrigan P J, Baker E L. Environ. Res., 1981, 25(1): 204.

pmid: 7238464
[17]
Díaz-Barriga F, Batres L, CalderÓn J, Lugo A, Galvao L, Lara I, Rizo P, Arroyave M E, McConnell R. Environ. Res., 1997, 74(1): 11.

pmid: 9339209
[18]
Anthony J S, Zamel N, Aberman A. Can. Med. Assoc. J., 1978, 119(6):586.

pmid: 213181
[19]
NoguÉ S, Sanz-GallÉn P, Torras A, Boluda F. Occup. Med., 2004, 54(4):265.

doi: 10.1093/occmed/kqh052
[20]
Smith A H, Ercumen A, Yuan Y, Steinmaus C M. J. Expo. Sci. Environ. Epidemiol., 2009, 19(4): 343.

doi: 10.1038/jes.2008.73
[21]
Palus J, Rydzynski K, Dziubaltowska E, Wyszynska K, Natarajan A T, Nilsson R. Mutat. Res. Toxicol. Environ. Mutagen., 2003, 540(1): 19.

doi: 10.1016/S1383-5718(03)00167-0
[22]
Campen M J, Nolan J P, Schladweiler M C J, Kodavanti U P, Evansky P A, Costa D L, Watkinson W P. Toxicol. Sci., 2001, 64(2):243.

pmid: 11719707
[23]
Campen M J, Nolan J P, Schladweiler M C J, Kodavanti U P, Costa D L, Watkinson W P. J. Toxicol. Environ. Heal. A, 2002, 65(20): 1615.

doi: 10.1080/00984100290071694
[24]
Kodavanti U P, Schladweiler M C, Ledbetter A D, McGee J K, Walsh L, Gilmour P S, Highfill J W, Davies D, Pinkerton K E, Richards J H, Crissman K, Andrews D, Costa D L. Environ. Heal. Perspect., 2005, 113(11): 1561.

doi: 10.1289/ehp.7868
[25]
Lippmann M, Ito K, Hwang J S, Maciejczyk P, Chen L C. Environ. Heal. Perspect., 2006, 114(11): 1662.

doi: 10.1289/ehp.9150
[26]
Veras M M, Caldini E G, Dolhnikoff M, Saldiva P H N. J. Toxicol. Environ. Heal. B, 2010, 13(1): 1.

doi: 10.1080/10937401003673800
[27]
Iavicoli I, Fontana L, Bergamaschi A. J. Toxicol. Environ. Heal. B, 2009, 12(3): 206.
[28]
Kioumourtzoglou M A, Schwartz J D, Weisskopf M G, Melly S J, Wang Y, Dominici F, Zanobetti A. Environ. Heal. Perspect., 2016, 124(1): 23.

doi: 10.1289/ehp.1408973
[29]
Wang J D, Xing J, Mathur R, Pleim J E, Wang S X, Hogrefe C, Gan C M, Wong D C, Hao J M. Environ. Heal. Perspect., 2017, 125(3): 400.

doi: 10.1289/EHP298
[30]
Pardo M, Shafer M M, Rudich A, Schauer J J, Rudich Y. Environ. Sci. Technol., 2015, 49(14): 8777.

doi: 10.1021/acs.est.5b01449
[31]
Gavett S H, Haykal-Coates N, Copeland L B, Heinrich J, Gilmour M I. Environ. Heal. Perspect., 2003, 111(12): 1471.

doi: 10.1289/ehp.6300
[32]
Dye J A, Lehmann J R, McGee J K, Winsett D W, Ledbetter A D, Everitt J I, Ghio A J, Costa D L. Environ. Heal. Perspect., 2001, 109(suppl 3): 395.
[33]
Kodavanti U P, Schladweiler M C J, Richards J R, Costa D L. Inhal. Toxicol., 2001, 13(1): 37.

pmid: 11153059
[34]
Wang D B, Pakbin P, Shafer M M, Antkiewicz D, Schauer J J, Sioutas C. Atmos. Environ., 2013, 77: 301.

doi: 10.1016/j.atmosenv.2013.05.031
[35]
Duvall R M, Norris G A, Dailey L A, Burke J M, McGee J K, Gilmour M I, Gordon T, Devlin R B. Inhal. Toxicol., 2008, 20(7): 671.

doi: 10.1080/08958370801935117
[36]
Poncy J L, Metivier H, Dhilly M, Verry M, Masse R. Environ. Heal. Perspect., 1992, 97: 127.

doi: 10.1289/ehp.9297127
[37]
Ministry of Environmental Protection of the People's Republic of China. Air Quality Standard. GB 3095-2012.
(环境保护部, 空气质量标准GB 3095-2012.).
[38]
Denys S, Caboche J, Tack K, Rychen G, Wragg J, Cave M, Jondreville C, Feidt C. Environ. Sci. Technol., 2012, 46(11): 6252.

doi: 10.1021/es3006942
[39]
Boisa N, Elom N, Dean J R, Deary M E, Bird G, Entwistle J A. Environ. Int., 2014, 70: 132.
[40]
Zereini F, Wiseman C L S, Püttmann W. Environ. Sci. Technol., 2012, 46(18): 10326.

doi: 10.1021/es3020887 pmid: 22913340
[41]
Tang Z J, Hu X, Qiao J Q, Lian H Z. Atmosphere, 2018, 9(9): 340.

doi: 10.3390/atmos9090340
[42]
Tang Z J, Hu X, Chen Y J, Qiao J Q, Lian H Z. Atmos. Environ., 2019, 196: 118.

doi: 10.1016/j.atmosenv.2018.09.045
[43]
Guidelines for carcinogen risk assessment, Risk Assessment Forum, Washington, D.C. EPA/630/P-03/001F. United State Environmental Protection Agency(U.S. EPA), 2005.
[44]
Revised draft human health baseline risk 394 assessment for upland soils. Kirk Kessler, Principal. Environmental Planning Specialists(EPS), 2011.
[45]
Dos Santos M, GÓmez D, Dawidowski L, Gautier E, Smichowski P. Microchem. J., 2009, 91(1): 133.

doi: 10.1016/j.microc.2008.09.001
[46]
Schaider L A, Senn D B, Brabander D J, McCarthy K D, Shine J P. Environ. Sci. Technol., 2007, 41(11): 4164.

pmid: 17612206
[47]
Colombo C, Monhemius A J, Plant J A. Ecotoxicol. Environ. Saf., 2008, 71(3): 722.

doi: 10.1016/j.ecoenv.2007.11.011
[48]
Moss O R. Health Phys., 1979, 36(3):447.

pmid: 489300
[49]
Mukhtar A, Limbeck A. Anal. Chimica Acta, 2013, 774: 11.

doi: 10.1016/j.aca.2013.02.008
[50]
Gamble J. Harvard University Press, 1967. 1.
[51]
Wiseman C L S, Zereini F. Atmos. Environ., 2014, 89: 282.

doi: 10.1016/j.atmosenv.2014.02.055
[52]
Kastury F, Smith E, Juhasz A L. Sci. Total. Environ., 2017, 574: 1054.

doi: 10.1016/j.scitotenv.2016.09.056
[53]
Stopford W, Turner J, Cappellini D, Brock T. J. Environ. Monit., 2003, 5(4): 675.

doi: 10.1039/b302257a
[54]
ThÉlohan S, de Meringo A. Environ. Heal. Perspect., 1994, 102(Suppl 5): 91.
[55]
Kademoglou K, Giovanoulis G, Palm-Cousins A, Padilla-Sanchez J A, MagnÉr J, de Wit C A, Collins C D. Environ. Sci. Technol. Lett., 2018, 5(6): 329.

doi: 10.1021/acs.estlett.8b00113
[56]
Wragg J, Klinck B. J. Environ. Sci. Heal. A, 2007, 42(9): 1223.

doi: 10.1080/10934520701436054
[57]
Twining J, McGlinn P, Loi E, Smith K, GierÉ R. Environ. Sci. Technol., 2005, 39(19): 7749.

pmid: 16245854
[58]
Bailey M R, Ansoborlo E, Guilmette R A, Paquet F. Radiat. Prot. Dosim., 2007, 127(1/4): 31.

doi: 10.1093/rpd/ncm249
[59]
Berlinger B, Ellingsen D G, Náray M, Záray G, Thomassen Y. J. Environ. Monit., 2008, 10(12): 1448.

doi: 10.1039/b806631k
[60]
Xie S Y, Lao J Y, Wu C C, Bao L J, Zeng E Y. Environ. Int., 2018, 120: 295.

doi: 10.1016/j.envint.2018.08.015
[61]
Li S W, Li H B, Luo J, Li H M, Qian X, Liu M M, Bi J, Cui X Y, Ma L Q. Environ. Int., 2016, 94: 69.

doi: 10.1016/j.envint.2016.05.010
[62]
Kastury F, Smith E, Karna R R, Scheckel K G, Juhasz A L. Sci. Total. Environ., 2018, 631/632: 92.

doi: 10.1016/j.scitotenv.2018.02.337
[63]
Zhong L J, Liu X L, Hu X, Chen Y J, Wang H W, Lian H Z. J. Hazard. Mater., 2020, 381: 121202.

doi: 10.1016/j.jhazmat.2019.121202
[64]
da Silva L I D, Yokoyama L, Maia L B, Monteiro M I C, Pontes F V M, Carneiro M C, Neto A A. Microchem. J., 2015, 118: 266.

doi: 10.1016/j.microc.2014.08.004
[65]
Pelletier M, Bonvallot N, Ramalho O, Mandin C, Wei W J, Raffy G, Mercier F, Blanchard O, Le Bot B, Glorennec P. Environ. Int., 2017, 109: 81.

doi: S0160-4120(17)30902-9 pmid: 28950160
[66]
Fournier K, Glorennec P, Bonvallot N. Environ. Res., 2014, 130: 20.

doi: 10.1016/j.envres.2014.01.007 pmid: 24525241
[67]
Gao P, Hu J, Song J, Chen X, Ou C Y, Wang H, Sha C Y, Hang J, Xing B S. Environ. Pollut., 2019, 255: 113296.

doi: 10.1016/j.envpol.2019.113296
[68]
Gao P, Guo H Y, Wang S H, Guo L, Xing Y F, Yao C H, Jia L M, Fan Q, Hang J. Atmos. Environ., 2019, 201: 293.

doi: 10.1016/j.atmosenv.2018.12.054
[69]
Liu X L, Wang Y J, Shen Z L, Wu X, Shi Y, Wang F. MethodsX, 2019, 6: 558.
[70]
Li Y Z, Juhasz A L, Ma L Q, Cui X Y. Sci. Total. Environ., 2019, 650: 56.

doi: 10.1016/j.scitotenv.2018.08.246
[71]
Zeng Y, Fan Y, Yan X, Zheng J, Chen S J, Mai B X. Environ. Res., 2019, 170: 134.

doi: 10.1016/j.envres.2018.12.025
[72]
Fang M L, Stapleton H M. Environ. Sci. Technol., 2014, 48(22): 13323.

doi: 10.1021/es503918m
[73]
Wei W J, Bonvallot N, Gustafsson Å, Raffy G, Glorennec P, Krais A, Ramalho O, Le Bot B, Mandin C. Environ. Int., 2018, 113: 202.

doi: 10.1016/j.envint.2018.01.024
[74]
Wei W J, Ramalho O, Mandin C. Int. J. Hyg. Environ. Heal., 2020, 224: 113436.
[75]
Juhasz A L, Weber J, Naidu R, Gancarz D, Rofe A, Todor D, Smith E. Environ. Sci. Technol., 2010, 44(13): 5240.

doi: 10.1021/es1006516
[76]
Li J, Li K, Cave M, Li H B, Ma L Q. J. Hazard. Mater., 2015, 295: 55.

doi: 10.1016/j.jhazmat.2015.03.061
[77]
Li H B, Zhao D, Li J, Li S W, Wang N, Juhasz A L, Zhu Y G, Ma L Q. Environ. Sci. Technol., 2016, 50(10): 4989.

doi: 10.1021/acs.est.6b00480
[78]
Guidance for Evaluating the Oral Bioavailability of Metals in Soils for Use in Human Health Risk Assessment. United State Environmental Protection Agency(U.S. EPA), 2007.
[79]
Molina R M, Konduru N V, Jimenez R J, Pyrgiotakis G, Demokritou P, Wohlleben W, Brain J D. Environ. Sci.: Nano, 2014, 1(6): 561.

doi: 10.1021/es60007a001
[80]
Konduru N V, Murdaugh K M, Sotiriou G A, Donaghey T C, Demokritou P, Brain J D, Molina R M. Part. Fibre Toxicol., 2014, 11(1): 1.
[81]
Kastury F, Smith E, Lombi E, Donnelley M W, Cmielewski P L, Parsons D W, Noerpel M, Scheckel K G, Kingston A M, Myers G R, Paterson D, de Jonge M D, Juhasz A L. Environ. Sci. Technol., 2019, 53(19): 11486.

doi: 10.1021/acs.est.9b03249
[1] Jing Zhang, Dingxiang Wang, Honglong Zhang. Oxidative Degradation of Emerging Organic Contaminants in Aqueous Solution by High Valent Manganese and Iron [J]. Progress in Chemistry, 2021, 33(7): 1201-1211.
[2] Xiaohong Yi, Chongchen Wang. Elimination of Emerging Organic Contaminants in Wastewater by Advanced Oxidation Process Over Iron-Based MOFs and Their Composites [J]. Progress in Chemistry, 2021, 33(3): 471-489.
[3] Junfeng Wang, Yilin Wang, Xiaofei Zhang, Daoguang Wang, Yahui Li, Hongyan He, Xingchun Li, Suojiang Zhang. Technologies of Removal of Organics in Reverse Osmosis Concentrates from Petroleum Refinery Wastewater [J]. Progress in Chemistry, 2020, 32(10): 1462-1481.
[4] Lianjun Bao, Ying Guo, Liangying Liu, Eddy Y. Zeng*. Organic Contaminants in the Pearl River Delta, South China:Environmental Behavior and Human Exposure [J]. Progress in Chemistry, 2017, 29(9): 943-961.
[5] Zhang Fengzhen, Wu Chaofei, Hu Yun, Wei Chaohai. Photochemical Degradation of Halogenated Organic Contaminants [J]. Progress in Chemistry, 2014, 26(06): 1079-1098.
[6] Long Anhua, Lei Yang, Zhang Hui. In Situ Chemical Oxidation of Organic Contaminated Soil and Groundwater Using Activated Persulfate Process [J]. Progress in Chemistry, 2014, 26(05): 898-908.
[7] Zhang Yunfei, Yang Bo, Zhang Hong, Yu Gang, Deng Shubo, Liu Jianhong. Degradation of Halogenated Organic Contaminants with Hydrodehalogenation Using Supported Catalysts [J]. Progress in Chemistry, 2013, 25(12): 2159-2168.
[8] Han Qiang, Yang Shiying, Yang Xin, Shao Xueting, Niu Rui, Wang Leilei. Cobalt Catalyzed Peroxymonosulfate Oxidation: A Review of Mechanisms and Applications on Degradating Organic Pollutants in Water [J]. Progress in Chemistry, 2012, 24(01): 144-156.