中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (10): 1780-1796 DOI: 10.7536/PC200871 Previous Articles   Next Articles

• Review •

Passive Focusing Techniques of Particles in Microfluidic Device

Bingyan Jiang1,2, Tao Peng1,2, Shuai Yuan1,2, Mingyong Zhou1,2()   

  1. 1 State Key Laboratory of High Performance Complex Manufacturing, Central South University,Changsha 410083, China
    2 College of Mechanical and Electrical Engineering, Central South University,Changsha 410083, China
  • Received: Revised: Online: Published:
  • Contact: Mingyong Zhou
  • Supported by:
    National Natural Science Foundation of China (Key International (Regional) Joint Research Program)(51920105008); Key Research and Development Program of Hunan Province(2019SK2221); Hunan Provincial Innovation Foundation for Postgraduate(CX20210210)
Richhtml ( 24 ) PDF ( 854 ) Cited
Export

EndNote

Ris

BibTeX

Particle focusing in microfluidic device is a rapidly growing research field due to its wide applications in biology, chemistry, engineering, and medicine. Precise and high-throughput focusing can be a pivotal pretreatment step for counting, detection and separation application. Generally, focusing technologies can be divided into active, passive and sheath-assisted methods. The active and sheath-assisted methods rely on external energy field or sheath flow, which can accurately control the position of particles in microchannel, but require integrating other complex functional elements. Passive focusing uses fluid inertia, viscoelasticity, and other characteristics to control the equilibrium position of particles in the microchannel,and it has been proven to be a powerful tool due to the simplicity, label-free, biocompatible, contact-free, low-cost, and high throughout nature. A large amount of experimental and numerical work has been carried out on the passive focusing technology from the aspects of chip structure, microfluidic characteristics, and particle characteristics. In this review, the fundamental hydrodynamic forces and the basic principles related to the focusing mechanism were firstly briefly introduced and discussed. Then the state of the art of detailed passive focusing methods was presented. At last, the focusing methods were summarized and future development in this field was predicted.

Contents

1 Introduction

2 Hydrodynamic forces and basic principles

2.1 Hydrodynamic forces

2.2 Basic principles for particle passive focusing

3 Inertial focusing techniques

3.1 Inertial focusing in straight microchannels

3.2 Inertial focusing in curved microchannels

3.3 Inertial focusing in multi-staged microchannels

3.4 Micro-vortex induced focusing

4 Elasto-inertial focusing

4.1 Elasto-inertial focusing in straight microchannels

4.2 Elasto-inertial focusing in curved microchannels

5 Application of passive focusing technology in biological particle separation

6 Conclusion and prospects

Fig. 1 Schematic of hydrodynamic forces in microfluidics. (a) Inertial forces in a straight microchannel; (b) elastic force distribution in a square cross-section microchannel; (c)Dean secondary flow
Fig. 2 Inertial equilibrium positions in the straight microchannel. (a) Circular cross-section; (b) square cross-section (AR=1, dotted line represents initial focus position, solid line represents equilibrium position after Reynolds number increases); (c) rectangular cross-section (AR<1); (d) two-stage migration model[35]; (e) semicircular and triangular cross-section[79], copyright 2016, Published by The Royal Society of Chemistry
Fig. 3 Inertial focusing in serpentine channel. (a)Symmetric right angle transition[88]; (b) asymmetric curvature serpentine microchannel[31], Copyright (2007) National Academy of Sciences, USA;(c) symmetric curvature serpentine microchannel [92],Copyright (2019), American Chemical Society
Fig. 4 Particle focusing in spiral microchannel. (a) Focusing mechanism in spiral microchannel[70]; (b) velocity distribution of spiral channel with different aspect ratios[103]; (c) a fifth-stage model to illustrate the correlation betweenequilibrium position and flow rate[107]; (d) migration mechanism of particles in channels with variable curvature, confinement ratio, and flow rate[113]
Fig. 5 Particle focusing in multi-staged microchannel. (a)Staged microfluidics consists of straight rectangular and asymmetric serpentine microchannel[17];(b) staged microfluidics consists of rectangular cross-section with different AR[114]
Fig. 6 Micro-vortex induced particle focusing. (a) Particle focusing in microchannel with cylindrical obstacles[119]; (b) particle focusing in straight microchannel with contraction and expansion cavity[39]
Table 1 Summary of various particle inertial focusing methods in microfluidic device
Channel
structure
Channel dimension(μm) Particle(a in μm) Length fraction Flow rate Dimensionless number ref
Straight rectangular (100,120,140,160)×25 PS (9.9) 0.06~0.93%v/v 0.003~0.096 mL/min Rp (0.4~1.6) 74
Straight Trapezoid (100~200)×(50~70) PS (10,20,45) 0.1%v/v 0.05~5 mL/min Rc (20~800) 78
Straight rectangular (25~35)×47 PS (3,6) 0.08%w/v 20~110 μL/min Rc (13~72) 81
Straight triangle 100×50 μm, 120° PS (7,10,15,18) ~(1~2)×105/mL 0.003~0.65 mL/min Rc (8.4~190) 80
Symmetric serpentine
Right-angled bend
200×40 PS (8,9.9,13) 0.025~0.1%w/w 0.59~1 mL/min Rc (118~200) 88
Symmetric serpentine (200~300)×(50~110)
δ (250~375)
PS (5,10,13,15,20) 0.05~0.1%w/v 0.1~2 mL/min De (5~110) 92
Asymmetric serpentine+
straight rectangle
I: 100×5 (min.)
II: 30×50
PS (10.2) 0.1% w/v 0.0033~0.1 mL/min Rp (0.2~6.0) 17
isosceles triangle;
Semicircle
w(50,80) h (40)
Dia (50) h (40)
PS (7,9.9) 0.05~0.1% w/w - Rp (0.008~3.2) 79
Straight + straight I: 50×25 II: 50×10 PS (10,15,20) 0.1%v/v 0.15~0.21 mL/min Rc (2.6~78) 114
Symmetric serpentine 350×91 δ: 800 PS (10,15,20) 0.01 wt% 0.4~2.7 mL/min Rc (30~205) 93
Asymmetric serpentine 20×10(min.) PS (0.92,2) 0.01~1%v/v 0.01~1.4 mL/min Rc (11.1~1550) 99
Spiral rectangular 250×50(min.)
δ: 1440 (min.)
PS (2,7,10) 0.1% w/v 2~3.5 mL/min De (0~30) 102
Spiral rectangular 150×50 PS (5,10) 0.5 wt% - De (0.86~15.53) 107
Spiral rectangular 500×130 PS (10,15,20) 0.1~0.3% v/v 0.92~3 mL/min De (4.4~14.6) 67
Spiral trapezoidal 600×80, 600×140 PS(5.8,9.8,15.5,26.3) - 0.5~8 mL/min - 82
Spiral rectangular 150×50 PS (0.2~20) - 0.1~0.7 mL/min De (1.73-12.08) 109
Spiral rectangular 160×50 PS (2.1,4.8) ~0.015%v/v - De (0.31-4.58) 108
Spiral :micro-obstacles 900×100 PS (7.3,9.9,15.5) - 1.5~5.25 mL/min Rc (0-666.7) 112
Semi-circular and serpentine curve 100×50 PS (2.2,4.8,9.9) 0.1%w/w 0.05 mL/min
0.005 mL/min·s-1
Rc (10-470) 36
Curve and spiral 100×50 PS (4.4,9.9,15) 0.021-0.23%v/v - Rc (0-400) 113
Straight+semicircular 69×92 PS (5,7.3,10.4,
15.5,20.3)
~105/mL 0.2~1.5 mL/min - 37
Reverse wavy curved 125×40 PS (1,3,5,7,10,15) 6×106/mL 0.049~0.198 mL/min Rc (10-40) 100
Straight rectangular:
Obstacle Arrays
h: 39 PS (6,10,15) - 0.001~0.004 mL/min - 118
Stepped Straight 81×41.5,21×81 PS (7.9,9.9,13) 0.1%w/w - Rc~ 83.33 120
Straight Square+ rectangular(pillars) 100×100,
320×100,50×100
PS (9.9,15,19) 0.05~0.5%w/w 0~0.8 mL/min Rc~ 66.7 119
Straight rectangular expansion 40×50,200×50 PS (7) 0.25%v/v 0.010~0.2 mL/min Rp (0.8-3.5) 39
Straight with triangular
expansion
50×70 PS(3.2,4.8,9.9) ~105/mL 0.05~0.7 mL/min Rc(20.82-329.12) 124
Stepped straight 200×40 PS(9.9,13,24) (0.5~2)×105/mL 0.2~1.5 mL/min Rc (29.2-218.7) 122
Spiral rectangular 100×30,24×10,10×1.4 PS(10,3,1,0.44) 107~105/mL 0.05~0.2 mL/min - 104
Fig.7 (a)~(d) Elasto-inertial focusing mechanism in square microchannel; (e)multi-trains focusing in low AR straight rectangular microchannel[140]
Fig. 8 Elasto-inertial focusing in curved microchannel. (a) Dean flow coupled elasto-inertial focusing in spiral microchannel[68] ; (b) focusing mechanism with different flow rates[147]
Table 2 Summary of elasto-inertial focusing in microfluidic deice
Channel structure Channel
dimension
Viscoelastic
medium
Particle (a in μm) Flow rate Dimensionless number ref
Straight square 50×50 500 ppm PEO PS(5.9) 40~200 μL/h El (3.21~21.5) Wi (1.61~8.04) 126
Spiral rectangular 100×25 500~5000 ppm PEO PS(1.5,5,10) 50~750 μL/h De(2.4~18) 68
Spiral rectangular 215×50
AR(1/4~1/2)
6.8 wt% PVP
500 ppm PEO
PS(10) 1~240 μL/min Rc (0.04~9.66) Wi (0.17~47.80)
De (0.06~1.407)
147
Straight with square
expansion
50×50+150×50 6.8 wt% PVP PS(6) 0.12~1 mL/h Wi (0~5.8) 141
Straight circular φ50~φ181 0.05 wt% PEO, 8 wt% PVP PS(5,10) 1~120 μL/min Wi(0.1~2.6) Rc(0.002~0.087) 136
Straight square 80×80 0.1% w/v HA PS(1,3,6,8) 0.6~50 mL/min Wi (2.6~566) 32
Straight with triangular expansion 100×50 500 ppm PEO PS(3.2,4.8,13) 10~240 μL/min Wi (22.74~181.92) Rc (2.31~18.48) 142
Straight rectangular h=50
AR(1/3~1)
0.05 wt% PEO
8 wt % PVP
PS(2,5,10) 1~180 μL/min Rc(0~31.71)Wi (0~97.07) 134
Straight square 5×5 +5×50 500 ppm PEO PS(0.1,0.2,0.5,1,2.4) 5~15 μL/h Wi (178~533)Rc (0.11~0.33) 69
Straight rectangular h=25,AR(1/4-1/1) 500~4000 ppm PEO PS(6.4,10,15) 0.05~0.6 mL/h Rc (0.35~30.07)
Wi (1.668~57.715)
140
Spiral rectangular 140×50 2.0~8.0 wt% PVP PS(10) 10~60 μL/h Rc (0.012~0.076)Wi (0.74~4.44) 149
Multi-curvature serpentine 125×40 0.001~0.1wt%PEO PS(0.3,2,3,5,7,10,15) 49.41~197.60 μL/min Rc(6.52~39.84)
Wi(0.74~2.96)
148
Straight square 50×50 0.01~1 wt% PEO PS(4.8) 40~320 μL/h Wi (0.09~25.6)Rc(0.1~0.8) 131
Straight square and trapezoid 75×75 2000 ppm PEO PS(3,5,10) 1~250 μL/min - 135
Straight square 50×50 6.6 wt% PVP PS(6) 0.02~0.16 mL/h Wi (0.20)Rc (0.0007) 146
Straight square 50×50 2.5~50 ppm λ-DNA PS(6,10,15) 0.04~3 mL/h Wi (99.4~1491)Rc (0.71~10.6) 138
Straight rectangular 80×12 1% w/v PEO PS(0.02,0.04
0.1,0.2,0.5)
- Wi (1.3~3.25)Rc(0.00017~0.65) 145
double spiral 30×4 0.2~0.6 wt% PEO PS(0.05,0.075,0.1,0.2,0.5,1,2) 0.32~2.45 μL/h Wi (0.09~0.67) 150
Table 3 Summary of biological particle sorting methods based on passive focusing technology
[1]
Whitesides G M. Nature, 2006, 442(7101): 368.
[2]
Sackmann E K, Fulton A L, Beebe D J. Nature, 2014, 507(7491): 181.

doi: 10.1038/nature13118
[3]
Yeo L Y, Chang H C, Chan P P Y, Friend J R. Small, 2011, 7(1): 12.

doi: 10.1002/smll.v7.1
[4]
Nagrath S, Sequist L V, Maheswaran S, Bell D W, Irimia D, Ulkus L, Smith M R, Kwak E L, Digumarthy S, Muzikansky A, Ryan P, Balis U J, Tompkins R G, Haber D A, Toner M. Nature, 2007, 450(7173): 1235.

doi: 10.1038/nature06385
[5]
Xuan X C, Zhu J J, Church C. Microfluid.Nanofluidics, 2010, 9(1): 1.
[6]
Lenshof A, Laurell T. Chem.Soc.Rev., 2010, 39(3): 1203.
[7]
Gossett D R, Weaver W M, Mach A J, Hur S C, Tse H T K, Lee W, Amini H, DiCarlo D. Anal.Bioanal.Chem., 2010, 397(8): 3249.
[8]
Lee C Y, Chang C L, Wang Y N, Fu L M. Int.J.Mol.Sci., 2011, 12(5): 3263.
[9]
Gossett D R, Tse H T K, Lee S A, Ying Y, Lindgren A G, Yang O O, Rao J, Clark A T, diCarlo D. PNAS, 2012, 109(20): 7630.

doi: 10.1073/pnas.1200107109 pmid: 22547795
[10]
Benítez J J, Topolancik J, Tian H C, Wallin C B, Latulippe D R, Szeto K, Murphy P J, Cipriany B R, Levy S L, Soloway P D, Craighead H G. Lab Chip, 2012, 12(22): 4848.

doi: 10.1039/c2lc40955k pmid: 23018789
[11]
Nilsson J, Evander M, Hammarström B, Laurell T. Anal.Chimica Acta, 2009, 649(2): 141.
[12]
Livak-Dahl E, Sinn I, Burns M. Annu.Rev.Chem.Biomol.Eng., 2011, 2(1): 325.
[13]
Salieb-Beugelaar G B, Simone G, Arora A, Philippi A, Manz A. Anal.Chem., 2010, 82(12): 4848.
[14]
Pamme N. Lab a Chip, 2007, 7(12): 1644.

doi: 10.1039/b712784g
[15]
Lin Y, Gritsenko D, Feng S L, Teh Y C, Lu X N, Xu J. Biosens.Bioelectron., 2016, 83: 256.
[16]
CrevillÉn A G, Ávila M, Pumera M, González M C, Escarpa A. Anal.Chem., 2007, 79(19): 7408.
[17]
Oakey J, Applegate R W Jr, Arellano E, Carlo D D, Graves S W, Toner M. Anal.Chem., 2010, 82(9): 3862.
[18]
Shi J J, Mao X L, Ahmed D, Colletti A, Huang T J. Lab Chip, 2008, 8(2): 221.

doi: 10.1039/B716321E
[19]
Demierre N, Braschler T, Muller R, Renaud P. Sens. Actuat.B:Chem., 2008, 132(2): 388.
[20]
Liang L T, Xuan X C. Microfluid.Nanofluidics, 2012, 13(4): 637.
[21]
MacDonald M P, Spalding G C, Dholakia K. Nature, 2003, 426(6965): 421.

doi: 10.1038/nature02144
[22]
Ross D, Locascio L E. Anal.Chem., 2002, 74(11): 2556.
[23]
Mao X L, Waldeisen J R, Huang T J. Lab a Chip, 2007, 7(10): 1260.

doi: 10.1039/b711155j
[24]
DiCarlo D. Lab Chip, 2009, 9(21): 3038.

doi: 10.1039/b912547g pmid: 19823716
[25]
Zhang J, Yan S, Yuan D, Alici G, Nguyen N T, Ebrahimi Warkiani M, Li W H. Lab Chip, 2016, 16(1): 10.

doi: 10.1039/c5lc01159k pmid: 26584257
[26]
Lu X Y, Liu C, Hu G Q, Xuan X C. J.Colloid Interface Sci., 2017, 500: 182.
[27]
Urbansky A, Olm F, Scheding S, Laurell T, Lenshof A. Lab Chip, 2019, 19(8): 1406.

doi: 10.1039/c9lc00181f pmid: 30869100
[28]
Chiu Y J, Cho S H, Mei Z, Lien V, Wu T F, Lo Y H. Lab Chip, 2013, 13(9): 1803.

doi: 10.1039/c3lc41202d
[29]
Wu M X, Ouyang Y, Wang Z Y, Zhang R, Huang P H, Chen C Y, Li H, Li P, Quinn D, Dao M, Suresh S, Sadovsky Y, Huang T J. PNAS, 2017, 114(40): 10584.

doi: 10.1073/pnas.1709210114
[30]
Liu C, Guo J Y, Tian F, Yang N, Yan F S, Ding Y P, Wei J Y, Hu G Q, Nie G J, Sun J S. ACS Nano, 2017, 11(7): 6968.

doi: 10.1021/acsnano.7b02277
[31]
Di Carlo D, Irimia D, Tompkins R G, Toner M. PNAS, 2007, 104: 18892.

pmid: 18025477
[32]
Lim E J, Ober T J, Edd J F, Desai S P, Neal D, Bong K W, Doyle P S, McKinley G H, Toner M. Nat.Commun., 2014, 5(1):4120.
[33]
Hou H W, Warkiani M E, Khoo B L, Li Z R, Soo R A, Tan D S, Lim W T, Han J, Bhagat A A S, Lim C T. Sci. Rep., 2013, 3: 1259.

doi: 10.1038/srep01259 pmid: 23405273
[34]
Zhou Y N, Ma Z C, Tayebi M, Ai Y. Anal.Chem., 2019, 91(7): 4577.
[35]
Zhou J, Papautsky I. Lab Chip, 2013, 13(6): 1121.

doi: 10.1039/c2lc41248a
[36]
Gossett D R, Carlo D D. Anal.Chem., 2009, 81(20): 8459.
[37]
Zhang Y, Zhang J, Tang F, Li W H, Wang X H. Anal.Chem., 2018, 90(3): 1786.
[38]
Hsu C H, DiCarlo D, Chen C, Irimia D, Toner M. Lab a Chip, 2008, 8(12): 2128.

doi: 10.1039/b813434k
[39]
Park J S, Song S H, Jung H I. Lab Chip, 2009, 9(7): 939.

doi: 10.1039/B813952K
[40]
Amini H, Lee W, diCarlo D. Lab a Chip, 2014, 14(15): 2739.

doi: 10.1039/c4lc00128a
[41]
Xiang N, Zhu X L, Ni Z H. Prog. Chem., 2011, 23: 1945.
项楠, 朱晓璐, 倪中华. 化学进展, 2011, 23: 1945.).
[42]
Yuan D, Zhao Q B, Yan S, Tang S Y, Alici G, Zhang J, Li W H. Lab Chip, 2018, 18(4): 551.

doi: 10.1039/c7lc01076a pmid: 29340388
[43]
Ni C, Jiang D, Xu Y L, Tang W L. Prog. Chem., 2020, 32: 519.
( 倪陈, 姜迪, 徐幼林, 唐文来. 化学进展, 2020, 32: 519.).

doi: 10.7536/PC190907
[44]
Stoecklein D diCarlo D. Anal.Chem., 2019, 91(1): 296.
[45]
Lu M Q, Ozcelik A, Grigsby C L, Zhao Y H, Guo F, Leong K W, Huang T J. Nano Today, 2016, 11(6): 778.

doi: 10.1016/j.nantod.2016.10.006
[46]
Zhang T L, Hong Z Y, Tang S Y, Li W H, Inglis D W, Hosokawa Y, Yalikun Y, Li M. Lab a Chip, 2020, 20(1): 35.

doi: 10.1039/C9LC00785G
[47]
Bayareh M. Chem.Eng.Process.Process.Intensif., 2020, 153: 107984.
[48]
Rubinow S I, Keller J B. J.Fluid Mech., 1961, 11(3): 447.
[49]
Saffman P G. J.Fluid Mech., 1965, 22(2): 385.
[50]
Zeng L Y, Balachandar S, Fischer P. J.Fluid Mech., 2005, 536: 1.
[51]
Matas J, Morris J, Guazzelli E. Oil Gas Sci.Technol. Rev.IFP, 2004, 59(1): 59.
[52]
Asmolov E S. J.Fluid Mech., 1999, 381: 63.
[53]
Matas J P, Morris J F, Guazzelli É. J.Fluid Mech., 2004, 515: 171.
[54]
Chan P C H, Leal L G. J.Fluid Mech., 1979, 92(1): 131.
[55]
Stan C A, Ellerbee A K, Guglielmini L, Stone H A, Whitesides G M. Lab Chip, 2013, 13(3): 365.

doi: 10.1039/C2LC41035D
[56]
Hur S C, Henderson-Maclennan N K, McCabe E R B, DiCarlo D. Lab a Chip, 2011, 11(5): 912.

doi: 10.1039/c0lc00595a
[57]
Pathak J A, Ross D, Migler K B. Phys.Fluids, 2004, 16(11): 4028.
[58]
Magda J J, Lou J, Baek S G, DeVries K L. Polymer, 1991, 32(11): 2000.

doi: 10.1016/0032-3861(91)90165-F
[59]
Feng H D, Magda J J, Gale B K. Appl.Phys.Lett., 2019, 115(26): 263702.
[60]
Leshansky A M, Bransky A, Korin N, Dinnar U. Phys.Rev.Lett., 2007, 98(23): 234501.
[61]
Rodd L E, Scott T P, Boger D V, Cooper-White J J, McKinley G H. J.Non Newton.Fluid Mech., 2005, 129(1): 1.
[62]
Rodd L E, Cooper-White J J, Boger D V, McKinley G H. J.Non Newton.Fluid Mech., 2007, 143(2/3): 170.
[63]
Nam J, Lim H, Kim D, Jung H, Shin S. Lab Chip, 2012, 12(7): 1347.

doi: 10.1039/c2lc21304d
[64]
Berger S A, Talbot L, Yao L S. Annu.Rev.Fluid Mech., 1983, 15(1): 461.
[65]
Ookawara S, Higashi R, Street D, Ogawa K. Chem.Eng.J., 2004, 101(1/3): 171.
[66]
Bhagat A A S, Kuntaegowdanahalli S S, Papautsky I. Microfluid.Nanofluidics, 2009, 7(2): 217.
[67]
Kuntaegowdanahalli S S, Bhagat A A S, Kumar G, Papautsky I. Lab Chip, 2009, 9(20): 2973.

doi: 10.1039/b908271a pmid: 19789752
[68]
Lee D J, Brenner H, Youn J R, Song Y S. Sci.Rep., 2013, 3(1): 3258.
[69]
Young K J, Won A S, Sik L S, Min K J. Lab Chip., 2012, 12: 2807.

doi: 10.1039/c2lc40147a pmid: 22776909
[70]
Bhagat A A S, Kuntaegowdanahalli S S, Papautsky I. Lab a Chip, 2008, 8(11): 1906.

doi: 10.1039/b807107a
[71]
Leal L G. Annu.Rev.Fluid Mech., 1980, 12(1): 435.
[72]
Seo K W, Kang Y J, Lee S J. Phys.Fluids, 2014, 26(6): 063301.
[73]
Humphry K J, Kulkarni P M, Weitz D A, Morris J F, Stone H A. Phys.Fluids, 2010, 22(8): 081703.
[74]
Reece A E, Oakey J. Phys.Fluids, 2016, 28(4): 043303.
[75]
SegrÉ G, Silberberg A. Nature, 1961, 189(4760): 209.

doi: 10.1038/189209a0
[76]
Ciftlik A T, Ettori M, Gijs M A M. Small, 2013, 9(16): 2764.

doi: 10.1002/smll.201201770 pmid: 23420756
[77]
Mashhadian A, Shamloo A. Anal.Chimica Acta, 2019, 1083: 137.
[78]
Moloudi R, Oh S, Yang C, Ebrahimi Warkiani M, Naing M W. Microfluid.Nanofluidics, 2018, 22(3): 1.
[79]
Kim J, Lee J, Wu C, Nam S, DiCarlo D, Lee W. Lab Chip, 2016, 16(6): 992.

doi: 10.1039/c5lc01100k pmid: 26853995
[80]
Mukherjee P, Wang X, Zhou J, Papautsky I. Lab Chip, 2019, 19(1): 147.

doi: 10.1039/C8LC00973B
[81]
Masaeli M, Sollier E, Amini H, Mao W B, Camacho K, Doshi N, Mitragotri S, Alexeev A, DiCarlo D. Phys.Rev.X, 2012, 2(3): 031017.
[82]
Guan G F, Wu L D, Bhagat A A, Li Z R, Chen P C Y, Chao S Z, Ong C J, Han J. Sci.Rep., 2013, 3(1): 1475.
[83]
Wyss H M, Blair D L, Morris J F, Stone H A, Weitz D A. Phys.Rev.E, 2006, 74(6): 061402.
[84]
Mutlu B R, Edd J F, Toner M. PNAS, 2018, 115: 7682.

doi: 10.1073/pnas.1721420115
[85]
Stone H A. Nat.Phys., 2009, 5(3): 178.
[86]
Lee M G, Choi S, Park J K. Appl.Phys.Lett., 2009, 95(5): 051902.
[87]
Yoon D H, Ha J B, Bahk Y K, Arakawa T, Shoji S, Go J S. Lab Chip, 2009, 9(1): 87.

doi: 10.1039/B809123D
[88]
Zhang J, Li W H, Li M, Alici G, Nguyen N T. Microfluid.Nanofluidics, 2014, 17(2): 305.
[89]
Shamloo A, Mashhadian A. Phys.Fluids, 2018, 30(1): 012002.
[90]
Jiang D, Tang W L, Xiang N, Ni Z H. RSC Adv., 2016, 6(62): 57647.

doi: 10.1039/C6RA08374A
[91]
Yin P J, Zhao L, Chen Z Z, Jiao Z Q, Shi H Y, Hu B, Yuan S F, Tian J. Soft Matter, 2020, 16(12): 3096.

doi: 10.1039/D0SM00084A
[92]
Zhang J, Yuan D, Zhao Q B, Teo A J T, Yan S, Ooi C H, Li W H, Nguyen N T. Anal.Chem., 2019, 91(6): 4077.
[93]
Özbey A, Karimzadehkhouei M, Akgönül S, Gozuacik D, Ko塂ar A. Sci.Rep., 2016, 6(1): 1.
[94]
Sun S F, Wang C, Chen Y, Cheng Z D, Cai X Y, Bu E Q. J. Eng. Thermophys., 2017, 38: 1758.
( 孙思帆, 王超, 陈颖, 成正东, 蔡小燕, 卜恩奇. 工程热物理学报, 2017, 38: 1758.).
[95]
Tang W L, Xiang N, Zhang X J, Huang D, Ni Z H. Acta Phys.Sin., 2015, 64(18): 184703.
唐文来, 项楠, 张鑫杰, 黄笛, 倪中华. 物理学报, 2015, 64(18): 184703.)
[96]
Di Carlo D, Edd J F, Irimia D, Tompkins R G, Toner M. Anal.Chem., 2008, 80(6): 2204.
[97]
Wang C, Sun S F, Chen Y, Cheng Z D, Li Y X, Jia L S, Lin P C, Yang Z, Shu R Y. Microfluid.Nanofluidics, 2018, 22(3): 25.
[98]
Sollier E, Murray C, Maoddi P, diCarlo D. Lab Chip, 2011, 11(22): 3752.

doi: 10.1039/c1lc20514e pmid: 21979377
[99]
Wang L, Dandy D S. Adv.Sci., 2017, 4(10): 1700153.
[100]
Zhou Y N, Ma Z C, Ai Y. Microsyst.Nanoeng., 2018, 4(1): 5.
[101]
Bhagat A A S, Kuntaegowdanahalli S S, Kaval N, Seliskar C J, Papautsky I. Biomed.Microdevices, 2010, 12(2): 187.
[102]
Russom A, Gupta A K, Nagrath S, Carlo D D, Edd J F, Toner M. New J.Phys., 2009, 11(7): 075025.
[103]
Martel J M, Toner M. Phys.Fluids, 2012, 24(3): 032001.
[104]
Cruz J, Hooshmand Zadeh S, Graells T, Andersson M, Malmström J, Wu Z G, Hjort K. J.Micromech.Microeng., 2017, 27(8): 084001.
[105]
Cruz J, Graells T, WalldÉn M, Hjort K. Lab Chip, 2019, 19(7): 1257.
[106]
Paiè P, Bragheri F, DiCarlo D, Osellame R. Microsyst.Nanoeng., 2017, 3(1): 1.
[107]
Xiang N, Yi H, Chen K, Sun D K, Jiang D, Dai Q, Ni Z H. Biomicrofluidics, 2013, 7(4): 044116.

doi: 10.1063/1.4818445
[108]
Xiang N, Chen K, Sun D K, Wang S F, Yi H, Ni Z H. Microfluid.Nanofluidics, 2013, 14(1/2): 89.
[109]
Xiang N, Shi Z G, Tang W L, Huang D, Zhang X J, Ni Z H. RSC Adv., 2015, 5(94): 77264.

doi: 10.1039/C5RA13292D
[110]
Chen Z Z, Zhao L, Wei L J, Huang Z Y, Yin P J, Huang X W, Shi H Y, Hu B, Tian J. Sens. Actuat.B:Chem., 2019, 301: 127125.
[111]
Al-Halhouli A, Albagdady A, Al-Faqheri W, Kottmeier J, Meinen S, Frey L J, Krull R, Dietzel A. RSC Adv., 2019, 9(33): 19197.

doi: 10.1039/c9ra03587g
[112]
Shen S F, Tian C, Li T B, Xu J, Chen S W, Tu Q, Yuan M S, Liu W M, Wang J Y. Lab Chip, 2017, 17(21): 3578.

doi: 10.1039/C7LC00691H
[113]
Martel J M, Toner M. Sci.Rep., 2013, 3(1): 3340.
[114]
Wang X, Zandi M, Ho C C, Kaval N, Papautsky I. Lab Chip, 2015, 15(8): 1812.
[115]
Zhou J, Giridhar P V, Kasper S, Papautsky I. Lab Chip, 2013, 13(10): 1919.

doi: 10.1039/c3lc50101a
[116]
Kim J A, Lee J R, Je T J, Jeon E C, Lee W. Anal.Chem., 2018, 90(3): 1827.
[117]
Choi S, Park J K. Lab Chip, 2007, 7(7): 890.

doi: 10.1039/b701227f
[118]
Choi S, Park J K. Anal.Chem., 2008, 80(8): 3035.
[119]
Chung A J, Pulido D, Oka J C, Amini H, Masaeli M, diCarlo D. Lab Chip, 2013, 13(15): 2942.

doi: 10.1039/c3lc41227j pmid: 23665981
[120]
Chung A J, Gossett D R, DiCarlo D. Small, 2013, 9(5): 685.

doi: 10.1002/smll.201202413 pmid: 23143944
[121]
Song S, Choi S. J.Chromatogr.A, 2013, 1302: 191.
[122]
Zhao Q B, Zhang J, Yan S, Yuan D, Du H P, Alici G, Li W H. Sci.Rep., 2017, 7(1): 41153.
[123]
Lee M G, Choi S, Kim H J, Lim H K, Kim J H, Huh N, Park J K. Appl.Phys.Lett., 2011, 98(25): 253702.
[124]
Zhang J, Li M, Li W H, Alici G. J.Micromech.Microeng., 2013, 23(8): 085023.
[125]
Caserta S, D'Avino G, Greco F, Guido S, Maffettone P L. Soft Matter, 2011, 7(3): 1100.

doi: 10.1039/C0SM00640H
[126]
Yang S, Kim J Y, Lee S J, Lee S S, Kim J M. Lab Chip, 2011, 11(2): 266.

doi: 10.1039/C0LC00102C
[127]
Groisman A, Steinberg V. Nature, 2000, 405(6782): 53.

doi: 10.1038/35011019
[128]
Groisman A, Steinberg V. Nature, 2001, 410(6831): 905.

doi: 10.1038/35073524
[129]
Seo K W, Byeon H J, Huh H K, Lee S J. RSC Adv., 2014, 4(7): 3512.

doi: 10.1039/C3RA43522A
[130]
Dai Q, Xiang N, Cheng J, Ni Z H, Acta Phys. Sin., 2015, 64: 1.
( 戴卿, 项楠, 程洁, 倪中华. 物理学报, 2015, 64: 1.).
[131]
Song H Y, Lee S H, Salehiyan R, Hyun K. Rheol.Acta, 2016, 55(11/12): 889.
[132]
Liu C, Xue C D, Chen X D, Shan L, Tian Y, Hu G Q. Anal.Chem., 2015, 87(12): 6041.
[133]
del Giudice F, Romeo G, D'Avino G, Greco F, Netti P A, Maffettone P L. Lab a Chip, 2013, 13(21): 4263.

doi: 10.1039/c3lc50679g
[134]
Xiang N, Dai Q, Ni Z H. Appl.Phys.Lett., 2016, 109(13): 134101.
[135]
Raoufi M A, Mashhadian A, Niazmand H, Asadnia M, Razmjou A, Warkiani M E. Biomicrofluidics, 2019, 13(3): 034103.

doi: 10.1063/1.5093345
[136]
Xiang N, Dai Q, Han Y, Ni Z H. Microfluid.Nanofluidics, 2019, 23(2): 16.
[137]
Tang W L, Fan N, Yang J Q, Li Z, Zhu L Y, Jiang D, Shi J P, Xiang N. Microfluid.Nanofluidics, 2019, 23(3): 42.
[138]
Kim B, Kim J M. Biomicrofluidics, 2016, 10(2): 024111.

doi: 10.1063/1.4944628
[139]
Won S K, Ran H Y, Joon L S. Appl. Phys. Lett., 2014, 104: 213702.

doi: 10.1063/1.4880615
[140]
Yang S H, Lee D J, Youn J R, Song Y S. Anal.Chem., 2017, 89(6): 3639.
[141]
Cha S, Kang K, You J B, Im S G, Kim Y, Kim J M. Rheol.Acta, 2014, 53(12): 927.
[142]
Yuan D, Zhang J, Yan S, Pan C, Alici G, Nguyen N T, Li W H. Biomicrofluidics, 2015, 9(4): 044108.

doi: 10.1063/1.4927494
[143]
Yuan D, Tan S H, Zhao Q B, Yan S, Sluyter R, Nguyen N T, Zhang J, Li W H. RSC Adv., 2017, 7(6): 3461.

doi: 10.1039/C6RA25328H
[144]
Fan L L, Wu X, Zhang H, Zhao Z, Zhe J, Zhao L. Microfluid.Nanofluidics, 2019, 23(10): 117.
[145]
Asghari M, Cao X B, Mateescu B, van Leeuwen D, Aslan M K, Stavrakis S, de Mello A J. ACS Nano, 2020, 14(1): 422.

doi: 10.1021/acsnano.9b06123
[146]
Yang S, Lee S S, Ahn S W, Kang K, Shim W, Lee G, Hyun K, Kim J M. Soft Matter, 2012, 8(18): 5011.

doi: 10.1039/c2sm07469a
[147]
Xiang N, Zhang X J, Dai Q, Cheng J, Chen K, Ni Z H. Lab a Chip, 2016, 16(14): 2626.
[148]
Zhou Y N, Ma Z C, Ai Y. Lab Chip, 2020, 20(3): 568.

doi: 10.1039/C9LC01071H
[149]
Xiang N, Ni Z H, Yi H. Electrophoresis, 2018, 39(2): 417.

doi: 10.1002/elps.201700150 pmid: 28990196
[150]
Liu C, Ding B Q, Xue C D, Tian Y, Hu G Q, Sun J S. Anal.Chem., 2016, 88(24): 12547.
[151]
Yuan D, Sluyter R, Zhao Q B, Tang S Y, Yan S, Yun G L, Li M, Zhang J, Li W H. Microfluid.Nanofluidics, 2019, 23(3): 41.
[152]
BankÓ P, Lee S Y, Nagygyörgy V, Zrínyi M, Chae C H, Cho D H, Telekes A. J. Hematol. Oncol., 2019, 12(1): 48.
[153]
Reece A, Xia B Z, Jiang Z L, Noren B, McBride R, Oakey J. Curr. Opin. Biotechnol., 2016, 40: 90.

doi: 10.1016/j.copbio.2016.02.015
[154]
Dalili A, Samiei E, Hoorfar M. Anal., 2019, 144(1): 87.
[155]
Lee M G, Shin J H, Bae C Y, Choi S, Park J K. Anal. Chem., 2013, 85(13): 6213.

doi: 10.1021/ac4006149
[156]
Abdulla A, Liu W J, Gholamipour-Shirazi A, Sun J H, Ding X T. Anal. Chem., 2018, 90(7): 4397.

doi: 10.1021/acs.analchem.7b04210 pmid: 29537252
[157]
Zhang J, Yan S, Li W H, Alici G, Nguyen N T. RSC Adv., 2014, 4(63): 33149.

doi: 10.1039/C4RA06513A
[158]
Zhang J, Yuan D, Sluyter R, Yan S, Zhao Q B, Xia H M, Tan S H, Nguyen N T, Li W H. IEEE Trans. Biomed. Circuits Syst., 2017, 11(6): 1422.

doi: 10.1109/TBCAS.4156126
[159]
Yuan D, Zhao Q B, Yan S, Tang S Y, Zhang Y X, Yun G L, Nguyen N T, Zhang J, Li M, Li W H. Lab Chip, 2019, 19(17): 2811.

doi: 10.1039/c9lc00482c pmid: 31312819
[160]
Yuan D, Zhang J, Sluyter R, Zhao Q B, Yan S, Alici G, Li W H. Lab Chip, 2016, 16(20): 3919.

pmid: 27714019
[161]
Faridi M A, Ramachandraiah H, Banerjee I, Ardabili S, Zelenin S, Russom A. J. Nanobiotechnology, 2017, 15(1): 1.
[162]
Tian F, Zhang W, Cai L L, Li S S, Hu G Q, Cong Y L, Liu C, Li T J, Sun J S. Lab Chip, 2017, 17(18): 3078.

doi: 10.1039/c7lc00671c pmid: 28805872
[163]
Yuan D, Zhang J, Yan S, Peng G R, Zhao Q B, Alici G, Du H J, Li W H. Electrophoresis, 2016, 37(15/16): 2147.
[164]
Tian F, Cai L L, Chang J Q, Li S S, Liu C, Li T J, Sun J S. Lab Chip, 2018, 18(22): 3436.

doi: 10.1039/c8lc00700d pmid: 30328446
[1] Chen Ni, Di Jiang, Youlin Xu, Wenlai Tang. Application of Viscoelastic Fluid in Passive Particle Manipulation Technologies [J]. Progress in Chemistry, 2020, 32(5): 519-535.