中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (5): 519-535 DOI: 10.7536/PC190907 Previous Articles   Next Articles

• Review •

Application of Viscoelastic Fluid in Passive Particle Manipulation Technologies

Chen Ni1, Di Jiang1,**(), Youlin Xu1, Wenlai Tang2   

  1. 1.School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China
    2.School of Electrical and Automation Engineering, Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, Nanjing Normal University, Nanjing 210023, China
  • Received: Revised: Online: Published:
  • Contact: Di Jiang
  • About author:
  • Supported by:
    National Natural Science Foundation of China(51805270); National Natural Science Foundation of China(51805272); Key Technology R&D Program of Jiangsu Province(BE2018010-1); Key Technology R&D Program of Jiangsu Province(BE2018010-2)
Richhtml ( 43 ) PDF ( 737 ) Cited
Export

EndNote

Ris

BibTeX

Microfluidics, which can precisely manipulate micron-sized particles, has been widely used in medical, pharmaceutical, biological and chemical fields. The passive manipulation technologies without external field effect have become a research hotspot because of their simplicity and autonomy. Compared with other passive manipulation technologies, viscoelastic focusing technology makes it easier to achieve three-dimensional focusing of particles, and can manipulate particles with a large-scale span and a wide range of fluid flow. Therefore, this paper reviews the latest research on viscoelastic fluids in particle passive manipulation applications. Firstly, the force mechanism of particles in viscoelastic fluid in different microchannel structure is introduced. Then, the research progress of viscoelastic focusing, sorting, mixing and other viscoelastic particle manipulation applications is further elaborated. Finally, the numerical simulation method for studying the flow characteristics of viscoelastic fluids and the movement law of particles in it are introduced, and some prospects for the future development of viscoelastic microfluidics are made based on the analysis of existing problems.

Contents

1 Introduction

2 Viscoelastic focusing

2.1 Viscoelastic focusing in straight microchannels

2.2 Viscoelastic focusing in curved microchannels

3 Viscoelastic sorting

3.1 Sheath-flow sorting

3.2 Sheath-free sorting

4 Other applications

5 Numerical simulation

6 Conclusion and prospects

Fig. 1 Schematic diagram of the equilibrium position of particles subjected to inertial lift in straight microchannels (a) circular section;(b) square section[32];(c) rectangular section[32];(d) Reynolds number increased [32];(e) elastic force added[61]
Fig. 2 Particles focusing in different straight microchannels under different conditions (a) 0.05 wt% PEO solution(left) and 8% PVP solution(right) in straight square microchannel[61];(b) 1% PEO solution in straight cylindrical microchannel[63];(c) 1% PEO solution in straight cylindrical microchannel[64];(d) 5ppm λ-DNA solution in straight square microchannel[37];(e) 0.8 wt% HA solution in straight square microchannel[60]
Fig. 3 (a) Two-dimensional focusing of red blood cells[77];(b) Particle focusing map in straight rectangular microchannels with different aspect ratios[78];(c) Focusing map of two different sizes of particles[78];(d) Schematic diagram of four stages of particle focusing[79];(e) Schematic diagram of double inlet channel[80]
Fig. 4 (a) Focusing map of 1.5 and 10 μm diameter particles[86];(b) Schematic diagram of six stages of particle focusing[85];(c) Three-dimensional single-line focusing map of particles in a spiral microchannel[84]
Fig. 5 Schematic diagram of the microchannel structure using sheath-flow sorting[100]
Fig. 6 (a) Schematic diagram of particle separation in a T-shaped microchannel[102];(b) Migration of mixed particles under different conditions[102];(c) Migration of spherical and peanut-shaped particles[103]
Fig. 7 (a) Schematic diagram of the microchannel structure in which exosomes and EVs are located[105];(b) Schematic diagram of a multi-spiral microchannel[88];(c) Schematic diagram of a microchannel with deterministic lateral displacement arrays[106]
Fig. 8 (a) Schematic diagram of the microchannel of particles migration from viscoelastic fluid to Newtonian fluid[108];(b) Schematic diagram of the microchannel of particles migration from Newtonian fluid to viscoelastic fluid[111];(c) Schematic diagram of the separation of particles under three different conditions(sheath/sample)[111]
Fig. 9 (a) Schematic diagram of the migration of deformable particles and rigid particles in the microchannel[112];(b) Snapshot of the separation of rigid PS particles and fresh RBCs[112];(c) Separation map of mixed particles[114]
Fig. 10 (a) Schematic diagram of particle migration in a microchannel with a single-sided cavity array structure [117];(b) Schematic diagram of a double spiral microchannel[87];(c) Schematic diagram of a microchannel with two-stage structure[118];(d) Schematic diagram of particle migration in a microchannel with two-stage structure[119, 120]
Table 1 Summary of various particle sorting methods in viscoelastic microfluidics
Fig. 11 (a) Schematic diagram of fluid mixing in a straight microchannel the side channel[124];(b) Schematic diagram of a microchannel with cross-slot region[129]
[1]
Yeo L Y , Chang H , Chan P P Y , Friend J R . Small, 2011,7(1):12. http://dx.doi.org/10.1002/smll.201000946

doi: 10.1002/smll.201000946
[2]
Sackmann E K , Fulton A L , Beebe D J . Nature, 2014,507(7491):181. http://dx.doi.org/10.1038/nature13118

doi: 10.1038/nature13118
[3]
Gossett D R , Weaver W M , Mach A J , Hur S C , Tse H T K , Lee W , Amini H , Carlo D D . Analytical & Bioanalytical Chemistry, 2010,397(8):3249.
[4]
Pratt E D , Huang C , Hawkins B G , Gleghorn J P , Kirby B J . Chemical Engineering Science, 2011,66(7):1508. http://dx.doi.org/10.1016/j.ces.2010.09.012

doi: 10.1016/j.ces.2010.09.012
[5]
Karimi A , Yazdi S , Ardekani A M . Biomicrofluidics, 2013,7(2):21501. http://aip.scitation.org/doi/10.1063/1.4799787

doi: 10.1063/1.4799787
[6]
Haeberle S , Zengerle R . Lab on A Chip, 2007,7(9):1094. http://xlink.rsc.org/?DOI=b706364b

doi: 10.1039/b706364b
[7]
Yin H , Marshall D . Current Opinion in Biotechnology, 2012,23(1):110. http://dx.doi.org/10.1016/j.copbio.2011.11.002

doi: 10.1016/j.copbio.2011.11.002
[8]
唐文来(Tang W L), 项楠(Xiang N), 黄笛(Huang D), 张鑫杰(Zhang X J), 顾兴中(Gu X Z), 倪中华(Ni Z H) . 化学进展 (Progress in Chemistry), 2014,26(06):1050.
[9]
林炳承(Lin B C) . 分析化学 (Chinese J. Anal. Chem.), 2016,44(04):491.
[10]
Wong A H , Li H , Jia Y , Mak P , Martins R P D S , Liu Y , Vong C M , Wong H C , Wong P K , Wang H . Scientific Reports, 2017,7(1):9109. https://doi.org/10.1038/s41598-017-08831-z

doi: 10.1038/s41598-017-08831-z
[11]
Yan S , Zhang J , Alici G , Du H , Zhu Y , Li W . Lab on A Chip, 2014,14(16):2993. http://dx.doi.org/10.1039/c4lc00343h

doi: 10.1039/c4lc00343h
[12]
Chami B , Socol M , Manghi M , Bancaud A . Soft Matter, 2018: 10.
[13]
Chen X , Ren Y , Hou L , Feng X , Jiang H . Nanoscale, 2019,11(13):6410. http://xlink.rsc.org/?DOI=C8NR09148J

doi: 10.1039/C8NR09148J
[14]
Ahmed R , Destgeer G , Afzal M , Park J , Ahmed H , Jung J H , Park K , Yoon T , Sung H J . Analytical Chemistry, 2017,89(24):13313. https://pubs.acs.org/doi/10.1021/acs.analchem.7b03474

doi: 10.1021/acs.analchem.7b03474
[15]
Destgeer G , Jung J H , Park J , Ahmed H , Sung H J . Analytical Chemistry, 2017,89(1):736. https://pubs.acs.org/doi/10.1021/acs.analchem.6b03314

doi: 10.1021/acs.analchem.6b03314
[16]
Ahmed H , Destgeer G , Park J , Afzal M , Sung H J . Analytical Chemistry, 2018,90(14):8546. https://pubs.acs.org/doi/10.1021/acs.analchem.8b01593

doi: 10.1021/acs.analchem.8b01593
[17]
Kim M , Lee D , Youn J R , Song Y S . RSC Advances, 2016,6(38):32090. http://xlink.rsc.org/?DOI=C6RA03146C

doi: 10.1039/C6RA03146C
[18]
Jian Z , Chen C , Vedantam P , Brown V , Tzeng T R J , Xuan X . Journal of Micromechanics & Microengineering, 2012,22(10):105018.
[19]
Hejazian M , Li W , Nguyen N . Lab on A Chip, 2015,15(4):959. http://xlink.rsc.org/?DOI=C4LC01422G

doi: 10.1039/C4LC01422G
[20]
Macdonald M P , Spalding G C , Dholakia K . Nature, 2003,426(6965):421. http://www.nature.com/articles/nature02144

doi: 10.1038/nature02144
[21]
Bok K S , Youl Y S , Hyung J S , Soo K S . Analytical Chemistry, 2008,80(7):2628. https://pubs.acs.org/doi/10.1021/ac8000918

doi: 10.1021/ac8000918
[22]
Kayani A A , Khashayar K , Ward S A , Arnan M , Kourosh K Z . Biomicrofluidics, 2012,6(3):1.
[23]
Xiang N , Ni Z . Biomedical Microdevices, 2015,17(6):110. http://link.springer.com/10.1007/s10544-015-0018-y

doi: 10.1007/s10544-015-0018-y
[24]
Carlo D D . Lab on A Chip, 2009,9(21):3038. http://xlink.rsc.org/?DOI=b912547g

doi: 10.1039/b912547g
[25]
Hamed A , Wonhee L , Dino D C . Lab on A Chip, 2014,14(15):2739. http://dx.doi.org/10.1039/c4lc00128a

doi: 10.1039/c4lc00128a
[26]
Hood K , Lee S , Roper M . Journal of Fluid Mechanics, 2015,765:452. https://www.cambridge.org/core/product/identifier/S0022112014007393/type/journal_article

doi: 10.1017/jfm.2014.739
[27]
Zhang J , Yan S , Yuan D , Alici G , Nguyen N T , Ebrahimi W M , Li W . Lab on A Chip, 2015,16(1):10. http://xlink.rsc.org/?DOI=C5LC01159K

doi: 10.1039/C5LC01159K
[28]
Segre G , Silberberg A . J. Fluid Mech., 1962,14:136. https://www.cambridge.org/core/product/identifier/S0022112062001111/type/journal_article

doi: 10.1017/S0022112062001111
[29]
Segre G , Silberberg A . Nature, 1961,189:209. https://doi.org/10.1038/189209a0

doi: 10.1038/189209a0
[30]
Martel J M , Toner M . Annual Review of Biomedical Engineering, 2014,16(1):371. http://www.annualreviews.org/doi/10.1146/annurev-bioeng-121813-120704

doi: 10.1146/annurev-bioeng-121813-120704
[31]
Liu C , Hu G , Jiang X , Sun J . Lab on a Chip, 2015,15(4):1168. http://xlink.rsc.org/?DOI=C4LC01216J

doi: 10.1039/C4LC01216J
[32]
Amini H , Lee W , Di Carlo D . Lab on a Chip, 2014,14(15):2739. http://dx.doi.org/10.1039/c4lc00128a

doi: 10.1039/c4lc00128a
[33]
Sajeesh P , Sen A K . Microfluidics and Nanofluidics, 2014,17(1):1. http://dx.doi.org/10.1007/s10404-013-1291-9

doi: 10.1007/s10404-013-1291-9
[34]
项楠(Xiang N), 朱晓璐(Zhu X L), 倪中华(Ni Z H) . 化学进展 (Progress in Chemistry), 2011,23(09):1945.
[35]
Karnis A , Goldsmith H L , Mason S G . 1963,200(4902):159.
[36]
Lim E J , Ober T J , Edd J F , Desai S P , Neal D , Bong K W , Doyle P S , Mckinley G H , Toner M . Nature Communications, 2014,5:4120. https://doi.org/10.1038/ncomms5120

doi: 10.1038/ncomms5120
[37]
Kim B , Kim J M . Biomicrofluidics, 2016,10(2):24111. http://aip.scitation.org/doi/10.1063/1.4944628

doi: 10.1063/1.4944628
[38]
Xuan X , Zhu J , Church C . Microfluidics and Nanofluidics, 2010,9(1):1. http://link.springer.com/10.1007/s10404-010-0602-7

doi: 10.1007/s10404-010-0602-7
[39]
Ateya D A , Erickson J S , Howell P B , Hilliard L R , Golden J P , Ligler F S . Analytical and Bioanalytical Chemistry, 2008,391(5):1485. http://link.springer.com/10.1007/s00216-007-1827-5

doi: 10.1007/s00216-007-1827-5
[40]
Andreas L , Thomas L . Chemical Society Reviews, 2010,39(3):1203. http://xlink.rsc.org/?DOI=b915999c

doi: 10.1039/b915999c
[41]
Dino D C , Daniel I , Tompkins R G , Mehmet T . Proceedings of the National Academy of Sciences of the United States of America, 2007,104(48):18892.
[42]
Asmolov E S . Journal of Fluid Mechanics, 1999,381:63. https://www.cambridge.org/core/product/identifier/S0022112098003474/type/journal_article

doi: 10.1017/S0022112098003474
[43]
Matas J , Morris J F , Guazzelli É . Journal of Fluid Mechanics, 1999,515:171. http://www.journals.cambridge.org/abstract_S0022112004000254

doi: 10.1017/S0022112004000254
[44]
Lu X , Liu C , Hu G , Xuan X . Journal of Colloid and Interface Science, 2017,500:182. https://linkinghub.elsevier.com/retrieve/pii/S0021979717304113

doi: 10.1016/j.jcis.2017.04.019
[45]
Zeng L , Najjar F , Balachandar S , Fischer P . Physics of Fluids, 2009,21(3):33302. http://aip.scitation.org/doi/10.1063/1.3082232

doi: 10.1063/1.3082232
[46]
De Souza Mendes P R . Journal of Non-Newtonian Fluid Mechanics, 2007,147(1):109. https://linkinghub.elsevier.com/retrieve/pii/S0377025707001887

doi: 10.1016/j.jnnfm.2007.07.010
[47]
Huang P Y , Feng J , Hu H H , Joseph D D . Journal of Fluid Mechanics, 2000,343(343):73. https://www.cambridge.org/core/product/identifier/S0022112097005764/type/journal_article

doi: 10.1017/S0022112097005764
[48]
Ho B P , Leal L G . Journal of Fluid Mechanics, 1976,76(4):783. https://www.cambridge.org/core/product/identifier/S002211207600089X/type/journal_article

doi: 10.1017/S002211207600089X
[49]
Bird R B , Armstrong R C , Hassager O E , Curtiss C F , Middleman S . Physics Today, 1978,31(2):54.
[50]
Villone M M , D’Avino G , Hulsen M A , Greco F , Maffettone P L . Journal of Non-Newtonian Fluid Mechanics, 2013,195:1. https://linkinghub.elsevier.com/retrieve/pii/S0377025712002765

doi: 10.1016/j.jnnfm.2012.12.006
[51]
Magda J J , Lou J , Baek S G , Devries K L . Polymer, 1991,32(11):2000. https://linkinghub.elsevier.com/retrieve/pii/003238619190165F

doi: 10.1016/0032-3861(91)90165-F
[52]
Larsen V F . Polymer, 1990,31(4):766.
[53]
Pathak J A , Ross D , Migler K B . Physics of Fluids, 2004,16(11):4028. http://aip.scitation.org/doi/10.1063/1.1792011

doi: 10.1063/1.1792011
[54]
Leshansky A M , Bransky A , Korin N , Dinnar U . Physical Review Letters, 2007,98(23):234501. https://link.aps.org/doi/10.1103/PhysRevLett.98.234501

doi: 10.1103/PhysRevLett.98.234501
[55]
Yuan D , Zhao Q , Yan S , Tang S Y , Alici G , Zhang J , Li W . Lab on A Chip, 2018,18(4):551. http://xlink.rsc.org/?DOI=C7LC01076A

doi: 10.1039/C7LC01076A
[56]
D’Avino G , Greco F , Maffettone P L . Annual Review of Fluid Mechanics, 2017,49(1):341. http://www.annualreviews.org/doi/10.1146/annurev-fluid-010816-060150

doi: 10.1146/annurev-fluid-010816-060150
[57]
D Avino G , Maffettone P L , Greco F , Hulsen M A . Journal of Non-Newtonian Fluid Mechanics, 2010,165(9/10):466. https://linkinghub.elsevier.com/retrieve/pii/S0377025710000261

doi: 10.1016/j.jnnfm.2010.01.024
[58]
Caserta S , D’Avino G , Greco F , Guido S , Maffettone P L . Soft Matter, 2011,7(3):1100. http://dx.doi.org/10.1039/c0sm00640h

doi: 10.1039/c0sm00640h
[59]
Villone M M , D’Avino G , Hulsen M A , Greco F , Maffettone P L . Journal of Non-Newtonian Fluid Mechanics, 2011,166(23/24):1396. https://linkinghub.elsevier.com/retrieve/pii/S0377025711002205

doi: 10.1016/j.jnnfm.2011.09.003
[60]
Del Giudice F , Sathish S , D'Avino G , Shen A Q . Analytical Chemistry, 2017,89(24):13146. https://pubs.acs.org/doi/10.1021/acs.analchem.7b02450

doi: 10.1021/acs.analchem.7b02450
[61]
Yang S Y , Kim J Y , Lee S J , Lee S S , Min K J . Lab on A Chip, 2011,11(2):266. http://dx.doi.org/10.1039/c0lc00102c

doi: 10.1039/c0lc00102c
[62]
Seo K W , Kang Y J , Lee S J . Physics of Fluids, 2014,26(6):63301. http://aip.scitation.org/doi/10.1063/1.4882265

doi: 10.1063/1.4882265
[63]
D’Avino G , Romeo G , Villone M M , Greco F , Netti P A , Maffettone P L . Lab on a Chip, 2012,12(9):1638. http://dx.doi.org/10.1039/c2lc21154h

doi: 10.1039/c2lc21154h
[64]
Seo K W , Byeon H J , Huh H K , Lee S J . RSC Adv, 2014,4(7):3512. http://xlink.rsc.org/?DOI=C3RA43522A

doi: 10.1039/C3RA43522A
[65]
Del Giudice F , D’Avino G , Greco F , Netti P A , Maffettone P L . Microfluidics and Nanofluidics, 2015,19(1):95. http://link.springer.com/10.1007/s10404-015-1552-x

doi: 10.1007/s10404-015-1552-x
[66]
Song H Y , Lee S H , Salehiyan R , Hyun K . Rheologica Acta, 2016,55(11/12):889. http://link.springer.com/10.1007/s00397-016-0962-3

doi: 10.1007/s00397-016-0962-3
[67]
Martynova L , Locascio L E , Gaitan M , Kramer G W , Christensen R G , Maccrehan W A . Analytical Chemistry, 1997,69(23):4783. https://pubs.acs.org/doi/10.1021/ac970558y

doi: 10.1021/ac970558y
[68]
Xiang N , Yi H , Chen K , Wang S , Ni Z . Journal of Micromechanics and Microengineering, 2013,23(2):025016. https://iopscience.iop.org/article/10.1088/0960-1317/23/2/025016

doi: 10.1088/0960-1317/23/2/025016
[69]
Duffy D C , McDonald J C , Schueller O J , Whitesides G M . Analytical chemistry, 1998,70(23):4974. https://pubs.acs.org/doi/10.1021/ac980656z

doi: 10.1021/ac980656z
[70]
Becker H , Gaertner C . Analytical and Bioanalytical Chemistry, 2008,390(1):89. http://link.springer.com/10.1007/s00216-007-1692-2

doi: 10.1007/s00216-007-1692-2
[71]
Zhang X , Huang D , Tang W , Jiang D , Chen K , Yi H , Xiang N , Ni Z . RSC Advances, 2016,6(12):9734. http://xlink.rsc.org/?DOI=C5RA27092H

doi: 10.1039/C5RA27092H
[72]
Ha D , Hong J , Shin H , Kim T . Lab on A Chip, 2016,16(22):4296. http://xlink.rsc.org/?DOI=C6LC01058J

doi: 10.1039/C6LC01058J
[73]
Kim J Y , Ahn S W , Lee S S , Kim J M . Lab on A Chip, 2012,12(16):2807. http://dx.doi.org/10.1039/c2lc40147a

doi: 10.1039/c2lc40147a
[74]
Holzner G , Stavrakis S , Demello A . Analytical Chemistry, 2017,89(21):11653. https://pubs.acs.org/doi/10.1021/acs.analchem.7b03093

doi: 10.1021/acs.analchem.7b03093
[75]
Lim E J , Ober T J , Edd J F , Desai S P , Neal D , Bong K W , Doyle P S , Mckinley G H , Toner M . Nature Communications, 2014,5(1):4120. https://doi.org/10.1038/ncomms5120

doi: 10.1038/ncomms5120
[76]
Howard M P , Panagiotopoulos A Z , Nikoubashman A . The Journal of Chemical Physics, 2015,142(22):224908. http://aip.scitation.org/doi/10.1063/1.4922323

doi: 10.1063/1.4922323
[77]
Seo K W , Ha Y R , Lee S J . Applied Physics Letters, 2014,104(21):213702. http://aip.scitation.org/doi/10.1063/1.4880615

doi: 10.1063/1.4880615
[78]
Liu C , Xue C , Chen X , Shan L , Tian Y , Hu G . Analytical Chemistry, 2015,87(12):6041. https://pubs.acs.org/doi/10.1021/acs.analchem.5b00516

doi: 10.1021/acs.analchem.5b00516
[79]
Xiang N , Dai Q , Ni Z . Applied Physics Letters, 2016,109(13):134101. http://aip.scitation.org/doi/10.1063/1.4963294

doi: 10.1063/1.4963294
[80]
Yang S H , Lee D J , Youn J R , Song Y S . Analytical Chemistry, 2017,89(6):3639. https://pubs.acs.org/doi/10.1021/acs.analchem.6b05052

doi: 10.1021/acs.analchem.6b05052
[81]
Yuan D , Zhang J , Yan S , Pan C , Alici G , Nguyen N T , Li W H . Biomicrofluidics, 2015,9(4):44108. http://aip.scitation.org/doi/10.1063/1.4927494

doi: 10.1063/1.4927494
[82]
Berger S A , Talbot L , Yao L S . Annual Review of Fluid Mechanics, 1983,15(1):461. http://www.annualreviews.org/doi/10.1146/annurev.fl.15.010183.002333

doi: 10.1146/annurev.fl.15.010183.002333
[83]
Yuan D , Sluyter R , Zhao Q , Tang S , Yan S , Yun G , Li M , Zhang J , Li W . Microfluidics and Nanofluidics, 2019,23(3):41. https://doi.org/10.1007/s10404-019-2204-3

doi: 10.1007/s10404-019-2204-3
[84]
Xiang N , Ni Z , Yi H . Electrophoresis, 2018,39(2):417. http://doi.wiley.com/10.1002/elps.v39.2

doi: 10.1002/elps.v39.2
[85]
Xiang N , Zhang X , Dai Q , Cheng J , Chen K , Ni Z . Lab on a Chip, 2016,16(14):2626. http://xlink.rsc.org/?DOI=C6LC00376A

doi: 10.1039/C6LC00376A
[86]
Lee D J , Brenner H , Youn J R , Song Y S . Scientific Report, 2013,3(1):3258.
[87]
Liu C , Ding B , Xue C , Tian Y , Hu G , Sun J . Analytical Chemistry, 2016,88(24):12547. https://pubs.acs.org/doi/10.1021/acs.analchem.6b04564

doi: 10.1021/acs.analchem.6b04564
[88]
Zhou Y , Ma Z , Tayebi M , Ai Y . Analytical Chemistry, 2019,91(7):4577. https://pubs.acs.org/doi/10.1021/acs.analchem.8b05749

doi: 10.1021/acs.analchem.8b05749
[89]
Brandon W P , Prashant K S , Henny C V D M , Henk J B . Applied and Environmental Microbiology, 2012,78(1):120. http://dx.doi.org/10.1128/AEM.06780-11

doi: 10.1128/AEM.06780-11
[90]
Jay W , Ben C , Megan F , David B . Analytical Chemistry, 2010,82(19): p. 8320. https://pubs.acs.org/doi/10.1021/ac101866p

doi: 10.1021/ac101866p
[91]
黄笛(Huang D), 项楠(Xiang N), 唐文来(Tang W L), 张鑫杰(Zhang X J), 倪中华(Ni Z H) . 化学进展 (Progress in Chemistry), 2015,27(07):882.
[92]
Dash S , Mohanty S . Electrophoresis, 2015,35(18):2656. http://doi.wiley.com/10.1002/elps.v35.18

doi: 10.1002/elps.v35.18
[93]
Plouffe B D , Murthy S K , Lewis L H . Reports on Progress in Physics, 2015,78(1):16601. https://iopscience.iop.org/article/10.1088/0034-4885/78/1/016601

doi: 10.1088/0034-4885/78/1/016601
[94]
Cho H , Kim J , Song H , Sohn K Y , Jeon M , Han K H . Analyst, 2018,143:2936. http://xlink.rsc.org/?DOI=C7AN01979C

doi: 10.1039/C7AN01979C
[95]
Wu X Y , Wu H Y , Hu D H . Science China Technological Sciences, 2011,54(12):3311. http://link.springer.com/10.1007/s11431-011-4593-8

doi: 10.1007/s11431-011-4593-8
[96]
Yan S , Zhang J , Yuan D , Li W . Electrophoresis, 2016,38(2):238. http://doi.wiley.com/10.1002/elps.201600386

doi: 10.1002/elps.201600386
[97]
Daniel R G , Westbrook M W , Albert J M , Soojung Claire H , Henry Tat Kwong T , Wonhee L , Hamed A , Dino D C . Analytical and Bioanalytical Chemistry, 2010,397(8):3249. http://link.springer.com/10.1007/s00216-010-3721-9

doi: 10.1007/s00216-010-3721-9
[98]
Th S C , Reyes C D , López G P . Lab on A Chip, 2015,15(5):1230. http://xlink.rsc.org/?DOI=C4LC01246A

doi: 10.1039/C4LC01246A
[99]
Tsoi H , Isozaki A , Goda K . Particle/Cell Manipulation and Sorting with Surface Acoustic Waves In A Microfluidic Device. 2016, DOI: 10.1109/MHS.2016.7824165.
[100]
Nam J , Lim H , Kim D , Jung H , Shin S . Lab on a Chip, 2012,12(7):1347. http://dx.doi.org/10.1039/c2lc21304d

doi: 10.1039/c2lc21304d
[101]
Lim H , Nam J , Shin S . Microfluidics and Nanofluidics, 2014,17(4):683. http://dx.doi.org/10.1007/s10404-014-1353-7

doi: 10.1007/s10404-014-1353-7
[102]
Lu X , Xuan X . Analytical Chemistry, 2015,87(12):6389. https://pubs.acs.org/doi/10.1021/acs.analchem.5b01432

doi: 10.1021/acs.analchem.5b01432
[103]
Lu X , Xuan X . Analytical Chemistry, 2015,87(22):11523. https://pubs.acs.org/doi/10.1021/acs.analchem.5b03321

doi: 10.1021/acs.analchem.5b03321
[104]
Xu W , Hou Z , Liu Z , Wu Z . Microfluidics and Nanofluidics, 2016,20(9):128. http://link.springer.com/10.1007/s10404-016-1791-5

doi: 10.1007/s10404-016-1791-5
[105]
Liu C , Guo J , Tian F , Yang N , Yan F , Ding Y , Wei J , Hu G , Nie G , Sun J . ACS Nano, 2017,11(7):6968. https://pubs.acs.org/doi/10.1021/acsnano.7b02277

doi: 10.1021/acsnano.7b02277
[106]
Li Y , Zhang H , Li Y , Li X , Wu J , Qian S , Li F . Scientific Reports, 2018,8(1):3618. https://doi.org/10.1038/s41598-018-21827-7

doi: 10.1038/s41598-018-21827-7
[107]
Faridi M A , Ramachandraiah H , Banerjee I , Ardabili S , Zelenin S , Russom A . Journal of Nanobiotechnology, 2017,15(1):3. http://jnanobiotechnology.biomedcentral.com/articles/10.1186/s12951-016-0235-4

doi: 10.1186/s12951-016-0235-4
[108]
Ha B , Park J , Destgeer G , Jung J H , Sung H J . Analytical Chemistry, 2016,88(8):4205. https://pubs.acs.org/doi/10.1021/acs.analchem.6b00710

doi: 10.1021/acs.analchem.6b00710
[109]
Yuan D , Zhang J , Yan S , Peng G , Zhao Q , Alici G , Du H , Li W . Electrophoresis, 2016,37(15/16):2147. http://doi.wiley.com/10.1002/elps.201600102

doi: 10.1002/elps.201600102
[110]
Yuan D , Tan S H , Sluyter R , Zhao Q , Yan S , Nguyen N T , Guo J , Zhang J , Li W . Analytical Chemistry, 2017,89(17):9574. https://pubs.acs.org/doi/10.1021/acs.analchem.7b02671

doi: 10.1021/acs.analchem.7b02671
[111]
Tian F , Zhang W , Cai L , Li S , Hu G , Cong Y , Liu C , Li T , Sun J . Lab on a Chip, 2017,17(18):3078. http://xlink.rsc.org/?DOI=C7LC00671C

doi: 10.1039/C7LC00671C
[112]
Yang S , Lee S S , Ahn S W , Kang K , Shim W , Lee G , Hyun K , Kim J M . Soft Matter, 2012,8(18):5011. http://xlink.rsc.org/?DOI=c2sm07469a

doi: 10.1039/c2sm07469a
[113]
Ahn S W , Lee S S , Lee S J , Kim J M . Chemical Engineering Science, 2015,126:237. https://linkinghub.elsevier.com/retrieve/pii/S0009250914007337

doi: 10.1016/j.ces.2014.12.019
[114]
Li D , Lu X , Xuan X . Analytical Chemistry, 2016,88(24):12303. https://pubs.acs.org/doi/10.1021/acs.analchem.6b03501

doi: 10.1021/acs.analchem.6b03501
[115]
Lu X , Zhu L , Hua R , Xuan X . Applied Physics Letters, 2015,107(26):264102. http://aip.scitation.org/doi/10.1063/1.4939267

doi: 10.1063/1.4939267
[116]
Yuan D , Zhang J , Yan S , Pan C , Alici G , Nguyen N T , Li W H . Three-Dimensional Particle Focusing Under Viscoelastic Flow Based on Dean-Flow-Coupled Elasto-Inertial Effects. 2016,9903.
[117]
Yuan D , Zhang J , Sluyter R , Zhao Q , Yan S , Alici G , Li W . Lab on a Chip, 2016,16(20):3919. http://xlink.rsc.org/?DOI=C6LC00843G

doi: 10.1039/C6LC00843G
[118]
Nam J , Tan J K S , Khoo B L , Namgung B , Leo H L , Lim C T , Kim S . Biomicrofluidics, 2015,9(6):64117. http://aip.scitation.org/doi/10.1063/1.4938389

doi: 10.1063/1.4938389
[119]
Nam J , Namgung B , Lim C T , Bae J , Leo H L , Cho K S , Kim S . Journal of Chromatography A, 2015,1406:244. https://linkinghub.elsevier.com/retrieve/pii/S0021967315008766

doi: 10.1016/j.chroma.2015.06.029
[120]
Nam J , Shin Y , Tan J K , Lim Y B , Lim C T , Kim S . Lab on A Chip, 2016,16(11):2086. http://xlink.rsc.org/?DOI=C6LC00162A

doi: 10.1039/C6LC00162A
[121]
Ottino J M , Wiggins S . Philos. Trans. A Math. Phys. Eng. Sci., 2004,362(1818):923. https://royalsocietypublishing.org/doi/10.1098/rsta.2003.1355

doi: 10.1098/rsta.2003.1355
[122]
Ng T N , Chen X , Yeung K L . RSC Advances, 2015,5(18):13331. http://xlink.rsc.org/?DOI=C4RA16679E

doi: 10.1039/C4RA16679E
[123]
Lam Y C , Gan H Y , Nguyen N T , Lie H . Mixing Flow of Viscoelastic Fluids in a Microchannel. Springer Berlin Heidelberg. 2007.
[124]
Hong S O , Cooper-White J J , Kim J M . Applied Physics Letters, 2016,108(1):14103. http://aip.scitation.org/doi/10.1063/1.4939552

doi: 10.1063/1.4939552
[125]
Julius L A N , Jagannadh V K , Michael I J , Srinivasan R , Gorthi S S . BioChip Journal, 2016,10(1):16. http://link.springer.com/10.1007/s13206-016-0103-1

doi: 10.1007/s13206-016-0103-1
[126]
Cai W , Li Y , Zhang H , Li Y , Cheng J , Li X , Li F . International Journal of Heat and Fluid Flow, 2018,74:130. https://linkinghub.elsevier.com/retrieve/pii/S0142727X18303217

doi: 10.1016/j.ijheatfluidflow.2018.09.006
[127]
Cha S , Shin T , Lee S S , Shim W , Lee G , Lee S J , Kim Y , Kim J M . Analytical Chemistry, 2012,84(23):10471. http://dx.doi.org/10.1021/ac302763n

doi: 10.1021/ac302763n
[128]
Bae Y B , Jang H K , Shin T H , Phukan G , Tran T T , Lee G , Hwang W R , Kim J M . Lab on a Chip, 2016,16(1):96. http://xlink.rsc.org/?DOI=C5LC01006C

doi: 10.1039/C5LC01006C
[129]
Kim J , Kim J Y , Kim Y , Lee S J , Kim J M . Analytical Chemistry, 2017,89(17):8662. https://pubs.acs.org/doi/10.1021/acs.analchem.7b02559

doi: 10.1021/acs.analchem.7b02559
[130]
Hu S , Lam R H W . Microfluidics and Nanofluidics, 2017,21(4):68. http://link.springer.com/10.1007/s10404-017-1903-x

doi: 10.1007/s10404-017-1903-x
[131]
Raj M K , Chakraborty J , Dasgupta S , Chakraborty S . Biomicrofluidics, 2018,12(3):34116. http://aip.scitation.org/doi/10.1063/1.5036632

doi: 10.1063/1.5036632
[132]
Yang S H , Park J , Youn J R , Song Y S . Lab on a Chip, 2018,18:10.
[133]
Zou S , Yuan X F , Yang X , Wei Y , Xu X . Journal of Non-Newtonian Fluid Mechanics, 2014,211:99. http://dx.doi.org/10.1016/j.jnnfm.2014.07.003

doi: 10.1016/j.jnnfm.2014.07.003
[134]
Aharonov E , Rothman D H . Geophysical Research Letters, 1993,20(8):679. http://doi.wiley.com/10.1029/93GL00473

doi: 10.1029/93GL00473
[135]
Shi Y , Tang G H . Computers & Mathematics with Applications, 2014,68(10):1279.
[136]
Rosis A D . Advances in Water Resources, 2014,73:97. http://dx.doi.org/10.1016/j.advwatres.2014.07.004

doi: 10.1016/j.advwatres.2014.07.004
[137]
Wang C H , Ho J R . Computers & Mathematics with Applications, 2011,62(1):75.
[138]
Wang D , Bernsdorf J . Computers & Mathematics with Applications, 2009,58(5):1030.
[139]
Fu S C , Leung W W F , So R M C . Communications in Computational Physics, 2013,14(1):126. http://dx.doi.org/10.4208/cicp.171011.180712a

doi: 10.4208/cicp.171011.180712a
[140]
李勇(Yong L I), 柳文琴(Liu W Q) . 力学与实践 (Mechanics in Engineering), 2014,36(4):383. http://lxsj.cstam.org.cn/CN/abstract/abstract144888.shtml

doi: 10.6052/1000-0879-14-168
[141]
Bernsdorf J , Wang D . Computers & Mathematics with Applications, 2009,58(5):1024.
[142]
Hoogerbrugge P J , Koelman J M V A . Europhysics Letters, 1992,19(3):155. https://iopscience.iop.org/article/10.1209/0295-5075/19/3/001

doi: 10.1209/0295-5075/19/3/001
[143]
Duong-Hong D , Phan-Thien N , Yeo K S , Ausias G . Computer Methods in Applied Mechanics and Engineering, 2010,199(23/24):1593. https://linkinghub.elsevier.com/retrieve/pii/S0045782510000198

doi: 10.1016/j.cma.2010.01.010
[144]
许少锋(Xu S F), 汪久根(W J G) . 物理学报 (Acta Physica Sinica), 2013,62(12):319.
[145]
Lee Y K , Ahn K H . Journal of Non-Newtonian Fluid Mechanics, 2017,244:75. https://linkinghub.elsevier.com/retrieve/pii/S037702571730023X

doi: 10.1016/j.jnnfm.2017.04.007
[146]
Su J , Ma L , Ouyang J , Feng C . AIP Advances, 2017,7(11):115013. http://aip.scitation.org/doi/10.1063/1.5004612

doi: 10.1063/1.5004612
[147]
Villone M M , Greco F , Hulsen M A , Maffettone P L . Journal of Non-Newtonian Fluid Mechanics, 2016,234:105. https://linkinghub.elsevier.com/retrieve/pii/S0377025716300611

doi: 10.1016/j.jnnfm.2016.05.006
[148]
Decoene A , Martin S , Maury B . Journal of Non-Newtonian Fluid Mechanics, 2018,260:1. https://linkinghub.elsevier.com/retrieve/pii/S0377025717300940

doi: 10.1016/j.jnnfm.2018.06.006
[149]
Wang P , Yu Z , Lin J . Journal of Non-Newtonian Fluid Mechanics, 2018,262:142. https://linkinghub.elsevier.com/retrieve/pii/S0377025717305207

doi: 10.1016/j.jnnfm.2018.04.011
[1] Di Feng, Guanghua Wang, Wenlai Tang, Jiquan Yang. Application of Microfluidic Impedance Cytometer in Single-Cell Detection [J]. Progress in Chemistry, 2021, 33(4): 555-567.
[2] Bingyan Jiang, Tao Peng, Shuai Yuan, Mingyong Zhou. Passive Focusing Techniques of Particles in Microfluidic Device [J]. Progress in Chemistry, 2021, 33(10): 1780-1796.
[3] Quanchao Zhuang, Zi Yang, Lei Zhang, Yanhua Cui. Research Progress on Diagnosis of Electrochemical Impedance Spectroscopy in Lithium Ion Batteries [J]. Progress in Chemistry, 2020, 32(6): 761-791.
[4] Huitiao Li, Jianzhang Pan, Qun Fang. Development and Application of Digital PCR Technology [J]. Progress in Chemistry, 2020, 32(5): 581-593.
[5] Tianxi He, Qionglin Liang, Jiu Wang, Guoan Luo. Microfluidic Fabrication of Liposomes as Drug Carriers [J]. Progress in Chemistry, 2018, 30(11): 1734-1748.
[6] Deng Wangping, Wang Lihua, Song Shiping, Zuo Xiaolei. Biosensors in POCT Application [J]. Progress in Chemistry, 2016, 28(9): 1341-1350.
[7] Tang Wenlai, Xiang Nan, Huang Di, Zhang Xinjie, Gu Xingzhong, Ni Zhonghua. Microfluidics-Based Single-Cell Biophysical Characterization [J]. Progress in Chemistry, 2014, 26(06): 1050-1064.
[8] . Microfluidic Chip-Based Immunoassay [J]. Progress in Chemistry, 2009, 21(04): 687-695.
[9] Ying Feng,Min Wang*. Development of Multiphase Laminar Flow on Microfluidic Analysis [J]. Progress in Chemistry, 2006, 18(0708): 966-973.