中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (06): 1079-1098 DOI: 10.7536/PC131134 Previous Articles   

• Review •

Photochemical Degradation of Halogenated Organic Contaminants

Zhang Fengzhen, Wu Chaofei, Hu Yun, Wei Chaohai*   

  1. The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the Key Program of National Natural Science Foundation of China (No. 21037001) and the National High Technology Research and Development Program of China (No. 2009AA06Z319)

PDF ( 2636 ) Cited
Export

EndNote

Ris

BibTeX

Halogenated organic contaminants (HOCs), including perfluorinated or partially fluorinated chemicals (PFCs), chlorinated organic compounds (COCs) and brominated organic compounds (BOCs), show the characteristics of persistent organic pollutants after they are discharged into the environment. Optimized photochemical elimination methods, which involve the pollutant properties, light adsorption and quantum yield, interfacial interaction and environmental conditions, are promising techniques for controlling the potential risk of HOCs. The present review summarizes the mechanisms of photocatalytic degradation of perfluorooctanoic acid (PFOA), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) by photo-generated radical species (eg, hVB+, eCB-, ·OH, eaq-) on photocatalyst as well as the mechanisms of direct photolysis. The photochemical degradation of HOCs can be achieved through the electron transfer between HOCs and reactive radical species or photo-induced reduction from the excited state of HOCs. Optimazation designs of photocatalyst and reaction process are important factors for the photocatalytic degradation of HOCs. Based on the currently achieved research results, some key issuses for the future are proposed from some aspects such as the interfacial electron transfer, the information of band structure, and the integration of reaction and separation.

Contents
1 Introduction
2 The mechanisms of photochemical degradation of HOCs
2.1 The photocatalytic degradation of HOCs
2.2 The direct photolysis of HOCs
3 Influencing factors on photocatalytic degradation of HOCs
3.1 Effect of photocatalytic materials
3.2 Effect of reaction condition
4 Conclusions

CLC Number: 

[1] Giesy J P, Kannan K. Environ. Sci. Technol., 2002, 36(7): 146A.
[2] Prevedouros K, Cousins I T, Buck R C, Korzeniowski S H. Environ. Sci. Technol., 2006, 40: 32.
[3] Ma R, Shih K. Environ. Pollut., 2010, 158(5): 1354.
[4] Houde M, Martin J M, Letcher R J, Solomon K R, Muir D C G. Environ. Sci. Technol., 2006, 40: 3463.
[5] Luebker D J, York R G, Hansen K J, Moore J A, Butenhoff J L. Toxicology, 2005, 215(1/2): 149.
[6] Alonso F, Beletskaya I P, Yus M. Chem. Rev., 2002, 102: 4009.
[7] Liu X T, Zhao W, Sun K, Zhang G X, Zhao Y. Chemosphere, 2011, 82: 773.
[8] Maddila S, Dasireddy V D B C, Oseghe E O, Jonnalagadda S B. Appl. Catal. B: Environ., 2013, 142/143: 129.
[9] Keane M A. Green Chem., 2003, 5: 309.
[10] Kastanek F, Maleterova Y, Kastanek P, Rott J, Jiricny V, Jiratova K. Desalination, 2007, 211: 261.
[11] Gullett B K, Natschke D F, Bruce K R. Environ. Sci. Technol., 1997, 31: 1855.
[12] Sako T, Sugeta T, Otake K, Kamizawa C, Oknao M, Negishi A, Tsurumi C. J. Chem. Eng. Jpn., 1999, 32: 830.
[13] Li S J, Fang Y L, Romanczuk C D, Jin Z H, Li T L, Wong M S. Appl. Catal. B: Environ., 2012, 125: 95.
[14] Tang H Q, Xiang Q Q, Lei M, Yan J C, Zhu L H, Zou J. Chem. Eng. J., 2012, 184: 156.
[15] Lin A Y C, Panchangam S C, Chang C Y, Hong P K A, Hsueh H F. J. Hazard. Mater., 2012, 243: 272.
[16] Liao P, Yuan S H, Chen M J, Tong M, Xie W J, Zhang P. Environ. Sci. Technol., 2013, 47: 7918.
[17] Liu X, Yoon S, Batchelor B, Abdel-Wahab A. Chem. Eng. J., 2013, 215/216: 868.
[18] Zhang W H, Quan X, Wang J X, Zhang Z Y, Chen S. Chemosphere, 2006, 65: 58.
[19] Hu E D, Cheng H F, Hu Y A. Environ. Sci. Technol., 2012, 46: 5067.
[20] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Science, 2001, 293: 269.
[21] Hoffmann M R, Martin S T, Choi W Y, Bahnemannt D W. Chem. Rev., 1995, 95: 69.
[22] Devi L G, Kavitha R. Appl. Catal. B: Environ., 2013, 140/141: 559.
[23] Kubacka A, Fernández-García M, Colón G. Chem. Rev., 2012, 112: 1555.
[24] 牛军峰(Niu J F), 余刚(Yu G), 刘希涛(Liu X T). 化学进展(Progress in Chemistry), 2005, 17(5): 938.
[25] Linsebigler A L, Lu G Q, Yates J T. Chem. Rev., 1995, 95: 735.
[26] Corma A, García H, Xamena F X L I. Chem. Rev., 2010, 110: 4606.
[27] Marin M L, Santos-Juanes L, Arques A, Amat A M, Miranda M A. Chem. Rev., 2012, 112: 1710.
[28] 李二军(Li E J), 陈浪(Chen L), 章强(Zhang Q), 李文华(Li W H), 尹双凤(Yin S F). 化学进展(Progress in Chemistry), 2010, 22(12): 2282.
[29] Sauer T, Neto G C, José H J, Moreira R F P M. J. Photochem. Photobiol. A: Chem., 2002, 149: 147.
[30] Piscopo A, Robert D, Weber J V. Appl. Catal. B: Environ., 2001, 35: 117.
[31] Sakkas V A, Albanis T A. Appl. Catal. B: Environ., 2003, 46: 175.
[32] Ertl G. Angew. Chem. Int. Ed., 1990, 29: 1219.
[33] Harris L A, Quong A A. Phys. Rev. Lett., 2004, 93: 086105.
[34] Schaub R, Thostrup P, Lopez N, Lgsgaard E, Stensgaard I, Nrskov J K, Besenbacher F. Phys. Rev. Lett., 2001, 87: 266104.
[35] Chen H H, Nanayakkara C E, Grassian V H. Chem. Rev., 2012, 112: 5919.
[36] Henderson M A. Surf. Sci. Rep., 2011, 66: 185.
[37] Axelsson A K, Dunne L J. J. Photochem. Photobiol. A: Chem., 2001, 144: 205.
[38] Omar S, Palomar J, Gómez-Sainero L M, lvarez-Montero M A, Martin-Martinez M, Rodriguez J J. J. Phys. Chem. C, 2011, 115: 14180.
[39] Vasudevan D, Stone A T. Environ. Sci. Technol., 1996, 30: 1604.
[40] Huang H H, Tseng D H, Juang L C. J. Hazard. Mater., 2008, 156: 186.
[41] Li X J, Cubbage J W, Jenks W S. J. Org. Chem., 1999, 64: 8525.
[42] Tunesi S, Anderson M A. Langmuir, 1992, 8: 487.
[43] Martin S T, Kesselman J M, Park D S, Lewis N S, Hoffmann M R. Environ. Sci. Technol., 1996, 30: 2535.
[44] Li Z M, Zhang P Y, Shao T, Wang J L, Jin L, Li X Y. J. Hazard. Mater., 2013, 260: 40.
[45] Shao T, Zhang P Y, Jin L, Li Z M. Appl. Catal. B: Environ., 2013, 142/143: 654.
[46] Li X Y, Zhang P Y, Jin L, Shao T, Li Z M, Cao J J. Environ. Sci. Technol., 2012, 46: 5528.
[47] Kormann C, Bahnemann D W, Hoffmann M R. Environ. Sci. Technol., 1991, 25: 494.
[48] Li Z M, Zhang P Y, Shao T, Li X Y. Appl. Catal. B: Environ., 2012, 125: 350.
[49] Niu H Y, Cai Y Q. Anal. Chem., 2009, 81: 9913.
[50] Calvo P C, Angelomé V M, Sánchez D A, Scherlis F J, Williams G J, Soler-Illia A A. Chem. Mater., 2008, 20: 4661.
[51] Park H, Choi W. J. Phys. Chem. B, 2004, 108: 4086.
[52] Qu Y, Zhang C J, Li F, Chen J, Zhou Q. Water Res., 2010, 44: 2939.
[53] Song Z, Tang H Q, Wang N, Zhu L H. J. Hazard. Mater., 2013, 262: 332.
[54] Shoute L C T, Mittal J P. J. Phys. Chem., 1996, 100: 11355.
[55] Park H, Vecitis C D, Cheng J, Choi W, Mader B T, Hoffmann M R. J. Phys. Chem. A, 2009, 113: 690.
[56] Estrellan C R, Salim C, Hinode H. J. Hazard. Mater., 2010, 179: 79.
[57] Wang Y, Zhang P Y. J. Hazard. Mater., 2011, 192: 1869.
[58] Panchangam S C, Lin A Y C, Shaik K L, Lin C F. Chemosphere, 2009, 77: 242.
[59] Zhao B X, Lv M, Zhou L. J. Environ. Sci., 2012, 24(4): 774.
[60] Hori H, Yamamoto A, Koike K, Kutsuna S, Murayama M, Yoshimoto A, Arakawa R. Appl. Catal. B: Environ., 2008, 82: 58.
[61] Lee Y C, Lo S L, Kuo J, Huang C P. J. Hazard. Mater., 2013, 261: 463.
[62] Thi L A P, Do H T, Lee Y C, Lo S L. Chem. Eng. J., 2013, 221: 258.
[63] Colosi L M, Pinto R A, Huang Q G, Weber W J J. Environ. Toxicol. Chem., 2009, 28: 264.
[64] Niu J F, Lin H, Xu J L, Wu H, Li Y Y. Environ. Sci. Technol., 2012, 46: 10191.
[65] Hori H, Yamamoto A, Hayakawa E, Taniyasu S, Yamashita N, Kutsuna S. Environ. Sci. Technol., 2005, 39: 2383.
[66] Lee Y C, Lo S L, Chiueh P T, Liou Y H, Chen M L. Water Res., 2010, 44: 886.
[67] Cao M H, Wang B B, Yu H S, Wang L L, Yuan S H, Chen J. J. Hazard. Mater., 2010, 179: 1143.
[68] Wang Y, Zhang P Y. J. Hazard. Mater., 2011, 192: 1869.
[69] Surdhar P S, Mezyk S P, Armstrong D A. J. Phys. Chem., 1989, 93: 3360.
[70] Song C, Chen P, Wang C Y, Zhu L Y. Chemosphere, 2012, 86: 853.
[71] Lau C, Butenhoff J L, Rogers J M. Toxicol. Appl. Pharmacol., 2004, 198: 231.
[72] Moriwaki H, Takagi Y, Tanaka M, Tsuruho K, Okitsu K, Maeda Y. Environ. Sci. Technol., 2005, 39: 3388.
[73] Sundström M, Bogdanska J, Pham H V, Athanasios V, Nobel S, McAlees A, Eriksson J, DePierre J W, Bergman Å. Chemosphere, 2012, 87: 865.
[74] Torimoto T, Ito S, Kuwabata S, Yoneyama H. Environ. Sci. Technol., 1996, 30: 1275.
[75] Izadifard M, Langford C H, Achari G. Environ. Sci. Technol., 2010, 44: 9075.
[76] Poster D L, Chaychian M, Neta P, Huie R E, Silverman J, Al-Sheikhly M. Environ. Sci. Technol., 2003, 37: 3808.
[77] Choi W, Hong S J, Chang Y S, Cho Y. Environ. Sci. Technol., 2000, 34: 4810.
[78] Zacheis G A, Gray K A, Kamat P V. Environ. Sci. Technol., 2000, 34: 3401.
[79] Sheikhly M A, Silverman J. Environ. Sci. Technol., 1997, 31: 2473.
[80] 王春霞(Wang C X), 朱利中(Zhu L Z), 江桂斌(Jiang G B). 环境化学学科前沿与展望(Frontier and Prospect in Environmental Chemistry). 北京: 科学出版社(Beijing: Science Press), 2011. 500.
[81] Kiwi J, Lopez A, Nadtochenko V. Environ. Sci. Technol., 2000, 34: 2162.
[82] Yin L F, Niu J F, Shen Z Y, Chen J. Environ. Sci. Technol., 2010, 44: 5581.
[83] Izadifard M, Langford C H, Achari G. J. Hazard. Mater., 2010, 181: 393.
[84] Terzian R, Serpone N, Draper R B, Fox M A, Pelizzetti E. Langmuir, 1991, 7: 3081.
[85] Chaychian M, Silverman J, Al-Sheikhly M. Environ. Sci. Technol., 1999, 33: 2461.
[86] Stallard M L, Sherrard J H, Ogliaruso M A. J. Environ. Eng.-ASCE, 1988, 114: 1031.
[87] Hawarl J, Demeter A, Samson R. Environ. Sci. Technol., 1992, 26: 2022.
[88] Alfassi Z B, Marguet S, Neta P. J. Phys. Chem., 1994, 98: 8019.
[89] Jones C G, Silverman J, Al-Sheikhly M. Environ. Sci. Technol., 2003, 37: 5773.
[90] Ahn M Y, Filley T R, Jafvert C T, Nies L, Hua I, Bezares-Cruz J. Environ. Sci. Technol., 2006, 40: 215.
[91] An T C, Chen J X, Li G Y, Ding X J, Sheng G Y, Fu J M, Mai B X, O'Shea K E. Catal. Today, 2008, 139: 69.
[92] Raff J D, Hites R A. J. Phys. Chem. A, 2006, 110: 10783.
[93] Huang A Z, Wang N, Lei M, Zhu L H, Zhang Y Y, Lin Z F, Yin D Q, Tang H Q. Environ. Sci. Technol., 2013, 47: 518.
[94] Sun C Y, Zhao D, Chen C C, Ma W, Zhao J C. Environ. Sci. Technol., 2009, 43: 157.
[95] Guo Y G, Lou X Y, Xiao D X, Xu L, Wang Z H, Liu J S. J. Hazard. Mater., 2012, 241/242: 301.
[96] Renckens T J A, Almeida A R, Damen M R, Kreutzer M T, Mul G. Catal. Today, 2010, 155: 302.
[97] Hori H, Hayakawa E, Einaga H, Kutsuna S, Koike K, Ibusuki T, Kiatagawa H, Arakawa R. Environ. Sci. Technol., 2004, 38: 6118.
[98] Wang Y, Zhang P Y, Pan G, Chen H. J. Hazard. Mater., 2008, 160: 181.
[99] Hori H, Yamamoto A, Koike K, Kutsuna S, Osaka I, Arakawa R. Chemosphere, 2007, 68: 572.
[100] Chu W, Chan H K, Kwan C Y, Jafvert C T. Environ. Sci. Technol., 2005, 39: 9211.
[101] Chu W, Jafvert C T, Diehl C A, Marley K, Larson R A. Environ. Sci. Technol., 1998, 32: 1989.
[102] Lin Y J, Teng L S, Lee A, Chen Y L. Chemosphere, 2004, 55: 879.
[103] Skoog D A, Holler F J, Nieman T A. Principles of Instrumental Analysis, 5th ed. Philadelphia: Harcourt Brace, 1998. 256.
[104] Manzano M A, Perales J A, Sales D, Quiroga J M. Chemosphere, 2004, 57: 645.
[105] Sun C Y, Chang W, Ma W H, Chen C C, Zhao J C. Environ. Sci. Technol., 2013, 47: 2370.
[106] Eriksson J, Green N, Marsh G, Bergman . Environ. Sci. Technol., 2004, 38: 3119.
[107] Keum S Y, Li Q X. Environ. Sci. Technol., 2005, 39: 2280.
[108] Christiansson A, Eriksson J, Teclechiel D, Bergman . Environ. Sci. Pollut. Res., 2009, 16: 312.
[109] Watanabe I, Tatsukawa R. Bull. Environ. Contam. Toxicol., 1987, 39: 953.
[110] Sderstrm G, Sellstrm U, De-Wit C A, Tysklind M. Environ. Sci. Technol., 2004, 38: 127.
[111] Lenoir D, Schramm K W, Hutzinger O, Schedel G. Chemosphere, 1991, 22: 821.
[112] Emeline A V, Zhang X, Jin M, Murakami T, Fujishima A. J. Phys. Chem. B, 2006, 110: 7409.
[113] Hou Y, Li X Y, Zhao Q D, Quan X, Chen G H. Environ. Sci. Technol., 2010, 44: 5098.
[114] Parshetti G K, Doong R A. Appl. Catal. B: Environ., 2010, 100: 116.
[115] Liu L F, Chen F, Yang F L, Chen Y S, Crittenden J. Chem. Eng. J., 2012, 181/182: 189.
[116] Bae E, Choi W. Environ. Sci. Technol., 2003, 37: 147.
[117] Cho Y, Choi W, Lee C H, Hyeon T, Lee H I. Environ. Sci. Technol., 2001, 35: 966.
[118] Tanaka A, Fuku K, Nishi T, Hashimoto K, Kominami H. J. Phys. Chem. C, 2013, 117: 16983.
[119] Tachikawa T, Fujitsuka M, Majima T. J. Phys. Chem. C, 2007, 111: 5259.
[120] Chen X B, Shen S H, Guo L J, Mao S S. Chem. Rev., 2010, 110: 6503.
[121] 龚倩(Gong Q), 胡芸(Hu Y), 韦朝海(Wei C H). 硅酸盐通报(Bulletin of the Chinese Ceramic Society), 2011, 30(6): 1367.
[122] Zhang Z, Wang C C, Zakaria R, Ying J Y. J. Phys. Chem. B, 1998, 102: 10871.
[123] Hartmann P, Lee D K, Smarsly B M, Janek J. ACS Nano, 2010, 4: 3147.
[124] Su K, Ai Z H, Zhang L Z. J. Phys. Chem. C, 2012, 116: 17118.
[125] 温福宇(Wen F Y), 杨金辉(Yang J H), 宗旭(Zong X), 马艺(Ma Y), 徐倩(Xu Q), 马保军(Ma B J), 李灿(Li C). 化学进展(Progress in Chemistry), 2009, 21(11): 2285.
[126] 闫世成(Yan S C), 罗文俊(Luo W J), 李朝升(Li Z S), 邹志刚(Zou Z G). 中国材料进展(Materials China), 2010, 29(1): 1.
[127] Gopal N O, Lo H H, Ke S Y C. J. Am. Chem. Soc., 2008, 130: 2760.
[128] Sakatani Y, Ando H, Okusako K, Koike H, Nunoshige J, Takata T, Kondo J N, Hara M, Domen K. J. Mater. Res., 2004, 19: 2100.
[129] Gao B, Liu L F, Liu J D, Yang F L. Appl. Catal. B: Environ., 2013, 129: 89.
[130] Zheng Y H, Zheng L R, Zhan Y Y, Lin X Y, Zheng Q, Wei K M. Inorg. Chem., 2007, 46: 6980.
[131] Choi W, Termin A, Hoffmann M R. Phys. Chem., 1994, 98(51): 13669.
[132] Chu W, Rao Y F. Chemosphere, 2012, 86: 1079.
[133] Wang J L, Yu Y, Zhang L Z. Appl. Catal. B: Environ., 2013, 136/137: 112.
[134] Li Y, Niu J F, Yin L F, Wang W L, Bao Y P, Chen J, Duan Y P. J. Environ. Sci., 2011, 23(11): 1911.
[135] Shiragami T, Shimizu Y, Hinoue K, Fueta Y, Nobuhara K, Akazaki I, Yasuda M. J. Photochem. Photobiol. A: Chem., 2003, 156: 115.
[136] Huang G L, Zhang S C, Xu T G, Zhu Y F. Environ. Sci. Technol., 2008, 42: 8516.
[137] Lan Q, Li F B, Liu C S, Li X Z. Environ. Sci. Technol., 2008, 42: 7918.
[138] Yue B, Zhou Y, Xu J Y, Wu Z Z, Zhang X, Zou Y F, Jin S L. Environ. Sci. Technol., 2002, 36: 1325.
[139] Chen Y C, Lo S L, Kuo J. Water Res., 2011, 45: 4131.
[140] Mahapatra S, Madras G, Row T N G. J. Phys. Chem. C, 2007, 111: 6505.
[141] Shi H X, Chen J Y, Li G Y, Nie X, Zhao H J, Wong P K, An T C. Appl. Mater. Interfaces, 2013, 5: 6959.
[142] Xiong Z G, Xu Y M, Zhu L Z, Zhao J C. Environ. Sci. Technol., 2005, 39: 651.
[143] Li X C, Ma J, Liu G F, Fang J Y, Yue S Y, Guan Y H, Chen L W, Liu X W. Environ. Sci. Technol., 2012, 46: 7342.
[144] Hu M Q, Wang Y, Xiong Z G, Bi D Q, Zhang Y H, Xu Y M. Environ. Sci. Technol., 2012, 46: 9005.
[145] 陈善亮(Chen S L), 朱耿臣(Zhu G C), 应鹏展(Ying P Z), 顾修全(Gu X Q), 高榆岚(Gao Y L). 环境化学(Environmental Chemistry), 2011, 30(5): 976.
[146] 白雪(Bai X), 李永利(Li Y L). 硅酸盐通报(Bulletin of the Chinese Ceramic Society), 2012, 31(1): 84.
[147] Zhang X, Ai Z H, Jia F L, Zhang L Z. J. Phys. Chem. C, 2008, 112: 747.
[148] Jiang J, Zhang X, Sun P B, Zhang L Z. J. Phys. Chem. C, 2011, 115: 20555.
[149] Kim H, Kim W, Mackeyev Y, Lee G S, Kim H J, Tachikawa T, Hong S, Lee S, Kim J, Wilson L J, Majima T, Alvarez P J J, Choi W, Lee J. Environ. Sci. Technol., 2012, 46: 9606.
[150] Kim W, Tachikawa T, Majima T, Choi W. J. Phys. Chem. C, 2009, 113: 10603.
[151] Li Z M, Zhang P Y, Li J G, Shao T, Jin L. J. Photochem. Photobiol. A: Chem., 2013, 271: 111.
[152] Chen A W, Zeng G M, Chen G Q, Hu X J, Yan M, Guan S, Shang C, Lu L H, Zou Z J, Xie G X. Chem. Eng. J., 2012, 191: 85.
[153] Wang W S, Wang D H, Qu W G, Lu L Q, Xu A W. J. Phys. Chem. C, 2012, 116: 19893.
[154] Su D S, Perathoner S, Centi G. Chem. Rev., 2013, 113: 5782.
[155] Rath D, Parida K M. Ind. Eng. Chem. Res., 2011, 50: 2839.
[156] Sun Z R, Wei X F, Hu X, Wang K, Shen H T. Colloid Surf. A-Physicochem. Eng. Asp., 2012, 414: 314.
[157] Estrellan C R, Salim C, Hinode H. React. Kinet. Catal. Lett., 2009, 98: 187.
[158] Wei W, Dai Y, Huang B B. J. Phys. Chem. C, 2009, 113: 5658.
[159] Wang Q, Geng B Y, Wang S Z. Environ. Sci. Technol., 2009, 43: 8968.
[160] Rayne S, Wan P, Ikonomou M G, Konstantinov A D. Environ. Sci. Technol., 2002, 36: 1995.
[161] Kieatiwong S, Nguyen L V, Hebert V R, Hackett M, Miller G C, Miille M J, Mitzel R. Environ. Sci. Technol., 1990, 24: 1575.
[162] Shi Z, Sigman M E, Ghosh M M, Dabestani R. Environ. Sci. Technol., 1997, 31: 3581.
[163] Boule P, Guyon C, Guyon J. Toxicol. Environ. Chem., 1984, 7: 97.
[164] Schmelling D C, Poster D L, Chaychian M, Neta P, Silverman J, Al-Sheikhly M. Environ. Sci. Technol., 1998, 32: 270.
[165] Yang B, Zhang Y F, Deng S B, Yu G, Lu Y H, Wu J H, Xiao J Z, Chen G, Cheng X B, Shi L L. Chem. Eng. J., 2013, 234: 346.
[166] Choi W, Hoffmann M R. Environ. Sci. Technol., 1995, 29: 1646.
[167] Lilie J, Beck G, Henglein A. Ber. Bunsen-Ges. Phys. Chem., 1971, 75: 458.
[168] Nath S, Pal S, Palit D K, Sapre A V, Mittal J P. J. Phys. Chem. A, 1998, 102: 5822.
[169] Hagberg J, Olsman H, Bavel B V, Engwall M, Lindstrm G. Environ. Int., 2006, 32: 851.
[170] Pan L, Bian W S, Zhang J X. J. Phys. Chem. A, 2013, 117: 5291.
[171] Chen N, Rioux R M, Barbosa L A M M, Ribeiro F H. Langmuir, 2010, 26(21): 16615.
[172] Bahnemann D W, Monig J, Chapman R. J. Phys. Chem., 1987, 91: 3782.
[173] Calza P, Minero C, Pelizzetti E. Environ. Sci. Technol., 1997, 31: 2198.
[174] Stark J, Rabani J. J. Phys. Chem. B, 1999, 103: 8524.
[175] Chemseddine A, Boehm H P. J. Mol. Catal., 1990, 60: 295.
[176] Ollis D F. Environ. Sci. Technol., 1985, 19(6): 480.
[177] Sabin F, Türk T, Vogler A. J. Photochem. Photobiol. A: Chem., 1992, 63: 99.
[178] Glaze W H, Kenneke J F, Ferry J L. Environ. Sci. Technol., 1993, 27: 177.
[179] Fan J F, Yates J T. J. Am. Chem. Soc., 1996, 118: 4686.
[180] Keum Y S, Li Q X. Environ. Sci. Technol., 2005, 39: 2280.
[181] Scherer M M, Balko B A, Gallagher D A, Tratnyek P G. Environ. Sci. Technol., 1998, 32: 3026.
[182] Fu Q S, Barkovskii A L, Adriaens P. Environ. Sci. Technol., 1999, 33: 3837.
[183] Zeng X, Freeman P K, Vasil'ev Y V, Voinov V G, Simonich S L, Barofsky D F. J. Chem. Eng. Data, 2005, 50: 1548.
[184] Yak H K, Lang Q Y, Wai C M. Environ. Sci. Technol., 2000, 34: 2792.
[185] Xu J, Bhattacharyya D. J. Phys. Chem. C, 2008, 112: 9133.
[186] Woods L S, Trobaugh D J. Environ. Sci. Technol., 1999, 33: 857.
[187] Chowdhury P, Moreira J, Gomaa H, Ray A K. Ind. Eng. Chem. Res., 2012, 51: 4523.
[188] Higgins C P, Luthy R G. Environ. Sci. Technol., 2006, 40: 7251.
[189] Taghipour F, Evans G J. Environ. Sci. Technol., 1996, 30: 1558.
[190] Wong C C, Chu W. Environ. Sci. Technol., 2003, 37: 2310.
[191] Keen O S, Linden K G. Environ. Sci. Technol., 2013, 47: 6799.
[192] Ohtani B. Adv. Inorg. Chem., 2011, 63: 395.
[193] Alhakimi G, Studnicki L H, Al-Ghazali M. J. Photochem. Photobiol. A: Chem., 2003, 154: 219.
[194] Fujishima A, Rao T N, Tryk D A. J. Photochem. Photobiol. C: Photochem. Rev., 2000, 1: 1.
[195] Dibble L A, Raupp G B. Environ. Sci. Technol., 1992, 26: 492.
[196] Peral J, Ollis D. J. Catal., 1992, 136: 554.
[197] Horikoshi S, Tokunaga A, Watanabe N, Hidaka H, Serpone N. J. Photochem. Photobiol. A: Chem., 2006, 177: 129.
[198] Miller G C, Zepp R G. Environ. Sci. Technol., 1979, 13: 860.
[199] Zafiriou O C, Joussot-Dubien J, Zepp R G, Zika R G. Environ. Sci. Technol., 1984, 18: 358A.

[1] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[2] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[3] Wenyan Gao, Xuan Zhao, Xilin Zhou, Yaran Song, Qingrui Zhang. Strategies, Research Progress and Enlightenment of Enhancing the Heterogeneous Fenton Catalytic Reactivity: A Critical Review [J]. Progress in Chemistry, 2022, 34(5): 1191-1202.
[4] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[5] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[6] Wenjing Wang, Di Zeng, Juxue Wang, Yu Zhang, Ling Zhang, Wenzhong Wang. Synthesis and Application of Bismuth-Based Metal-Organic Framework [J]. Progress in Chemistry, 2022, 34(11): 2405-2416.
[7] Chenliu Tang, Yunjie Zou, Mingkai Xu, Lan Ling. Photocatalytic Reduction of Carbon Dioxide with Iron Complexes [J]. Progress in Chemistry, 2022, 34(1): 142-154.
[8] Ming Ge, Zheng Hu, Quanbao He. Application of Spinel Ferrite-Based Advanced Oxidation Processes in Organic Wastewater Treatment [J]. Progress in Chemistry, 2021, 33(9): 1648-1664.
[9] Yifan Zhao, Qiyun Mao, Xiaoya Zhai, Guoying Zhang. Structural Defects Regulation of Bismuth Molybdate Photocatalyst [J]. Progress in Chemistry, 2021, 33(8): 1331-1343.
[10] Xiaoping Chen, Qiaoshan Chen, Jinhong Bi. Photocatalytic Degradation of Polycyclic Aromatic Hydrocarbon in Soil [J]. Progress in Chemistry, 2021, 33(8): 1323-1330.
[11] Hongfei Bi, Jinsong Liu, Zhengying Wu, He Suo, Xueliang Lv, Yunlong Fu. Modified Synthesis and Photocatalytic Properties of Indium Zinc Sulfide [J]. Progress in Chemistry, 2021, 33(12): 2334-2347.
[12] Hanqiang Zhou, Mingfei Yu, Qiaoshan Chen, Jianchun Wang, Jinhong Bi. Synthesis, Modification of Bismuth Oxyiodide Photocatalyst for Purification of Nitric Oxide [J]. Progress in Chemistry, 2021, 33(12): 2404-2412.
[13] Jingchen Tian, Gongde Wu, Yanjun Liu, Jie Wan, Xiaoli Wang, Lin Deng. Application of Supported Non-Noble Metal Catalysts for Formaldehyde Oxidation at Low Temperature [J]. Progress in Chemistry, 2021, 33(11): 2069-2084.
[14] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[15] Yifan Lei, Shengbin Lei, Lingyu Piao. Preparation of H2O2 By Photocatalytic Reduction of Oxygen [J]. Progress in Chemistry, 2021, 33(1): 66-77.