中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (7): 1201-1211 DOI: 10.7536/PC200756 Previous Articles   Next Articles

• Review •

Oxidative Degradation of Emerging Organic Contaminants in Aqueous Solution by High Valent Manganese and Iron

Jing Zhang1,2,*(), Dingxiang Wang1, Honglong Zhang1   

  1. 1 College of Environment and Ecology, Chongqing University, Chongqing 400045, China
    2 Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Chongqing University, Chongqing 400045, China
  • Received: Revised: Online: Published:
  • Contact: Jing Zhang
  • About author:
    * Corresponding author e-mail:
  • Supported by:
    National Key R&D Program of China(2019YFD1100101); General Program of National Natural Science Foundation of China(51878095)
Richhtml ( 49 ) PDF ( 1235 ) Cited
Export

EndNote

Ris

BibTeX

Emerging organic contaminants are widely present in the waters and have potential threat to the ecosystem and human health. How to remove the emerging organic contaminants has become a growing concern for researchers. High valent manganese and iron, i.e. potassium permanganate (Mn(Ⅶ), KMnO4) and potassium ferrate (Fe(Ⅵ), K2FeO4), are two effective inorganic chemicals for decomposing emerging organic contaminants in water treatment. Permanganate and ferrate are environmentally friendly, and have been drawing more and more attention due to their high efficiency. Permanganate and ferrate have similar chemical properties and close behavior in the removal of emerging organic contaminants. Recent studies on the oxidative degradation of emerging organic contaminants by permanganate and ferrate mainly focus on the kinetic models, the role of manganese- and iron-intermediates, the role of free radicals generated when permanganate and ferrate are combined with other chemicals or processes, and their application in real waters. Therefore, this paper summarizes the reaction kinetics of permanganate and ferrate, and compares the roles of permanganate- and ferrate-intermediates and free radicals, and their performance in real waters.

Contents

1 Introduction

2 Mechanism of permanganate and ferrate oxidation

3 Oxidation kinetics of organic pollutants by permanganate and ferrate

4 Formation and functions of permanganate- and ferrate-intermediates

5 Generation and function of free radicals

6 Performance in real waters

7 Conclusion and outlook

Fig. 1 Speciation of ferrate(Ⅵ) at different pH[18]
Table 1 Reduction potentials of Mn(Ⅶ), Fe(Ⅵ), O3 and H2O2in aqueous solutions[17]
Fig. 2 The kapp for the reaction of Mn(Ⅶ) and Fe(Ⅵ) with emerging organic contaminants[15,22⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓-33]
Fig. 3 Reaction kinetics model fitting result of the second-order reaction rate constant of ferrate with BPS or BPAF. Experimental conditions: [BPS]0 =5 μmol/L, [BPAF] 0 = 5 μmol/L, [ferrate] 0 =50 μmol/L, T= 25 ℃[24]
Fig. 4 Effect of pH on second-order rate constants of bisphenol A oxidation by permanganate and ferrate[22,23]
Fig. 5 Possible reaction mechanisms of (a) Mn(Ⅶ)/NaHSO3[69] ; (b) Mn(Ⅶ)/NaHSO3[70]; (c)Mn(Ⅶ)/NaHSO3[48]; (d) Fe(Ⅵ)/ Na2S2O3[73]; (e) Fe(Ⅵ)/ Na2SO3[74]; and (f) Fe(Ⅵ)/ Na2SO3[75]
[1]
Field J A, Johnson C A, Rose J B. Environ. Sci. Technol., 2006, 40(23):7105.

doi: 10.1021/es062982z
[2]
Bao L J, Guo Y, Liu L Y, Zeng Y P. Prog. Chem., 2017, 29(09):943.
( 鲍恋君, 郭英, 刘良英, 曾永平. 化学进展, 2017, 29(09):943.)
[3]
Moreau M, Hadfield J, Hughey J, Sanders F, Lapworth D J, White D, Civil W. Sci. Total. Environ., 2019, 686:425.

doi: 10.1016/j.scitotenv.2019.05.210
[4]
Lapworth D J, Baran N, Stuart M E, Ward R S. Environ. Pollut., 2012, 163:287.

doi: 10.1016/j.envpol.2011.12.034 pmid: 22306910
[5]
Meffe R, de Bustamante I. Sci. Total. Environ., 2014, 481:280.

doi: 10.1016/j.scitotenv.2014.02.053
[6]
Gong J, Huang W, Yang J, Ran Y, Chen D Y, Yang Y, Wu C Q, Zhan Y G. China Environ. Sci., 2015, 35(2):617.
( 龚剑, 黄文, 杨娟, 冉勇, 陈迪云, 杨余, 吴翠琴, 占永革. 中国环境科学, 2015, 35(2):617.)
[7]
Jiang J. Doctoral Dissertation of Harbin Institute of Technology, 2009.
( 江进. 哈尔滨工业大学博士论文, 2009.)
[8]
Wang Q, Zhang M J, Chen H B. Water Purif. Technol., 2020, 39(1):43.
( 汪琪, 张梦佳, 陈洪斌. 净水技术, 2020, 39(1):43.)
[9]
Xu W J, Zhang G C, Zheng M X, Chen J, Wang K J. Prog. Chem., 2010, 22(05):1002.
( 徐武军, 张国臣, 郑明霞, 陈健, 王凯军. 化学进展, 2010, 22(05):1002.)
[10]
Heng L, Hui Z. Prog. Chem., 2015, 27(8):1123.

doi: 10.7536/PC141233
( 林恒, 张晖. 化工进展, 2015, 27(8):1123.)
[11]
Lu L, Hu C. Prog. Chem., 2017, 29(09):981.
( 吕来, 胡春. 化学进展, 2017, 29(09):981.)
[12]
Liu Y, Wu Y H, Pang H W, Wang X X, Yu S J, Wang X K. Prog. Chem., 2019, 31(06):831.
( 刘玥, 吴忆涵, 庞宏伟, 王祥学, 于淑君, 王祥科. 化学进展, 2019, 31(06):831.)
[13]
Sharma V K. Coord. Chem. Rev., 2013, 257(2):495.

doi: 10.1016/j.ccr.2012.04.014
[14]
Jiang J, Pang S Y, Ma J, Liu H L. Environ. Sci. Technol., 2012, 46(3):1774.

doi: 10.1021/es2035587 pmid: 22208220
[15]
Guan X H, He D, Ma J, Chen G H. Front. Environ. Sci. Eng. China, 2010, 4(4):405.

doi: 10.1007/s11783-010-0252-8
[16]
Singh N, Lee D G. Org. Process Res. Dev., 2001, 5(6):599.

doi: 10.1021/op010015x
[17]
Sharma V K. Adv. Environ. Res., 2002, 6(2):143.

doi: 10.1016/S1093-0191(01)00119-8
[18]
Sharma V K. Coord. Chem. Rev., 2013, 257(2):495.

doi: 10.1016/j.ccr.2012.04.014
[19]
Wood R H. J. Am. Chem. Soc., 1958, 80(9):2038.

doi: 10.1021/ja01542a002
[20]
Shao B B, Qiao J L, Zhao Z W, Guan X H. Chin. Sci. Bull., 2019, 64(33):3401.
( 邵彬彬, 乔俊莲, 赵志伟, 关小红. 科学通报, 2019, 64(33):3401.)
[21]
Jiang Y J, Goodwill J E, Tobiason J E, Reckhow D A. Environ. Sci. Technol., 2015, 49(5):2841.

doi: 10.1021/es505516w
[22]
Zhang J, Sun B, Guan X H. Sep. Purif. Technol., 2013, 107:48.

doi: 10.1016/j.seppur.2013.01.023
[23]
Lee Y, Yoon J, von Gunten U. Environ. Sci. Technol., 2005, 39(22):8978.

doi: 10.1021/es051198w
[24]
Yang T. Doctoral Dissertation of Harbin Institute of Technology, 2019.
( 杨涛. 哈尔滨工业大学博士论文, 2019.)
[25]
Pang S Y, Jiang J, Gao Y, Zhou Y, Huangfu X L, Liu Y Z, Ma J. Environ. Sci. Technol., 2014, 48(1):615.

doi: 10.1021/es4041094
[26]
Hu L H, Martin H M, Arce-Bulted O, Sugihara M N, Keating K A, Strathmann T J. Environ. Sci. Technol., 2009, 43(2):509.

doi: 10.1021/es8023513
[27]
Anquandah G A K, Sharma V K, Panditi V R, Gardinali P R, Kim H, Oturan M A. Chemosphere, 2013, 91(1):105.

doi: 10.1016/j.chemosphere.2012.12.001 pmid: 23305748
[28]
Yang T, Liu Y L, Wang L, Jiang J, Huang Z S, Pang S Y, Cheng H J, Gao D W, Ma J. Water Res., 2018, 147:321.

doi: S0043-1354(18)30806-6 pmid: 30317041
[29]
Dong H Y, Qiang Z M, Liu S G, Li J, Yu J W, Qu J H. Water Res., 2018, 130:200.

doi: 10.1016/j.watres.2017.12.003
[30]
Liu Y L, Wang L, Huang Z S, Wang X S, Zhao X D, Ren Y Y, Sun S F, Xue M, Qi J Y, Ma J. Chem. Eng. J., 2018, 331:31.

doi: 10.1016/j.cej.2017.07.171
[31]
Pang S Y, Duan J B, Zhou Y, Gao Y, Jiang J. Chemosphere, 2019, 235:104.

doi: 10.1016/j.chemosphere.2019.06.156
[32]
Hu L H, Martin H M, Strathmann T J. Environ. Sci. Technol., 2010, 44(16):6416.

doi: 10.1021/es101331j
[33]
Yang B, Ying G G, Zhao J L, Liu Y S. Environ. Chem., 2013, 32(01):54.
( 杨滨, 应光国, 赵建亮, 刘有胜. 环境化学, 2013, 32(01):54.)
[34]
Stewart A, MacPhee R. J. Am. Chem. Soc., 1971, 17(93):4271.
[35]
Du J S, Sun B, Zhang J, Guan X H. Environ. Sci. Technol., 2012, 46(16):8860.

doi: 10.1021/es302076s
[36]
Jiang J, Gao Y, Pang S Y, Wang Q, Huangfu X L, Liu Y Z, Ma J. Environ. Sci. Technol., 2014, 48(18):10850.

doi: 10.1021/es5008577 pmid: 25136744
[37]
Du J S. Master Dissertation of Harbin Institute of Technology, 2012.
( 杜鹃山. 哈尔滨工业大学硕士论文, 2012.)
[38]
Lee Y, Kissner R, von Gunten U. Environ. Sci. Technol., 2014, 48(9):5154.

doi: 10.1021/es500804g
[39]
Manoli K, Nakhla G, Ray A K, Sharma V K. AIChE J., 2017, 63(11):4998.

doi: 10.1002/aic.v63.11
[40]
Chen J, Xu X X, Zeng X L, Feng M B, Qu R J, Wang Z Y, Nesnas N, Sharma V K. Water Res., 2018, 143:1.

doi: 10.1016/j.watres.2018.06.023
[41]
Kim C, Panditi V R, Gardinali P R, Varma R S, Kim H, Sharma V K. Chem. Eng. J., 2015, 279:307.

doi: 10.1016/j.cej.2015.04.139
[42]
Kamachi T, Miyanishi M, Yoshizawa K. DFT Study on the pH Dependence of the Reactivity of Ferrate(Ⅵ). Ferrites and Ferrates: Chemistry and Applications in Sustainable Energy and Environmental Remediation, Washington D C:ACS Symposium Series, 2016.1238.
[43]
Lee D G, Chen T. J. Am. Chem. Soc., 1993, 115(24):11231.

doi: 10.1021/ja00077a023
[44]
Simándi L, Záhonyi-Budó É. Inorganica Chimica Acta, 1998, 281(2):235.

doi: 10.1016/S0020-1693(98)00181-9
[45]
Gao Y. Doctoral Dissertation of Harbin Insititute of Technology, 2019.
( 高源. 哈尔滨工业大学博士论文, 2019.)
[46]
Gao Y, Jiang J, Zhou Y, Pang S Y, Jiang C C, Guo Q, Duan J B. Environ. Sci. Technol., 2018, 52(8):4785.

doi: 10.1021/acs.est.8b00120
[47]
Jiang J, Pang S Y, Ma J. Environ. Sci. Technol., 2010, 44(11):4270.

doi: 10.1021/es100038d pmid: 20429549
[48]
Gao Y, Zhou Y, Pang S Y, Jiang J, Yang Z F, Shen Y M, Wang Z, Wang P X, Wang L H. Environ. Sci. Technol., 2019, 53(7):3689.

doi: 10.1021/acs.est.8b05306
[49]
Pang S Y, Jiang J, Ma J, Ouyang F. Environ. Sci., 2010, 31(10):2331.

doi: 10.1021/es960944h
( 庞素艳, 江进, 马军, 欧阳峰. 环境科学, 2010, 31(10):2331.)
[50]
Sun B. Master Dissertation of Harbin Institute of Technology, 2013.
( 孙波. 哈尔滨工业大学硕士论文, 2013.)
[51]
Rao D D, Sun B, Qiao J L, Guan X H. Prog. Chem., 2017, 29(09):1142.
( 饶丹丹, 孙波, 乔俊莲, 关小红. 化学进展, 2017, 29(09):1142.)
[52]
Gao Y, Jiang J, Zhou Y, Pang S Y, Ma J, Jiang C C, Wang Z, Wang P X, Wang L H, Li J. Chem. Eng. J., 2017, 327:418.

doi: 10.1016/j.cej.2017.06.056
[53]
Sun B, Li D, Linghu W S, Guan X H. Chem. Eng. J., 2018, 339:144.

doi: 10.1016/j.cej.2018.01.131
[54]
Sun B, Dong H Y, He D, Rao D D, Guan X H. Environ. Sci. Technol., 2016, 50(3):1473.

doi: 10.1021/acs.est.5b05207 pmid: 26709670
[55]
Li W, Lou Y, Fang A R, Feng K, Xing D F. Chem. Eng. J., 2020, 394:124920.

doi: 10.1016/j.cej.2020.124920
[56]
Zhu J H, Yu F L, Meng J R, Shao B B, Dong H Y, Chu W H, Cao T C, Wei G F, Wang H J, Guan X H. Environ. Sci. Technol., 2020, 54(15):9702.

doi: 10.1021/acs.est.0c03212
[57]
Machala L, Procházka V, Miglierini M, Sharma V K, Marušák Z, Wille H C, Zbořil R. Phys. Chem. Chem. Phys., 2015, 17(34):21787.

doi: 10.1039/c5cp03784k pmid: 26248056
[58]
Sharma V K. Radiat. Phys. Chem., 2002, 65(4/5):349.

doi: 10.1016/S0969-806X(02)00335-3
[59]
Manoli K, Nakhla G, Ray A K, Sharma V K. Chem. Eng. J., 2017, 307:513.

doi: 10.1016/j.cej.2016.08.109
[60]
Sharma V K, O’Connor D B, Cabelli D E. J. Phys. Chem. B, 2001, 105(46):11529.

doi: 10.1021/jp012223x
[61]
Terryn R J Ⅲ, Huerta-Aguilar C A, Baum J C, Sharma V K. Chem. Eng. J., 2017, 330:1272.

doi: 10.1016/j.cej.2017.08.080
[62]
Sun S F, Jiang J, Qiu L P, Pang S Y, Li J, Liu C H, Wang L H, Xue M, Ma J. Water Res., 2019, 156:1.

doi: 10.1016/j.watres.2019.02.057
[63]
Tian S Q, Wang L, Liu Y L, Ma J. Water Res., 2020, 183:116054.

doi: 10.1016/j.watres.2020.116054
[64]
Feng M B, Sharma V K. Chem. Eng. J., 2018, 341:137.

doi: 10.1016/j.cej.2018.01.112
[65]
Dong H Y, Qiang Z M, Lian J F, Qu J H. J. Hazard. Mater., 2017, 336:65.

doi: 10.1016/j.jhazmat.2017.04.056
[66]
Zhao J F, Liu Y Q, Wang Q, Fu Y S, Lu X H, Bai X F. Sep. Purif. Technol., 2018, 192:412.

doi: 10.1016/j.seppur.2017.10.030
[67]
Song Y, Jiang J, Ma J, Pang S Y, Liu Y Z, Yang Y, Luo C W, Zhang J Q, Gu J, Qin W. Environ. Sci. Technol., 2015, 49(19):11764.

doi: 10.1021/acs.est.5b03358 pmid: 26378975
[68]
Song J. Master Dissertation of Guangdong University of Technology, 2018.
( 宋健. 广东工业大学硕士论文, 2018.)
[69]
Sun B, Bao Q Q, Guan X H. J. Hazard. Mater., 2018, 352:157.

doi: S0304-3894(18)30176-6 pmid: 29605803
[70]
Shi Z Y, Jin C, Zhang J, Zhu L. Chem. Eng. J., 2019, 359:1463.

doi: 10.1016/j.cej.2018.11.030
[71]
Chow C H, Sze-Yin Leung K. Chemosphere, 2019, 237:124524.

doi: 10.1016/j.chemosphere.2019.124524
[72]
Chen J, Rao D D, Dong H Y, Sun B, Shao B B, Cao G M, Guan X H. J. Hazard. Mater., 2020, 388:121735.

doi: S0304-3894(19)31689-9 pmid: 31812477
[73]
Feng M B, Jinadatha C, McDonald T J, Sharma V K. Environ. Sci. Technol., 2018, 52(19):11319.

doi: 10.1021/acs.est.8b03770
[74]
Sun S F, Pang S Y, Jiang J, Ma J, Huang Z S, Zhang J M, Liu Y L, Xu C B, Liu Q L, Yuan Y X. Chem. Eng. J., 2018, 333:11.

doi: 10.1016/j.cej.2017.09.082
[75]
Shao B B, Dong H Y, Sun B, Guan X H. Environ. Sci. Technol., 2019, 53(2):894.

doi: 10.1021/acs.est.8b04990
[76]
Han Q, Dong W Y, Wang H J, Ma H, Gu Y R, Tian Y. RSC Adv., 2019, 9(71):41783.

doi: 10.1039/c9ra07774j
[77]
Feng M B, Cizmas L, Wang Z Y, Sharma V K. Chemosphere, 2017, 177:144.

doi: 10.1016/j.chemosphere.2017.03.008
[78]
Wang Y C. Master Dissertation of Harbin Institute of Technology, 2019.
( 王亿承. 哈尔滨工业大学硕士论文, 2019.)
[79]
Sun S F, Pang S Y, Jiang J, Ma J, Huang Z S, Zhang J M, Liu Y L, Xu C B, Liu Q L, Yuan Y X. Chem. Eng. J., 2018, 333:11.

doi: 10.1016/j.cej.2017.09.082
[80]
Feng M B, Sharma V K. Chem. Eng. J., 2018, 341:137.

doi: 10.1016/j.cej.2018.01.112
[81]
Zhang J, Zhu L, Shi Z Y, Gao Y. Chemosphere, 2017, 186:576.

doi: S0045-6535(17)31154-2 pmid: 28810226
[82]
Xu K, Ben W W, Ling W C, Zhang Y, Qu J H, Qiang Z M. Water Res., 2017, 123:67.

doi: 10.1016/j.watres.2017.06.037
[83]
Zhang J. Doctoral Dissertation of Harbin Institute of Technology, 2014.
( 张静. 哈尔滨工业大学博士论文, 2014.)
[84]
Ding H. Master Dissertation of Harbin Institute of Technology, 2013.
( 丁浩. 哈尔滨工业大学硕士论文, 2013.)
[85]
Zhao J F. Doctoral Dissertation of Southwest Jiaotong University, 2018.
( 赵君凤. 西南交通大学博士论文, 2018.)
[86]
Fan J Y, Ding Z X, Zhao Z W, Liu J. Chem. Eng. J., 2018, 350:453.

doi: 10.1016/j.cej.2018.04.144
[87]
Anquandah G A K, Sharma V K, Knight D A, Batchu S R, Gardinali P R. Environ. Sci. Technol., 2011, 45(24):10575.

doi: 10.1021/es202237g pmid: 22032699
[88]
Lee Y, von Gunten U. Water Res., 2010, 44(2):555.

doi: 10.1016/j.watres.2009.11.045
[89]
Jiang J, Pang S Y, Ma J. Environ. Sci. Technol., 2009, 43(21):8326.

doi: 10.1021/es901663d pmid: 19924964
[1] Xiaohong Yi, Chongchen Wang. Elimination of Emerging Organic Contaminants in Wastewater by Advanced Oxidation Process Over Iron-Based MOFs and Their Composites [J]. Progress in Chemistry, 2021, 33(3): 471-489.
[2] . Cyanation Reactions with Potassium Hexacyanoferrate(II) [J]. Progress in Chemistry, 2010, 22(10): 1964-1972.