中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (6): 914-925 DOI: 10.7536/PC200737 Previous Articles   Next Articles

• Review •

Structures and Applications of Photo-Responsive Shape-Changing Liquid Crystal Polymers

Mingxin Zheng, Min Zeng, Xi Chen, Jinying Yuan*()   

  1. Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
  • Received: Revised: Online: Published:
  • Contact: Jinying Yuan
  • About author:
    * Corresponding author e-mail:
  • Supported by:
    National Natural Science Foundation of China(21871162)
Richhtml ( 96 ) PDF ( 1055 ) Cited
Export

EndNote

Ris

BibTeX

Liquid crystal polymers (LCPs) are soft intelligent materials, which can change shape under external stimuli. The change of arrangement of liquid crystal molecules in microstructure induces a macroscopic shape-changing of LCP materials. Without changing environment, light irradiation allows remote and localized actuation of photo responsive LCPs, which makes photo-responsive LCPs especially attractive as soft actuators. Photo-responsive groups are introduced into liquid crystal polymers to obtain photo-deformable materials with important applications. This review focuses on recent research progress on photo-responsive shape-changing liquid crystal polymers. Different mechanisms of light-driven deformation are first discussed to understand the essence of photo-responsive behaviors of liquid crystal polymers, including photo-isomerization, photo-thermal effect and multi-stimuli-response. Their design principles are introduced in detail, especially the newly designed molecular structures. Furthermore, applications of photo-responsive liquid crystal polymers are highlighted, including bio-inspired actuator materials, energy-converted materials and soft robots. Finally, a brief outlook on the future development of this field is presented.

Contents

1 Introduction

2 Photo-responsive mechanisms of liquid crystal polymer devices

2.1 Photo-isomerization of liquid crystal polymer

2.2 Shape changing driven by photo-thermal effect

2.3 Multi-stimuli-responsive liquid crystal polymer

3 Applications of photo-responsive liquid crystal polymer

3.1 Application of bionic function

3.2 Application of energy conversion

3.3 Application of soft robots

4 Conclusions

Fig.1 (a) Photoisomerization of azobenzene.(b) Mechanisms of deformation of azobenzene liquid crystalline polymers[18]. Copyright 2014, Wiley-VCH.(c) Photo-induced deformation of liquid crystal polymers with azobenzene groups in side chains or as crosslinkers[19]. Copyright 2017, American Chemical Society
Fig.2 (a) Chemical structure and photo-isomerization of hydrazone-containing monomer;(b) Schematic illustration of photo-induced shape-changing[28]. Copyright 2019, American Chemical Society
Fig.3 (a) Diels-Alder dynamic networks of lquid crystal polymers. (b) Reversible changes of liquid crystal network at different temperatures[34]. Copyright 2020, Wiley-VCH
Fig.4 Molecular structure of(a) linear liquid crystal polymers and (b) copolymers.(c) Photo-induced moving of liquid in the microtubule[38]. Copyright 2019, Wiley-VCH
Fig.5 (a) Structure and photoisomerization of azobenzene polymers.(b) The entanglement of polymer chain with different molecular weights.(c) Photoinduced reversible bending of polymer[40]. Copyright 2020, Wiley-VCH
Fig.6 Actuation modes of photothermally-driven LCP actuators[42]. Copyright 2018, The Royal Society of Chemistry and the Chinese Chemical Society.
Fig.7 (a) Molecular structure and preparation of liquid crystal elastomer/carbon nanotube composite.(b) The deformation and (c) infrared image of liquid crystal elastomers under visible light[73]. Copyright 2019, Wiley-VCH.
Fig.8 Design of liquid crystal polymer with photochemical effect and photothermal effect.(A) Schematic illustration of photochemical and (B) photothermal effect.(C) Chemical composition of monomer mixture.(D) A light-fueled smart micro-gripper[78]. Copyright 2018, Springer Nature.
Fig.9 Design of near infrared wavelength responsive liquid crystal elastomers.(a) Chemical composition used in liquid crystal elastomer systems.(b) Schematic illustration of membrane preparation.(c) Ultraviolet-visible-infrared absorption spectra.(d) The preparation and the motion mechanism of flexible actuator[79]. Copyright 2019, Springer Nature
Fig.10 Illustration of optical and magnetic responses of liquid crystal networks.(a) Liquid crystal network composites.(b) The monomer of liquid crystal networks.(c) The closed and open state of the flexible mechanical claw.(d) Light and magnetic controlled flexible mechanical claw[81]. Copyright 2019, Wiley-VCH.
Fig.11 (A) Flytrap-inspired light-powered soft actuator[84]. Copyright 2017, Springer Nature.(B) Photo-responsive liquid crystal elastomers simulating human iris[85]. Copyright 2017, Wiley-VCH.
Fig.12 (a) Schematic illustration of the photo-driven oscillation behaviour of polydopamine-coated liquid crystal network films.(b) Continuous oscillating motion under light.(c) Copper coil oscillates under a magnetic field to produce a voltage.(d) Schematic illustration of photoelectric energy conversion[67]. Copyright 2020, Wiley-VCH.
Fig.13 (a) Schematic illustration of polymer soft robot.(b) Reversible bending of liquid crystal polymer film driven by photothermal effect.(c) Remote light control of cargo transporting and release[94]. Copyright 2020, Wiley-VCH.
[1]
McCracken J M, Donovan B R, White T J. Adv. Mater., 2020, 32(20):1906564.

doi: 10.1002/adma.v32.20
[2]
Lendlein A, Gould O E C. Nat. Rev. Mater., 2019, 4(2):116.

doi: 10.1038/s41578-018-0078-8
[3]
Manouras T, Vamvakaki M. Polym. Chem., 2017, 8(1):74.

doi: 10.1039/C6PY01455K
[4]
Wei M L, Gao Y F, Li X, Serpe M J. Polym. Chem., 2017, 8(1):127.

doi: 10.1039/C6PY01585A
[5]
Gupta U, Qin L, Wang Y Z, Godaba H, Zhu J. Smart Mater. Struct., 2019, 28(10):103002.

doi: 10.1088/1361-665X/ab3a77
[6]
Liu D Q. Adv. Optical Mater., 2019, 7(16):1900255.

doi: 10.1002/adom.v7.16
[7]
Chen D, Pei Q B. Chem. Rev., 2017, 117(17):11239.

doi: 10.1021/acs.chemrev.7b00019
[8]
Hines L, Petersen K, Lum G Z, Sitti M. Adv. Mater., 2017, 29(13):1603483.

doi: 10.1002/adma.201603483
[9]
Ohm C, Brehmer M, Zentel R. Adv. Mater., 2010, 22(31):3366.

doi: 10.1002/adma.200904059
[10]
White T J, Broer D J. Nat. Mater., 2015, 14(11):1087.

doi: 10.1038/nmat4433
[11]
Bertrand O, Gohy J F. Polym. Chem., 2017, 8(1):52.

doi: 10.1039/C6PY01082B
[12]
Finkelmann H, Nishikawa E, Pereira G G, Warner M. Phys. Rev. Lett., 2001, 87:015501.

doi: 10.1103/PhysRevLett.87.015501
[13]
Stoychev G, Kirillova A, Ionov L. Adv. Optical Mater., 2019, 7(16):1900067.

doi: 10.1002/adom.v7.16
[14]
Jiang Z C, Xiao Y Y, Zhao Y. Adv. Optical Mater., 2019, 7(16):1900262.

doi: 10.1002/adom.v7.16
[15]
Bandara H M D, Burdette S C. Chem. Soc. Rev., 2012, 41(5):1809.

doi: 10.1039/C1CS15179G
[16]
Pang X L, Lv J A, Zhu C Y, Qin L, Yu Y L. Adv. Mater., 2019, 31(52):1904224.

doi: 10.1002/adma.v31.52
[17]
Kondo M, Yu Y L, Ikeda T. Angew. Chem. Int. Ed., 2006, 45(9):1378.

doi: 10.1002/(ISSN)1521-3773
[18]
Lv J A, Wang W R, Xu J X, Ikeda T, Yu Y L. Macromol. Rapid Commun., 2014, 35(14):1266.

doi: 10.1002/marc.201400112
[19]
Cheng Z X, Ma S D, Zhang Y H, Huang S, Chen Y X, Yu H F. Macromolecules, 2017, 50(21):8317.

doi: 10.1021/acs.macromol.7b01741
[20]
Shimamura A, Priimagi A, Mamiya J I, Ikeda T, Yu Y L, Barrett C J, Shishido A. ACS Appl. Mater. Interfaces, 2011, 3(11):4190.

doi: 10.1021/am200621j
[21]
Lee K M, Koerner H, Vaia R A, Bunning T J, White T J. Macromolecules, 2010, 43(19):8185.

doi: 10.1021/ma1014758
[22]
Cheng F T, Zhang Y Y, Yin R Y, Yu Y L. J. Mater. Chem., 2010, 20(23):4888.

doi: 10.1039/b926903g
[23]
Kondo M, Sugimoto M, Yamada M, Naka Y, Mamiya J I, Kinoshita M, Shishido A, Yu Y L, Ikeda T. J. Mater. Chem., 2010, 20(1):117.

doi: 10.1039/B917342K
[24]
Zhang Y Y, Xu J X, Cheng F T, Yin R Y, Yen C C, Yu Y L. J. Mater. Chem., 2010, 20(34):7123.

doi: 10.1039/c0jm00510j
[25]
Mamiya J I, Yoshitake A, Kondo M, Yu Y L, Ikeda T. J. Mater. Chem., 2008, 18(1):63.

doi: 10.1039/B715855F
[26]
Liu D Q, Broer D J. Nat. Commun., 2015, 6:8334.

doi: 10.1038/ncomms9334
[27]
Iamsaard S, Anger E, Aßhoff S J, Depauw A, Fletcher S P, Katsonis N. Angew. Chem. Int. Ed., 2016, 55(34):9908.

doi: 10.1002/anie.201603579
[28]
Ryabchun A, Li Q, Lancia F, Aprahamian I, Katsonis N. J. Am. Chem. Soc., 2019, 141(3):1196.

doi: 10.1021/jacs.8b11558
[29]
Liao J Q, Yang M, Liu Z, Zhang H L. J. Mater. Chem. A, 2019, 7(5):2002.

doi: 10.1039/C8TA12030G
[30]
Ube T, Kawasaki K, Ikeda T. Adv. Mater., 2016, 28(37):8212.

doi: 10.1002/adma.v28.37
[31]
Pei Z Q, Yang Y, Chen Q M, Terentjev E M, Wei Y, Ji Y. Nat. Mater., 2014, 13(1):36.

doi: 10.1038/nmat3812
[32]
Qian X J, Chen Q M, Yang Y, Xu Y S, Li Z, Wang Z H, Wu Y H, Wei Y, Ji Y. Adv. Mater., 2018, 30(29):1801103.

doi: 10.1002/adma.v30.29
[33]
Zheng X X, Guan S, Zhang C, Qu T, Wen W, Zhao Y B, Chen A H. Small, 2019, 15(16):1900110.

doi: 10.1002/smll.v15.16
[34]
Jiang Z C, Xiao Y Y, Yin L, Han L, Zhao Y. Angew. Chem. Int. Ed., 2020, 59(12):4925.

doi: 10.1002/anie.v59.12
[35]
Choi H J, Jeong K U, Chien L C, Lee M H. J. Mater. Chem., 2009, 19(38):7124.

doi: 10.1039/b909494f
[36]
Kim D Y, Lee S A, Choi H J, Chien L C, Lee M H, Jeong K U. J. Mater. Chem. C, 2013, 1(7):1375.

doi: 10.1039/c2tc00506a
[37]
Lv J A, Liu Y Y, Wei J, Chen E Q, Qin L, Yu Y L. Nature, 2016, 537(7619):179.

doi: 10.1038/nature19344
[38]
Xu B, Zhu C Y, Qin L, Wei J, Yu Y L. Small, 2019, 15(24):1970131.

doi: 10.1002/smll.v15.24
[39]
Li H, Liu Q, Zhu C, Wei J, Yu Y L. Liq. Cryst., 2020, 47(8):1154.

doi: 10.1080/02678292.2019.1680755
[40]
Chen M S, Yao B J, Kappl M, Liu S Y, Yuan J Y, Berger R, Zhang F A, Butt H J, Liu Y L, Wu S. Adv. Funct. Mater., 2020, 30(4):1906752.

doi: 10.1002/adfm.v30.4
[41]
Ni B, Xie H L, Tang J, Zhang H L, Chen E Q. Chem. Commun., 2016, 52(67):10257.

doi: 10.1039/C6CC04199J
[42]
Mol G N, Harris K D, Bastiaansen C W M, Broer D J. Adv. Funct. Mater., 2005, 15(7):1155.

doi: 10.1002/(ISSN)1616-3028
[43]
Dong L L, Zhao Y. Mater. Chem. Front., 2018, 2(11):1932.

doi: 10.1039/C8QM00363G
[44]
Marshall J E, Ji Y, Torras N, Zinoviev K, Terentjev E M. Soft Matter, 2012, 8(5):1570.

doi: 10.1039/C1SM06656K
[45]
Wang M, Sayed S M, Guo L X, Lin B P, Zhang X Q, Sun Y, Yang H. Macromolecules, 2016, 49(2):663.

doi: 10.1021/acs.macromol.5b02388
[46]
Yang Y, Pei Z Q, Li Z, Wei Y, Ji Y. J. Am. Chem. Soc., 2016, 138(7):2118.

doi: 10.1021/jacs.5b12531 pmid: 26840838
[47]
Yang L Q, Setyowati K, Li A, Gong S Q, Chen J. Adv. Mater., 2008, 20(12):2271.

doi: 10.1002/adma.v20:12
[48]
Ahir S V, Squires A M, Tajbakhsh A R, Terentjev E M. Phys. Rev. B, 2006, 73(8):085420.

doi: 10.1103/PhysRevB.73.085420
[49]
Cheng Z X, Wang T J, Li X, Zhang Y H, Yu H F. ACS Appl. Mater. Interfaces, 2015, 7(49):27494.

doi: 10.1021/acsami.5b09676
[50]
Yu L, Cheng Z X, Dong Z J, Zhang Y H, Yu H F. J. Mater. Chem. C, 2014, 2(40):8501.

doi: 10.1039/C4TC01097C
[51]
Yang Y K, Zhan W J, Peng R G, He C G, Pang X C, Shi D A, Jiang T, Lin Z Q. Adv. Mater., 2015, 27(41):6535.

doi: 10.1002/adma.201570280
[52]
Sun Y R, Evans J S, Lee T, Senyuk B, Keller P, He S L, Smalyukh I I. Appl. Phys. Lett., 2012, 100(24):241901.

doi: 10.1063/1.4729143
[53]
Lu X L, Zhang H, Fei G X, Yu B, Tong X, Xia H S, Zhao Y. Adv. Mater., 2018, 30(14):1706597.

doi: 10.1002/adma.v30.14
[54]
Hauser A W, Liu D Q, Bryson K C, Hayward R C, Broer D J. Macromolecules, 2016, 49(5):1575.

doi: 10.1021/acs.macromol.6b00165
[55]
Liu X Y, Wei R B, Hoang P T, Wang X G, Liu T, Keller P. Adv. Funct. Mater., 2015, 25(20):3022.

doi: 10.1002/adfm.201500443
[56]
Yang H, Liu J J, Wang Z F, Guo L X, Keller P, Lin B P, Sun Y, Zhang X Q. Chem. Commun., 2015, 51(60):12126.

doi: 10.1039/C5CC02599K
[57]
Zeng H, Wani O M, Wasylczyk P, Priimagi A. Macromol. Rapid Commun., 2018, 39(1):1700224.

doi: 10.1002/marc.v39.1
[58]
Rogó? M, Zeng H, Xuan C, Wiersma D S, Wasylczyk YP. Adv. Opt. Mater., 2016, 4(11):1689.

doi: 10.1002/adom.201600503
[59]
Ge F J, Yang R, Tong X, Camerel F, Zhao Y. Angew. Chem. Int. Ed., 2018, 57(36):11758.

doi: 10.1002/anie.v57.36
[60]
Liu L, Liu M H, Deng L L, Lin B P, Yang H. J. Am. Chem. Soc., 2017, 139(33):11333.

doi: 10.1021/jacs.7b06410 pmid: 28786668
[61]
Wang M, Lin B P, Yang H. Nat. Commun., 2016, 7:13981.

doi: 10.1038/ncomms13981
[62]
Gelebart A H, Vantomme G, Meijer E W, Broer D J. Adv. Mater., 2017, 29(18):1606712.

doi: 10.1002/adma.201606712
[63]
De Haan L T, Sánchez-Somolinos C, Bastiaansen C M W, Schenning A P H J, Broer D J. Angew. Chem. Int. Ed., 2012, 51(50):12469.

doi: 10.1002/anie.201205964
[64]
Guo L X, Liu M H, Sayed S M, Lin B P, Keller P, Zhang X Q, Sun Y, Yang H. Chem. Sci., 2016, 7(7):4400.

doi: 10.1039/C6SC00758A
[65]
Liu W, Guo L X, Lin B P, Zhang X Q, Sun Y, Yang H. Macromolecules, 2016, 49(11):4023.

doi: 10.1021/acs.macromol.6b00640
[66]
Li Z, Yang Y, Wang Z H, Zhang X Y, Chen Q M, Qian X J, Liu N, Wei Y, Ji Y. J. Mater. Chem. A, 2017, 5(14):6740.

doi: 10.1039/C7TA00458C
[67]
Lan R C, Sun J, Shen C, Huang R, Zhang Z P, Zhang L Y, Wang L, Yang H. Adv. Mater., 2020, 32(14):1906319.

doi: 10.1002/adma.v32.14
[68]
Tian H M, Wang Z J, Chen Y L, Shao J Y, Gao T, Cai S Q. ACS Appl. Mater. Interfaces, 2018, 10(9):8307.

doi: 10.1021/acsami.8b00639
[69]
Gelebart A H, Mulder D J, Vantomme G, Schenning A P H J, Broer D J. Angew. Chem. Int. Ed., 2017, 56(43):13436.

doi: 10.1002/anie.201706793
[70]
Gelebart A H, Jan Mulder D, Varga M, Konya A, Vantomme G, Meijer E W, Selinger R L B, Broer D J. Nature, 2017, 546(7660):632.

doi: 10.1038/nature22987
[71]
Kumar K, Knie C, Bléger D, Peletier M A, Friedrich H, Hecht S, Broer D J, Debije M G, Schenning A P H J. Nat. Commun., 2016, 7:11975.

doi: 10.1038/ncomms11975
[72]
Hu J, Kuang Z Y, Tao L, Huang Y F, Wang Q, Xie H L, Yin J R, Chen E Q. ACS Appl. Mater. Interfaces, 2019, 11(51):48393.

doi: 10.1021/acsami.9b17393
[73]
Kim H, Lee J A, Ambulo C P, Lee H B, Kim S H, Naik V V, Haines C S, Aliev A E, Ovalle-Robles R, Baughman R H, Ware T H. Adv. Funct. Mater., 2019, 29(48):1905063.

doi: 10.1002/adfm.v29.48
[74]
Zhang L S, Pan J K, Gong C X, Zhang A M. J. Mater. Chem. C, 2019, 7(34):10663.

doi: 10.1039/C9TC03625C
[75]
van Oosten C L, Bastiaansen C W M, Broer D J. Nat. Mater., 2009, 8(8):677.

doi: 10.1038/nmat2487
[76]
Zhang L S, Pan J K, Liu Y H, Xu Y, Zhang A M. ACS Appl. Mater. Interfaces, 2020, 12(5):6727.

doi: 10.1021/acsami.9b20672
[77]
Wang M, Han Y, Guo L X, Lin B P, Yang H. Liq. Cryst., 2019, 46(8):1231.

doi: 10.1080/02678292.2018.1549285
[78]
Lahikainen M, Zeng H, Priimagi A. Nat. Commun., 2018, 9:4148.

doi: 10.1038/s41467-018-06647-7 pmid: 30297774
[79]
Zuo B, Wang M, Lin B P, Yang H. Nat. Commun., 2019, 10:4539.

doi: 10.1038/s41467-019-12583-x pmid: 31586123
[80]
Pilz da Cunha M, Foelen Y, Engels T A P, Papamichou K, Hagenbeek M, Debije M G, Schenning A P H J. Adv. Opt. Mater., 2019, 7(7):1801604.

doi: 10.1002/adom.v7.7
[81]
Pilz da Cunha M, Foelen Y, Raak R J H, Murphy J N, Engels T A P, Debije M G, Schenning A P H J. Adv. Opt. Mater., 2019, 7(7):1801643.

doi: 10.1002/adom.v7.7
[82]
Liu Y Y, Xu B, Sun S T, Wei J, Wu L M, Yu Y L. Adv. Mater., 2017, 29(9):1604792.

doi: 10.1002/adma.201604792
[83]
Wani O M, Verpaalen R, Zeng H, Priimagi A, Schenning A P H J. Adv. Mater., 2019, 31(2):1805985.

doi: 10.1002/adma.v31.2
[84]
Wani O M, Zeng H, Priimagi A. Nat. Commun., 2017, 8:15546.

doi: 10.1038/ncomms15546
[85]
Zeng H, Wani O M, Wasylczyk P, Kaczmarek R, Priimagi A. Adv. Mater., 2017, 29(30):1701814.

doi: 10.1002/adma.201701814
[86]
Qian X S, Zhao Y S, Alsaid Y, Wang X, Hua M T, Galy T, Gopalakrishna H, Yang Y Y, Cui J S, Liu N, Marszewski M, Pilon L, Jiang H Q, He X M. Nat. Nanotechnol., 2019, 14(11):1048.

doi: 10.1038/s41565-019-0562-3
[87]
Li X, Ma S D, Hu J, Ni Y, Lin Z Q, Yu H F. J. Mater. Chem. C, 2019, 7(3):622.

doi: 10.1039/C8TC05186K
[88]
Zuo B, Wang M, Lin B P, Yang H. Chem. Mater., 2018, 30(21):8079.

doi: 10.1021/acs.chemmater.8b04204
[89]
Rogó? M, Dradrach K, Xuan C, Wasylczyk P. Macromol. Rapid Commun., 2019, 40(16):1900279.

doi: 10.1002/marc.v40.16
[90]
Palagi S, Mark A G, Reigh S Y, Melde K, Qiu T, Zeng H, Parmeggiani C, Martella D, Sanchez-Castillo A, Kapernaum N, Giesselmann F, Wiersma D S, Lauga E, Fischer P. Nat. Mater., 2016, 15(6):647.

doi: 10.1038/nmat4569
[91]
Huang C L, Lv J A, Tian X J, Wang Y C, Yu Y L, Liu J. Sci. Rep., 2015, 5:17414.

doi: 10.1038/srep17414
[92]
Gelebart A H, McBride M, Schenning A P H J, Bowman C N, Broer D J. Adv. Funct. Mater., 2016, 26(29):5322.

doi: 10.1002/adfm.v26.29
[93]
Cheng Y C, Lu H C, Lee X, Zeng H, Priimagi A. Adv. Mater., 2020, 32(7):1906233.

doi: 10.1002/adma.v32.7
[94]
Pilz da Cunha M, Ambergen S, Debije M G, Homburg E F G A, den Toonder J M J, Schenning A P H J. Adv. Sci., 2020, 7(5):1902842.

doi: 10.1002/advs.v7.5
[95]
Lu X L, Guo S W, Tong X, Xia H S, Zhao Y. Adv. Mater., 2017, 29(28):1606467.

doi: 10.1002/adma.v29.28
[1] Zhenxing Li, Zhiwang Luo, Ping Wang, Zhenqiang Yu, Erqiang Chen, Helou Xie. Luminescent Liquid Crystalline Polymers: Molecular Fabrication, Structure-Properties and Their Applications [J]. Progress in Chemistry, 2022, 34(4): 787-800.
[2] Meng Wang, He Song, Yifei Zhu. Stimuli-Responsive Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(12): 2588-2603.
[3] Yunxue Wu, Hengyi Zhang, Yu Liu. Application of Azobenzene Derivative Probes in Hypoxia Cell Imaging [J]. Progress in Chemistry, 2021, 33(3): 331-340.
[4] Meng Wang, Danyang Ma, Chengjie Wang. Near-Infrared Light Responsive Liquid Crystal Elastomers [J]. Progress in Chemistry, 2020, 32(10): 1452-1461.
[5] Zhiyong Li, Ying Feng, Huiyong Wang, Xiaoqing Yuan, Yuling Zhao, Jianji Wang. Structure and Performance Modulation of Photo-Responsive Ionic Liquids [J]. Progress in Chemistry, 2019, 31(11): 1550-1559.
[6] Ping Wang, Qiaofeng Yang, Chuanzhuang Zhao*. Molecular Design and Intelligent Material Construction of Light-Responsive Microgel [J]. Progress in Chemistry, 2017, 29(7): 750-756.
[7] Kou Bo, Tan Linghua, Wang Changchun, Xiao Shoujun. Reversible Photoregulation of DNA Hybridization/Dissociation and Potential Applications [J]. Progress in Chemistry, 2014, 26(10): 1720-1730.
[8] Wang Wenqian, Chen Linfeng, Wen Yongqiang*, Zhang Xueji, Song Yanlin, Jiang Lei. Mesoporous Silica Nanoparticle-Based Controlled-Release System [J]. Progress in Chemistry, 2013, 25(05): 677-691.
[9] Wang Wei, Wang Xiaozhen, Cheng Futao, Yu Yanlei, Zhu Yutian. Light-Driven Soft Actuators Based on Photoresponsive Polymer Materials [J]. Progress in Chemistry, 2011, 23(6): 1165-1173.
[10] Liu Dan, Wang Tao, Liu Xinxing, Wang Chaoyang, Tong Zhen. Intelligent Cell Detachment Materials Based on Poly(N-Isopropylacrylamide) [J]. Progress in Chemistry, 2011, 23(11): 2353-2359.
[11] . Chiral Polydiacetylene Assembles [J]. Progress in Chemistry, 2010, 22(10): 2014-2023.
[12] . Application of Ionic Self-Assembly in Preparation of Azobenzene Photoresponsive Materials [J]. Progress in Chemistry, 2010, 22(06): 1125-1132.