中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (11): 1550-1559 DOI: 10.7536/PC190731 Previous Articles   Next Articles

Structure and Performance Modulation of Photo-Responsive Ionic Liquids

Zhiyong Li, Ying Feng, Huiyong Wang, Xiaoqing Yuan, Yuling Zhao, Jianji Wang**()   

  1. Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
  • Received: Online: Published:
  • Contact: Jianji Wang
  • About author:
    ** E-mail:
  • Supported by:
    National Natural Science Foundation of China(21803017); National Natural Science Foundation of China(21673068); National Natural Science Foundation of China(U1704251); National Key Research and Development Program of China(2017YFA0403101); S&T Research Foundation of Education Department of Henan Province(19A150027)
Richhtml ( 8 ) PDF ( 610 ) Cited
Export

EndNote

Ris

BibTeX

Light-responsive ionic liquids(ILs) are a class of functional materials that combine the characteristics of light stimuli responsive materials and ILs. Upon UV/vis light irradiation, the structure, property and performance of these “smart” ILs can be significantly changed, which are expected to have important applications in many practical processes. Light trigger is of great importance because of its superiority, such as stable optical signal, accurate stimulation spot, and ability to be rapidly switched in a clean and non-invasive manner. In this work, the photo-isomerization of ILs and light modulation of IL properties, aggregation behavior of ILs, phase transfer of ILs, and phase behavior of emulsions involving IL are critically reviewed based on the structure-property-performance relationship of photo-responsive ILs. Meanwhile, the main problems in this field have been analyzed, and the future development is discussed.

Fig. 1 Chemical structure and isomerization of the commonly used photo-responsive groups
Fig. 2 Effect of irradiation time on UV-vis spectrum of aqueous [C4AzoC2DMEA]Br at 25.0 ℃[31]: a, initial state; b, 2 min; c, 4 min; d, 6 min; e, 8 min; f, 10 min; g, 15 min; h, 20 min; i, 40 min; j, 60 min. Copyright 2018, PCCP Owner Societies, The Royal Society of Chemistry.
Fig. 3 Chemical structure of the azobenzene-based ionic liquids[31, 36]. Copyright 2018, PCCP Owner Societies, The Royal Society of Chemistry.
Fig. 4 Chemical structure of cinnamate-based ionic liquids[41]
Fig. 5 Chemical structure of hydrophobic azobenzene-based ionic liquids[39]
Table 1 CAC values of light responsive ionic liquids before and after UV irradiation[34,35,36]
Table 2 ΔGm0 and CAC values of the ionic liquids in aqueous solutions at 25.0 ℃ before and after UV irradiation[31]
Fig. 6 Reversible phase transfer of α-CD-capped AuNPs by azo-ligands between water and toluene phases[57]. Copyright 2014, American Chemical Society.
Fig. 7 The reversible transfer of Azo-SEP between toluene and water phase induced by light irradiation[56]. Copyright 2013, American Chemical Society.
Fig. 8 The reversible phase transfer of azobenzene-based ionic liquids between n-octanol and water[38]
Fig. 9 Demulsification under light irradiation[59]. Copyright 2016, American Chemical Society.
[1]
Zhang S, Sun J, Zhang X, Xin J, Miao Q, Wang J . Chemical Society Reviews, 2014,43:7838. https://www.ncbi.nlm.nih.gov/pubmed/24553494

doi: 10.1039/c3cs60409h pmid: 24553494
[2]
Petkovic M, Seddon K R, Rebelo L P N, Pereira C S . Chemical Society Reviews, 2011,40:1383. https://www.ncbi.nlm.nih.gov/pubmed/21116514

doi: 10.1039/c004968a pmid: 21116514
[3]
刘志敏(Liu Z M) . 物理化学学报(Acta Physico-Chimica Sinica), 2019,35:792.
[4]
龚燕燕(Gong Y Y), 刘海春(Liu H C), 张朵(Zhang D), 佟静(Tong J) . 物理化学学报(Acta Physico-Chimica Sinica), 2019,35:1224.
[5]
刘文巧(Liu W Q), 李臻(Li Z), 夏春谷(Xia C G) . 化学进展(Progress in Chemistry), 2018,30:1143.
[6]
Li Z, Li R, Yuan X, Pei Y, Zhao Y, Wang H, Wang J . Green Energy & Environment, 2019,4:131.
[7]
佟国宾(Tong G B), 鄂雷(E L), 徐州(Xu Z), 马春慧(Ma C H), 李伟(Li W), 刘守新(Liu S X) . 化学进展(Progress in Chemistry), 2019,31:1136.
[8]
Wang H, Gurau G, Rogers R D . Chemical Society Reviews, 2012,41:1519. https://www.ncbi.nlm.nih.gov/pubmed/22266483

doi: 10.1039/c2cs15311d pmid: 22266483
[9]
Ren S, Hou Y, Kai Z, Wu W . Green Energy & Environment, 2018,3:179.
[10]
郭家田(Guo J T), 卢玉超(Lu Y C), 毕晨(Bi C), 樊佳婷(Fan J T), 许国贺(Xu G H), 马晶军(Ma J J) . 化学进展(Progress in Chemistry), 2019,31:83.
[11]
Stuart M A C, Huck W T S, Genzer J, Mueller M, Ober C, Stamm M, Sukhorukov G B, Szleifer I, Tsukruk V V, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S . Nature Materials, 2010,9:101. https://www.ncbi.nlm.nih.gov/pubmed/20094081

doi: 10.1038/nmat2614 pmid: 20094081
[12]
Yan X, Wang F, Zheng B, Huang F . Chemical Society Reviews, 2012,41:6042. https://www.ncbi.nlm.nih.gov/pubmed/22618080

doi: 10.1039/c2cs35091b pmid: 22618080
[13]
潘明光(Pan M G), 赵永升(Zhao Y S), 曾小勤(Zeng X Q), 邹建新(Zou J X) . 物理化学学报(Acta Physico-Chimica Sinica), 2019,35:624.
[14]
Chu Z, Dreiss C A, Feng Y . Chemical Society Reviews, 2013,42:7174. https://www.ncbi.nlm.nih.gov/pubmed/23545844

doi: 10.1039/c3cs35490c pmid: 23545844
[15]
Qiao Y, Ma W, Theyssen N, Chen C, Hou Z . Chemical Reviews, 2017,117:6881. https://www.ncbi.nlm.nih.gov/pubmed/28358505

doi: 10.1021/acs.chemrev.6b00652 pmid: 28358505
[16]
Nobuoka K, Kitaoka S, Yamauchi T, Harran T, Ishikawa Y . Chemistry Letters, 2016,45:433. http://www.journal.csj.jp/doi/10.1246/cl.160048

doi: 10.1246/cl.160048
[17]
Shi Y, Xiong D, Wang H, Zhao Y, Wang J . Langmuir, 2016,32:6895. https://www.ncbi.nlm.nih.gov/pubmed/27315131

doi: 10.1021/acs.langmuir.6b01167 pmid: 27315131
[18]
Wang H, Tan B, Wang J, Li Z, Zhang S . Langmuir, 2014,30:3971. https://www.ncbi.nlm.nih.gov/pubmed/24673329

doi: 10.1021/la500030k pmid: 24673329
[19]
Fiorentini E F, Escudero L B, Wuilloud R G . Analytical and Bioanalytical Chemistry, 2018,410:4715. https://www.ncbi.nlm.nih.gov/pubmed/29675708

doi: 10.1007/s00216-018-1050-6 pmid: 29675708
[20]
王平(Wang P), 杨巧凤(Yang Q F), 赵传壮(Zhao C Z) . 化学进展(Progress in Chemistry), 2017,29:750.
[21]
Chen Y, Li Z, Wang H, Pei Y, Shi Y, Wang J . Langmuir, 2018,34:2784. https://www.ncbi.nlm.nih.gov/pubmed/29382203

doi: 10.1021/acs.langmuir.7b03822 pmid: 29382203
[22]
Yam V W W, Lee J K W, Ko C C, Zhu N . Journal of the American Chemical Society, 2009,131:912. https://www.ncbi.nlm.nih.gov/pubmed/19119819

doi: 10.1021/ja808791e pmid: 19119819
[23]
Soomro S A, Benmouna R, Berger R, Meier H . European Journal of Organic Chemistry, 2005,2005:3586. http://doi.wiley.com/10.1002/%28ISSN%291099-0690

doi: 10.1002/(ISSN)1099-0690
[24]
Saji T, Hoshino K, Ishii Y, Goto M . Journal of the American Chemical Society, 1991,113:450. https://pubs.acs.org/doi/abs/10.1021/ja00002a011

doi: 10.1021/ja00002a011
[25]
Chen Z, Zhou L, Bing W, Zhang Z, Li Z, Ren J, Qu X . Journal of the American Chemical Society, 2014,136:7498. bc619035-cbb4-4bff-9fdf-2b6437dbc82ehttp://dx.doi.org/10.1021/ja503123m

doi: 10.1021/ja503123m
[26]
Ketner A M, Kumar R, Davies T S, Elder P W, Raghavan S R . Journal of the American Chemical Society, 2007,129:1553. https://www.ncbi.nlm.nih.gov/pubmed/17243676

doi: 10.1021/ja065053g pmid: 17243676
[27]
Eastoe J, Vesperinas A . Soft Matter, 2005,1:338. http://xlink.rsc.org/?DOI=b510877m

doi: 10.1039/b510877m
[28]
Yang J, Wang H, Wang J, Zhang Y, Guo Z . Chemical Communications, 2014,50:14979. https://www.ncbi.nlm.nih.gov/pubmed/25328142

doi: 10.1039/c4cc04274c pmid: 25328142
[29]
Bandara H M D, Burdette S C . Chemical Society Reviews, 2012,41:1809. https://www.ncbi.nlm.nih.gov/pubmed/22008710

doi: 10.1039/c1cs15179g pmid: 22008710
[30]
Lowik D W P M, Leunissen E H P, van den Heuvel M, Hansen M B, van Hest J C M . Chemical Society Reviews, 2010,39:3394. https://www.ncbi.nlm.nih.gov/pubmed/20523948

doi: 10.1039/b914342b pmid: 20523948
[31]
Li Z, Yuan X, Feng Y, Chen Y, Zhao Y, Wang H, Xu Q, Wang J . Physical Chemistry Chemical Physics, 2018,20:12808. https://www.ncbi.nlm.nih.gov/pubmed/29700535

doi: 10.1039/c8cp01617h pmid: 29700535
[32]
Wang Y, Ma N, Wang Z, Zhang X . Angewandte Chemie-International Edition, 2007,46:2823. https://www.ncbi.nlm.nih.gov/pubmed/17348049

doi: 10.1002/anie.200604982 pmid: 17348049
[33]
Asaka T, Akai N, Kawai A, Shibuya K . Journal of Photochemistry and Photobiology A: Chemistry, 2010,209:12. https://linkinghub.elsevier.com/retrieve/pii/S1010603009003955

doi: 10.1016/j.jphotochem.2009.10.002
[34]
Wu A, Lu F, Sun P, Gao X, Shi L, Zheng L Q . Langmuir, 2016,32:8163. https://www.ncbi.nlm.nih.gov/pubmed/27445115

doi: 10.1021/acs.langmuir.6b01937 pmid: 27445115
[35]
Shi S X, Yin T X, Tao X Y, Shen W G . RSC Advances, 2015,5:75806. http://xlink.rsc.org/?DOI=C5RA12047K

doi: 10.1039/C5RA12047K
[36]
Li Z, Wang H, Chu M, Guan P, Zhao Y, Zhao Y, Wang J . RSC Advances, 2017,7:44688. http://xlink.rsc.org/?DOI=C7RA08419F

doi: 10.1039/C7RA08419F
[37]
Crecca C R, Roitberg A E . Journal of Physical Chemistry A, 2006,110:8188. https://pubs.acs.org/doi/10.1021/jp057413c

doi: 10.1021/jp057413c
[38]
Li Z, Feng Y, Yuan X, Wang H, Zhao Y, Wang J . International journal of molecular sciences, 2019,20:1685. https://www.mdpi.com/1422-0067/20/7/1685

doi: 10.3390/ijms20071685
[39]
Zhang S G, Liu S, Zhang Q, Deng Y . Chemical Communications, 2011,47:6641. https://www.ncbi.nlm.nih.gov/pubmed/21566803

doi: 10.1039/c1cc11924a pmid: 21566803
[40]
Tamura H, Shinohara Y, Arai T . Chemistry Letters, 2010,39:240. http://www.journal.csj.jp/doi/10.1246/cl.2010.240

doi: 10.1246/cl.2010.240
[41]
Avó J, Cunha-Silva L, Lima J C, Jorge Parola A . Organic Letters, 2014,16:2582. https://www.ncbi.nlm.nih.gov/pubmed/24787141

doi: 10.1021/ol501111d pmid: 24787141
[42]
Seddon K R, Stark A, Torres M J . Pure & Applied Chemistry, 2000,72:2275.
[43]
Gao N, He Y, Tao X, Xu X Q, Wu X, Wang Y . Nature Communications, 2019,10:547 https://www.ncbi.nlm.nih.gov/pubmed/30710100

doi: 10.1038/s41467-019-08433-5 pmid: 30710100
[44]
Mochizuki H, Nabeshima Y, Kitsunai T, Kanazawa A, Shiono T, Ikeda T, Hiyama T, Maruyama T, Yamamoto T, Koide N . J. Mater. Chem., 1999,9:2215. http://xlink.rsc.org/?DOI=a902596k

doi: 10.1039/a902596k
[45]
Wang H, Liu M, Zhao Y, Xuan X, Zhao Y, Wang J . Science China-Chemistry, 2017,60:970. http://link.springer.com/10.1007/s11426-016-0389-4

doi: 10.1007/s11426-016-0389-4
[46]
Lv Y, Wu J, Zhang J, Niu Y, Liu C Y, He J, Zhang J . Polymer, 2012,53:2524. baed83b6-e39c-4704-bcbe-581eb82ac111http://dx.doi.org/10.1016/j.polymer.2012.03.037

doi: 10.1016/j.polymer.2012.03.037
[47]
Yang J, Wang H Y, Wang J J, Guo X J, Pei X Y . Langmuir, 2016,32:66. https://www.ncbi.nlm.nih.gov/pubmed/26675640

doi: 10.1021/acs.langmuir.5b03854 pmid: 26675640
[48]
Sakai H, Orihara Y, Kodashima H, Matsumura A, Ohkubo T, Tsuchiya K, Abe M . Journal of the American Chemical Society, 2005,127:13454. https://www.ncbi.nlm.nih.gov/pubmed/16190682

doi: 10.1021/ja053323+ pmid: 16190682
[49]
Yang J, Wang H, Wang J, Guo X, Zhang Y . RSC Advances, 2015,5:96305. http://xlink.rsc.org/?DOI=C5RA20772J

doi: 10.1039/C5RA20772J
[50]
Song S L, Han Y, Hao W, Lu J, Qian Y . Tenside Surfactants Detergents, 2017,54:45. http://www.hanser-elibrary.com/doi/10.3139/113.110479

doi: 10.3139/113.110479
[51]
Song S L, Hao W, Yang D, Tain Q, Lu J . Tenside Surfactants Detergents, 2018,55:226. http://www.hanser-elibrary.com/doi/10.3139/113.110558

doi: 10.3139/113.110558
[52]
Yang J, Lee J Y, Ying J Y . Chemical Society Reviews, 2011,40:1672. c4ffa66b-9f78-4cea-b504-577fbb58c465http://dx.doi.org/10.1039/b916790k

doi: 10.1039/b916790k
[53]
Wei Y, Yang J, Ying J Y . Chemical Communications, 2010,46:3179. https://www.ncbi.nlm.nih.gov/pubmed/20424766

doi: 10.1039/b926194j pmid: 20424766
[54]
Stocco A, Chanana M, Su G, Cernoch P, Binks B P, Wang D . Angewandte Chemie-International Edition, 2012,51:9647. https://www.ncbi.nlm.nih.gov/pubmed/22907698

doi: 10.1002/anie.201203493 pmid: 22907698
[55]
Liu G, Wang J . Angewandte Chemie International Edition, 2010,49:4425. https://www.ncbi.nlm.nih.gov/pubmed/20461741

doi: 10.1002/anie.200906034 pmid: 20461741
[56]
Yang Y, Zhang B, Wang Y, Yue L, Li W, Wu L X . Journal of the American Chemical Society, 2013,135:14500. https://www.ncbi.nlm.nih.gov/pubmed/24041266

doi: 10.1021/ja4057882 pmid: 24041266
[57]
Peng L, You M, Wu C, Han D, Ocsoy I, Chen T, Chen Z, Tan W H . ACS Nano, 2014,8:2555. https://www.ncbi.nlm.nih.gov/pubmed/24524295

doi: 10.1021/nn4061385 pmid: 24524295
[58]
Takahashi Y, Fukuyasu K, Horiuchi T, Kondo Y, Stroeve P . Langmuir, 2014,30:41. https://www.ncbi.nlm.nih.gov/pubmed/24354334

doi: 10.1021/la4034782 pmid: 24354334
[59]
Takahashi Y, Koizumi N, Kondo Y . Langmuir, 2016,32:683. https://www.ncbi.nlm.nih.gov/pubmed/26731043

doi: 10.1021/acs.langmuir.5b03912 pmid: 26731043
[60]
Yuan X, Li Z, Feng Y, Pei Y, Wang H, Liu D, Wang D, Wang J . Journal of Molecular Liquids, 2019,277:805. https://linkinghub.elsevier.com/retrieve/pii/S0167732218353807

doi: 10.1016/j.molliq.2019.01.017
[1] Mingxin Zheng, Min Zeng, Xi Chen, Jinying Yuan. Structures and Applications of Photo-Responsive Shape-Changing Liquid Crystal Polymers [J]. Progress in Chemistry, 2021, 33(6): 914-925.
[2] Fengguo Liu, Bo Wang, Lianyu Zhang, Aimin Liu, Zhaowen Wang, Zhongning Shi. Application of Ionic Liquids in Aluminum and Alloy Electrodeposition [J]. Progress in Chemistry, 2020, 32(12): 2004-2012.
[3] Guobin Tong, Lei E, Zhou Xu, Chunhui Ma, Wei Li, Shouxin Liu. Preparation, Modification and Application of Carbon Materials Based on Ionic Liquids [J]. Progress in Chemistry, 2019, 31(8): 1136-1147.
[4] Wenqiao Liu, Zhen Li, Chungu Xia. Preparation and Application of Acidic Ionic Liquid Hybrid Solid Catalytic Materials [J]. Progress in Chemistry, 2018, 30(8): 1143-1160.
[5] Haidong Cheng, Shuangjun Chen*. Degradation and Synthesis of Poly (Ethylene Terephthalate) by Functionalized Ionic Liquids [J]. Progress in Chemistry, 2017, 29(4): 443-449.
[6] Song Heyuan, Kang Meirong, Jin Ronghua, Jin Fuxiang, Chen Jing. Application of Ionic Liquids to the Carbonylation Reactions [J]. Progress in Chemistry, 2016, 28(9): 1313-1327.
[7] Yang Xuzhao, Wang Jun, Fang Yun. Synthesis, Properties and Applications of Dicationic Ionic Liquids [J]. Progress in Chemistry, 2016, 28(2/3): 269-283.
[8] Wang Xue, Tan Chen, Li Yongqi, Zhang Heng, Liu Ye. Synthesis of Ionic Phosphines and Corresponding Ionic Transition Metal Complexes and Their Applications in Homogeneous Catalysis [J]. Progress in Chemistry, 2015, 27(1): 27-37.
[9] Li Qingchuan, Cao Lixin, Hu Haifeng, Wang Kai, Yan Peisheng. Electrochemical Biosensors for Aflatoxin Analysis [J]. Progress in Chemistry, 2014, 26(04): 657-664.
[10] Lai Qingxue, Zhang Xiaogang, Liang Yanyu. Synthesis and Application of Nitrogen-Containing Carbon Nanomaterials by Ionic Liquids as Novel Precursors [J]. Progress in Chemistry, 2013, 25(10): 1703-1712.
[11] You Hongxing, Wang Yongyong, Wang Xuezhu, Liu Ye. Syntheses and Catalytic Applications of the Transition Metal Complex-Functionalized Ionic Liquids [J]. Progress in Chemistry, 2013, 25(10): 1656-1666.
[12] Liu Shuo, Ying Anguo, Ni Yuxiang, Yang Jianguo, Xu Songlin. Application of Task-Specific Ionic Liquids to Michael Additions [J]. Progress in Chemistry, 2013, 25(08): 1313-1324.
[13] Zhang Yingying, Lu Xiaohua*, Feng Xin, Shi Yijun, Ji Xiaoyan. Properties and Applications of Choline-Based Deep Eutectic Solvents [J]. Progress in Chemistry, 2013, 25(06): 881-892.
[14] Li Man, Yang Lei, Han Feng, Chen Jing*, Xia Chungu. Task-Specific Ionic Liquids Catalyzed Carbon-Heteroatom Bond Formation Reactions [J]. Progress in Chemistry, 2013, 25(06): 940-960.
[15] Chen Xuwei, Mao Quanxing, Wang Jianhua*. Ionic Liquids in Extraction/Separation of Proteins [J]. Progress in Chemistry, 2013, 25(05): 661-668.