中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (05): 677-691 DOI: 10.7536/PC121024 Previous Articles   Next Articles

• Review •

Mesoporous Silica Nanoparticle-Based Controlled-Release System

Wang Wenqian1, Chen Linfeng2, Wen Yongqiang*1, Zhang Xueji1, Song Yanlin2, Jiang Lei2   

  1. 1. Research Center for Bioengineering & Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China;
    2. Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • Received: Revised: Online: Published:
PDF ( 2019 ) Cited
Export

EndNote

Ris

BibTeX

Mesoporous silica nanoparticles (MSNs)-based controlled-release system has the characteristics of good biocompatibility, cell targeting property, accurate responsive release, and eliminating undesirable drug release before reaching the target site, which has become a hot topic among many researchers in recent years. This article discussed the advantages of MSNs-based controlled-release system. Meanwhile, based on different stimuli-responsive characteristics, this article systematically analyzed and summarized various MSN-based controlled-release systems which was modified with different responsive switches, and further discussed the switching mechanisms of these devices, including redox-responsive controlled-release systems, light-responsive controlled-release systems, pH-responsive controlled-release systems and biological molecule-responsive controlled-release systems. The prospects and directions of this research field are also briefly addressed. Contents
1 Introduction
2 MSNs-based controlled-release system
3 Non-functionalized MSNs-based controlled-release
4 Functionalized MSNs-based controlled-release
4.1 Redox-responsive controlled-release
4.2 pH-responsive controlled-release
4.3 Light-responsive controlled-release
4.4 Temperature-responsive controlled-release
4.5 Magnet-responsive controlled-release
4.6 Biology-responsive controlled-release
4.7 Multiple responsive controlled-release
4.8 MSNs-based multifunctional systems
5 Outlook

CLC Number: 

[1] Kresge C T, Leonowicz M E, Roth W J, Vartuli J C, Beck J S. Nature, 1992, 359: 710-712
[2] Vallet-Regi M, Balas F, Arcos D. Angew. Chem. Int. Ed., 2007, 46: 7548-7558
[3] Slowing I I, Vivero-Escoto J L, Wu C W, Lin V S Y. Adv. Drug Delivery Rev., 2008, 60: 1278-1288
[4] Lee C H, Lo L W, Mou C Y, Yang C S. Adv. Funct. Mater., 2008, 18: 3283-3292
[5] Huh S, Wiench J W, Yoo J C, Pruski M, Lin V S Y. Chem. Mater., 2003, 15: 4247-4256
[6] Suzuki K, Ikari K, Imai H. J. Am. Chem. Soc., 2004, 126: 462-463
[7] Ying J Y. Chem. Eng. Sci., 2006, 61: 1540-1548
[8] Zhao D Y, Feng J L, Huo Q S, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D. Science, 1998, 279: 548-552
[9] Bagshaw S A, Prouzet E, Pinnavaia T J. Science, 1995, 269: 1242-1244
[10] Inagaki S, Fukushima Y, Kuroda K. J. Chem. Soc. Chem. Commun, 1993, 680-682
[11] Trewyn B G, Slowing I I, Giri S, Chen H T, Lin V S Y. Acc. Chem. Res., 2007, 40: 846-853
[12] 袁丽(Yuan L), 王蓓娣(Wang B D), 唐倩倩(Tang Q Q), 张晓鸿(Zhang X H), 张晓环(Zhang X H), 杨东(Yang D), 胡建华(Hu J H). 有机化学(Chinese Journal of Organic Chemistry), 2010, 30: 640-647
[13] Jin S, Ye K. Biotechnol. Prog., 2007, 23: 32-41
[14] Hughes G A. Nanomed-Nanotechnol., 2005, 1: 22-30
[15] Mayor S, Pagano R E. Nat. Rev. Mol. Cell. Biol., 2007, 8: 603-612
[16] Rejman J, Oberle V, Zuhorn L S, Hoekstra D. Biochem. J., 2004, 377: 159-169
[17] Vallet-Regi M, Ramila A, del Real R P, Perez-Pariente J. Chem. Mater., 2001, 13: 308-311
[18] Mal N K, Fujiwara M, Tanaka Y. Nature, 2003, 421: 350-353
[19] Radu D R, Lai C Y, Jeftinija K, Rowe E W, Jeftinija S, Lin V S Y. J. Am. Chem. Soc., 2004, 126: 13216-13217
[20] Slowing I I, Trewyn B G, Giri S, Lin V S Y. Adv. Funct. Mater., 2007, 17: 1225-1236
[21] Slowing I I, Trewyn B G, Lin V S Y. J. Am. Chem. Soc., 2006, 128: 14792-14793
[22] Slowing I I, Trewyn B G, Lin V S Y. J. Am. Chem. Soc., 2007, 129: 8845-8849
[23] Chung T H, Wu S H, Yao M, Lu C W, Lin V S Y, Hung Y, Mou C W, Chen Y C, Huang D M. Biomaterials, 2007, 28: 2959-2966
[24] Sun W, Fang N, Trewyn B G, Tsunoda M, Slowing I I, Lin V S Y, Yeung E S. Anal. Bioanal. Chem., 2008, 391: 2119-2125
[25] Trewyn B G, Nieweg J A, Zhao Y N, Lin V S Y. Chem. Eng. J., 2008, 137: 23-29
[26] Martin-Ortigosa S, Valenstein J S, Lin V S Y, Trewyn B G, Wang K. Adv. Funct. Mater., 2012, 22: 3576-3582
[27] Vivero-Escoto J L, Slowing I I, Lin V S Y. Biomaterials, 2010, 31: 1325-1333
[28] Slowing I I, Wu C W, Vivero-Escoto J L, Lin V S Y. Small, 2009, 5: 57-62
[29] Zhao Y N, Sun X X, Zhang G N, Trewyn B G, Slowing I I, Lin V S Y. ACS Nano, 2011, 5: 1366-1375
[30] Xia T, Kovochich M, Liong M, Meng H, Kabehie S, George S, Zink J I, Nel A E. ACS Nano, 2009, 3: 3272-3286
[31] Ferris D P, Lu J, Gothard C, Yanes R, Thomas C R, Olsen J C, Stoddart J F, Tamanoi F, Zink J I. Small, 2011, 7: 1816-1826
[32] Lu J, Liong M, Zink J I, Tamanoi F. Small, 2007, 3: 1341-1346
[33] Lu J, Liong M, Li Z X, Zink J I, Tamanoi F. Small, 2010, 6: 1794-1805
[34] Meng H, Liong M, Xia T, Li Z X, Ji Z X, Zink J I, Nel A E. ACS Nano, 2010, 4: 4539-4550
[35] Hom C, Lu J, Liong M, Luo H Z, Li Z X, Zink J I, Tamanoi F. Small, 2010, 6: 1185-1190
[36] Liu J W, Stace-Naughton A, Jiang X M, Brinker C J. J. Am. Chem. Soc., 2009, 131: 1354-1355
[37] Liu J W, Jiang X M, Ashley C, Brinker C J. J. Am. Chem. Soc., 2009, 131: 7567-7569
[38] Carnes E C, Harper J C, Ashley C E, Lopez D M, Brinker L M, Liu J W, Singh S, Brozik S M, Brinker C J. J. Am. Chem. Soc., 2009, 131: 14255-14257
[39] Ashley C E, Carnes E C, Phillips G K, Padilla D, Durfee P N, Brown P A, Hanna T N, Liu J W, Phillips B, Carter M B, Carroll N J, Jiang X M, Dunphy D R, Willman C L, Petsev D N, Evans D G, Parikh A N, Chackerian B, Wharton W, Peabody D S, Brinker C J. Nat. Mater., 2011, 10: 389-397
[40] Lai C Y, Trewyn B G, Jeftinija D M, Jeftinija K, Xu S, Jeftinija S, Lin V S Y. J. Am. Chem. Soc., 2003, 125: 4451-4459
[41] Huang X, Zhuang J, Teng X, Li L, Chen D, Yan X, Tang F. Biomaterials, 2010, 31: 6142-6153
[42] He Q J, Zhang Z W, Gao F, Li Y P, Shi J L. Small, 2011, 7: 271-280
[43] Zhu M, Wang H X, Liu J Y, He H L, Hua X G, He Q J, Zhang L X, Ye X J, Shi J L. Biomaterials, 2011, 32: 1986-1995
[44] Trewyn B G, Whitman C M, Lin V S Y. Nano Letter, 2004, 4: 2139-2143
[45] Trewyn B G, Giri S, Slowing I I, Lin V S Y. Chem. Commun., 2007, 3236-3245
[46] Chen Z D, Li X, He H Y, Ren Z H, Liu Y, Wang J, Li Z, Shen G, Han G R. Colloids and Surfaces A: Biointerfaces, 2012, 95: 274-278
[47] Wan M M, Yang J Y, Qiu Y, Zhou Y, Guan C X, Hou Q, Lin W G, Zhu J H. ACS Appl. Mater. Interfaces, 2012, 4: 4113-4122
[48] Verma A, Simard J M, Worrall J W E, Rottello V M. J. Am. Chem. Soc., 2004, 126: 13987-13991
[49] Giri S, Trewyn B G, Stellmaker M P, Lin V S Y. Angew. Chem. Int. Ed., 2005, 44: 5038-5044
[50] Torney F, Trewyn B G, Lin V S Y, Wang K. Nat. Nanotechnol., 2007, 2: 295-300
[51] Sun X X, Zhao Y N, Lin V S Y, Slowing I I, Trewyn B G. J. Am. Chem. Soc., 2011, 133: 18554-18557
[52] Hernandez R, Tseng H R, Wong J W, Stoddart J F, Zink J I. J. Am. Chem. Soc., 2004, 126: 3370-3371
[53] Nguyen T D, Tseng H R, Celestre P C, Flood A H, Liu Y, Stoddart J F, Zink J I. Proc. Natl. Acad. Sci. U. S. A., 2005, 102: 10029-10034
[54] Nguyen T D, Liu Y, Saha S, Leung K C F, Stoddart J F, Zink J I. J. Am. Chem. Soc., 2007, 129: 626-634
[55] Liu R, Zhao X, Wu T, Feng P Y. J. Am. Chem. Soc., 2008, 130: 14418-14419
[56] Zhu C L, Song X Y, Zhou W H, Yang H H, Wen Y H, Wang X R. J. Mater. Chem., 2009, 19: 7765-7770
[57] Kim H, Kim S, Park C Y, Lee H, Park H J, Kim C. Adv. Mater., 2010, 22: 4280-4283
[58] Cui Y N, Dong H Q, Cai X J, Wang D P, Li Y Y. ACS Appl. Mater. Interfaces, 2012, 4: 3177-3183
[59] Park C Y, Oh K, Lee S C, Kim C. Angew. Chem. Int. Ed., 2007, 46: 1455-1457
[60] Du L, Liao S J, Khatib H A, Stoddart J F, Zink J I. J. Am. Chem. Soc., 2009, 131: 15136-15142
[61] Zhao Y L, Li Z X, Kabehie S, Botros Y Y, Stoddart J F, Zink J I. J. Am. Chem. Soc., 2010, 132: 13016-13025
[62] Meng H, Xue M, Xia T, Zhao Y L, Tamanoi F, Stoddart J F, Zink J I, Nel A E. J. Am. Chem. Soc., 2010, 132: 12690-12697
[63] Angelos S, Yang Y W, Patel K, Stoddart J F, Zink J I. Angew. Chem. Int. Ed., 2008, 47: 2222-2226
[64] Angelos S, Khashab N M, Yang Y W, Trabolsi A, Khatib H A, Stoddart J F, Zink J I. J. Am. Chem. Soc., 2009, 131: 12912-12914
[65] Liu R, Zhang Y, Zhao X, Agarwal A, Mueller L J, Feng P Y. J. Am. Chem. Soc., 2010, 132: 1500-1501
[66] Muhammad F, Guo M Y, Qi W X, Sun F X, Wang A F, Guo Y J, Zhu G S. J. Am. Chem. Soc., 2011, 133: 8778-8781
[67] Yang Q, Wang S C, Fan P W, Wang L F, Di Y, Lin K F, Xiao F S. Chem. Mater., 2005, 17: 5999-6003
[68] Yuan L, Tang Q Q, Yang D, Zhang J Z, Zhang F Y, Hu J H. J. Phys. Chem. C, 2011, 115: 9926-9932
[69] Xing R, Lin H M, Jiang P P, Qu F Y. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2012, 403: 7-14
[70] Liu R, Liao P H, Liu J K, Feng P Y. Langmuir, 2011, 27: 3095-3099
[71] Chen F, Zhu Y C. Micropor. Mesopor. Mat., 2012, 150: 83-89
[72] Mei X, Chen D Y, Li N J, Xu Q F, Ge J F, Li H, Lu J M. Micropor. Mesopor. Mat., 2012, 152: 16-24
[73] He Q J, Gao Y, Zhang L X, Zhang Z W, Gao F, Ji X F, Li Y P, Shi J L. Biomaterials, 2011, 32: 7711-7720
[74] Zhu Y F, Shi J L, Shen W H, Dong X P, Feng J W, Ruan M L, Li Y S. Angew. Chem. Int. Ed., 2005, 44: 5083-5087
[75] He D G, He X X, Wang K, Cao J, Zhao Y X. Langmuir, 2012, 28: 4003-4008
[76] Angelos S, Choi E, Vogtle F, Cola L D, Zink J I. J. Phys. Chem. C, 2007, 111: 6589-6592
[77] Lu J, Choi E, Tamanoi F, Zink J I. Small, 2008, 4: 421-426
[78] Ferris D P, Zhao Y L, Khashab N M, Khatib H A, Stoddart J F, Zink J I. J. Am. Chem. Soc., 2009, 131: 1686-1688
[79] Vivero-Escoto J L, Slowing I I, Wu C W, Lin V S Y. J. Am. Chem. Soc., 2009, 131: 3462-3463
[80] Park C Y, Lee K, Kim C. Angew. Chem. Int. Ed., 2009, 48: 1275-1278
[81] Fu Q, Rao G V R, Ista L K, Wu Y, Andrzejewski B P, Sklar L A, Ward T L, Lopez G P. Adv. Mater., 2003, 15, 1262-1266
[82] You Y Z, Kalebaila K K, Brock S L, Oupick D. Chem. Mater., 2008, 20: 3354-3359
[83] Chen P J, Hu S H, Hsiao C S, Chen Y Y, Liu D M, Chen S Y. J. Mater. Chem., 2011, 21: 2535-2543
[84] Thomas C R, Ferris D P, Lee J H, Choi E, Cho M H, Kim E S, Stoddart J F, Shin J S, Cheon J, Zink J I. J. Am. Chem. Soc., 2010, 132: 10623-10625
[85] Ruiz-Hernáandez E, Baeza A, Vallet-Regí M. ACS Nano, 2011, 5: 1259-1266
[86] Patel K, Angelos S, Dichtel W R, Coskun A, Yang Y W, Zink J I, Stoddart J F. J. Am. Chem. Soc., 2008, 130: 2382-2383
[87] Schlossbauer A, Kecht J, Bein T. Angew. Chem. Int. Ed., 2009, 48: 3092-3095
[88] Park C Y, Kim H, Kim S, Kim C. J. Am. Chem. Soc., 2009, 131: 16614-16615
[89] Bernardos A, Aznar E, Marcos M D, Martíez-Mánez R, Sancenón F, Soto J, Barat J M, Amorós P. Angew. Chem. Int. Ed., 2009, 48: 5884-5887
[90] Zhao Y, Trewyn B G, Slowing I I, Lin V S Y. J. Am. Chem. Soc., 2009, 131: 8398-8400
[91] Singh N, Karambelkar A, Gu L, Lin K, Miller J S, Chen C S, Sailor M J, Bhatia S N. J. Am. Chem. Soc., 2011, 133: 19582-19585
[92] Chen M J, Huang C S, He C S, Zhu W P, Xu Y F, Lu Y F. Chem. Commun., 2012, 9522-9524
[93] Chen C, Geng J, Pu F, Yang X J, Ren J S, Qu X G. Angew. Chem. Int. Ed., 2011, 50: 882-886
[94] Climent E, Martínez-Máez R, Sancenón F, Marcos M D, Soto J, Maquieira A, Amorós P. Angew. Chem. Int. Ed., 2010, 49: 7281-7283
[95] Schlossbauer A, Warncke S, Gramlich P M E, Kecht J, Manetto A, Carell T, Bein T. Angew. Chem. Int. Ed., 2010, 49: 4734-4737
[96] Chen C, Pu F, Huang Z Z, Liu Z, Ren J S, Qu X G. Nucl. Acids Res., 2011, 39: 1638-1644
[97] Chen L F, Di J C, Cao C Y, Zhao Y, Ma Y, Luo J, Wen Y Q, Song W G, Song Y L, Jiang L. Chem. Commun., 2011, 2850-2852
[98] Wen Y Q, Xu L P, Wang W Q, Wang D Y, Du H W, Zhang X J. Nanoscale, 2012, 4: 4473-4476
[99] Chen L F, Wen Y Q, Su B, Di J C, Song Y L, Jiang L. J. Mater. Chem., 2011, 21: 13811-13816
[100] He X X, Zhao Y X, He D G, Wang K M, Xu F Z, Tang J L. Langmuir, 2012, 28: 12909-12915
[101] Wen Y Q, Xu L P, Li C B, Du H W, Chen L F, Su B, Zhang Z L, Zhang X J, Song Y L. Chem. Commun., 2012, 8410-8412
[102] Luo Z, Cai K Y, Hu Y, Zhao L, Liu P, Duan L, Yang W H. Angew. Chem. Int. Ed., 2011, 50: 640-643
[103] Zhu C L, Lu C H, Song X Y, Yang H H, Wang X R. J. Am. Chem. Soc., 2011, 133: 1278-1281
[104] Leung K C F, Nguyen T D, Stoddart J F, Zink J I. Chem. Mater., 2006, 18: 5919-5928
[105] Casasús R, Climent E, Marcos M D, Martínez-Máez R, Sancenón F, Soto J, Amorós P, Cano J, Ruiz E. J. Am. Chem. Soc., 2008, 130: 1903-1917
[106] Aznar E, Marcos M D, Martínez-Máez R, Sancenón F, Soto J, Amorós P, Guillem C. J. Am. Chem. Soc., 2009, 131: 6833-6843
[107] Angelos S, Yang Y W, Khashab N M, Stoddart J F, Zink J I. J. Am. Chem. Soc., 2009, 131: 11344-11346
[108] Liu R, Zhang Y, Feng P Y. J. Am. Chem. Soc., 2009, 131: 15128-15129
[109] Baeza A, Guisasola E, Ruiz-Hernández E, Vallet-Regí M. Chem. Mater., 2012, 24: 517-524
[110] Croissant J, Zink J I. J. Am. Chem. Soc., 2012, 134: 7628-7631
[111] Yan H, Teh C, Sreejith S, Zhu L L, Kwok A, Fang W Q, Ma X, Nguyen K, Korzh V, Zhao Y L. Angew. Chem. Int. Ed., 2012, 51: 8373-8377
[112] Yang X J, Liu X, Liu Z, Pu F, Ren J S, Qu X G. Adv. Mater., 2012, 24: 2890-2895
[113] Zhang Z J, Wang L M, Wang J, Jiang X M, Li X H, Hu Z J, Ji Y L, Wu X C, Chen C Y. Adv. Mater., 2012, 24: 1418-1423
[114] Kang X J, Cheng Z Y, Yang D M, Ma P A, Shang M M, Peng C, Dai Y L, Lin J. Adv. Funct. Mater., 2012, 22: 1470-1481
[115] Chen Y, Yin Q, Ji X F, Zhang S J, Chen H R, Zheng Y Y, Sun Y, Qu H Y, Wang Z, Li Y P, Wang X, Zhang K, Zhang L L, Shi J L. Biomaterials, 2012, 33: 7126-7137
[116] Fang W J, Yang J, Gong J W, Zheng N F. Adv. Funct. Mater., 2012, 22: 842-848
[117] Lee J, Kim H, Kim S, Lee H, Kim J, Kim N, Park H, Choi E K, Lee J S, Kim C. J. Mater. Chem., 2012, 22: 14061-14067
[118] Wang C, Lv P P, W W, Tao S Y, Hu T, Yang J B, Meng C G. Nanotechnology, 2011, 22: 415101-415108
[119] Wua H X, Tang L H, Ana L, Wang X, Zhang H Q, Shi J L, Yang S P. React. Funct. Polym., 2012, 72: 329-336
[120] Kne?evi Dc' N ?, Slowing I I, Lin V S Y. Chem. Plus. Chem., 2012, 77: 48-55
[121] Liong M, Lu J, Kovochich M, Xia T, Ruehm S G, Nel A E, Tamanoi F, Zink J I. ACS Nano, 2008, 2: 889-896

[1] Zhang Huidi, Li Zijie, Shi Weiqun. The Stability Enhancement of Covalent Organic Frameworks and Their Applications in Radionuclide Separation [J]. Progress in Chemistry, 2023, 35(3): 475-495.
[2] Meng Wang, He Song, Yifei Zhu. Stimuli-Responsive Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(12): 2588-2603.
[3] Bai Wenji, Shi Yubing, Mu Weihua, Li Jiangping, Yu Jiawei. Computational Study on Cs2CO3-Assisted Palladium-Catalyzed X—H(X=C,O,N, B) Functionalization Reactions [J]. Progress in Chemistry, 2022, 34(10): 2283-2301.
[4] Xi Chen, Zheyao Li, Yayun Chen, Zhihua Chen, Yan Hu, Chuanxiang Liu. C—H Cyanoalkylation:the Direct C—H Cyanomethylation of Naphthalimide [J]. Progress in Chemistry, 2021, 33(11): 1947-1952.
[5] Jianlin Shi, Zile Hua. Condensed State Chemistry in the Synthesis of Inorganic Nano- and Porous Materials [J]. Progress in Chemistry, 2020, 32(8): 1060-1075.
[6] Qianwen Huang, Xiaowen Zhang, Mi Li, Xiaoyan Wu, Liyong Yuan. Preparation of Functional Fibrous Silica Nanoparticles and Their Applications in Adsorption and Separation [J]. Progress in Chemistry, 2020, 32(2/3): 230-238.
[7] Qiang Zhang, Wenjun Huang, Yanbin Wang, Xingjian Li, Yiheng Zhang. Functionalization of Polyurethane Based on Copper-Catalyzed Azide-Alkyne Cycloaddition Reaction [J]. Progress in Chemistry, 2020, 32(2/3): 147-161.
[8] Jiangbo Liu, Lihua Wang, Xiaolei Zuo. Cell Membranes Functionalization Based on DNA [J]. Progress in Chemistry, 2019, 31(8): 1067-1074.
[9] Yuanming Tan, Hao Meng, Xia Zhang. Removal of Organic Dyes and Heavy Metal Ions by Functionalized MOFs and MOFs/Polymer Composite Membranes [J]. Progress in Chemistry, 2019, 31(7): 980-995.
[10] Aobo Geng, Qiang Zhong, Changtong Mei, Linjie Wang, Lijie Xu, Lu Gan. Applications of Wet-Functionalized Graphene in Rubber Composites [J]. Progress in Chemistry, 2019, 31(5): 738-751.
[11] Zhao Li, Lin Yu, Zhen Zheng, Xinling Wang*. Functionalization of High-Strength Hydrogels with Regular Network Structures [J]. Progress in Chemistry, 2017, 29(7): 706-719.
[12] Xiaopeng Zhang*, Shuxiang Dong, Xuesen Fan, Guisheng Zhang. Synthesis of o-Aminobenzamide Compounds [J]. Progress in Chemistry, 2017, 29(11): 1351-1356.
[13] Zhang Guanglu, Zhang Ting, Zhou Lipeng, Sun Qingfu. Capsid-Inspired Multi-Component Self-Assembly of Nanocontainers: Structure, Functionalization, and Applications [J]. Progress in Chemistry, 2016, 28(9): 1289-1298.
[14] Sun Yue, Zhou Xiaoxin, Lou Zimo, Liu Yu, Fu Ruiqi, Xu Xinhua*. Functionalized Iron-Based Nano-Materials for Removal of Mercury from Aqueous Solution [J]. Progress in Chemistry, 2016, 28(8): 1156-1169.
[15] Dong Yunhong, Cao Liping. Functionalization of Cucurbit uril [J]. Progress in Chemistry, 2016, 28(7): 1039-1053.